Skip to main content

Enumerative Geometry: Old and New

Posted in
Felix Janda
University of Notre Dame
Mon, 2020-10-26 15:00 - 15:45
Parent event: 
Extra talk

Zoom Meeting ID: 943 4202 1275
For password please contact Pieter Moree (moree@mpim...)


For as long as people have studied geometry, they have counted geometric objects. For example, Euclid's Elements starts with the postulate that there is exactly one line passing through two distinct points in the plane. Since then, the kinds of counting problems we are able to pose and to answer has grown. Today enumerative geometry is a rich subject with connections to many fields, including combinatorics, physics, representation theory, number theory and integrable systems.

In this talk, I will show how to solve several classical counting questions. I will then move to a more modern problem with roots in string theory which has been the subject of intense study for the last three decades: The computation of the Gromov-Witten invariants of the quintic threefold, an example of a Calabi-Yau manifold.

© MPI f. Mathematik, Bonn Impressum & Datenschutz
-A A +A