Zugehörigkeit:
U. of Caen, LMNO/MPI
Datum:
Don, 2010-06-10 15:00 - 16:00
Let $G$ be the group of unipotent uppertriangular $n \times n$ matrices. For a matrix of this group, being totally positive means to have all its non-trivial minors positive (those which are non-vanishing in $\mathbb{C}[G]$). From an algorithmic point of view, it is interesting to find a subset of the set of the minors, seen as elements of $\mathbb{C}[G]$, which fully characterizes the total positivity. Such subsets, with only $\left( \begin{matrix} n \\ 2 \end{matrix} \right)$ minors, exist.