Skip to main content

Abstracts for Conference on "Elementare und Analytische Zahlentheorie (ELAZ)", September 3 - 7, 2018

Alternatively have a look at the program.

Universal quadratic forms over real quadratic fields

Posted in
Speaker: 
Valentin Blomer
Zugehörigkeit: 
Universität Göttingen
Datum: 
Mon, 2018-09-03 09:25 - 10:10
Location: 
MPIM Lecture Hall

A positive integral quadratic form is called universal if it represents all positive integers, such as sums of four squares. This definition makes sense for totally positive quadratic forms over the ring of integers of totally real number fields. For instance, Hans Maa{\ss} showed that sums of three squares are universal over $\mathbb{Q}(\sqrt{5})$.

Indefinite theta series via incomplete theta integrals

Posted in
Speaker: 
Jens Funke
Zugehörigkeit: 
University of Durham
Datum: 
Mon, 2018-09-03 10:15 - 11:00
Location: 
MPIM Lecture Hall

In this talk we will discuss recent developments in the theory of indefinite theta series focusing on examples. This is joint work with Steve Kudla.

Arithmetic statistics of modular symbols I

Posted in
Speaker: 
Yiannis Petridis
Zugehörigkeit: 
University College London
Datum: 
Mon, 2018-09-03 11:30 - 12:00
Location: 
MPIM Lecture Hall
Mazur, Rubin, and Stein have recently formulated a series of conjecturesabout statistical properties of
modular symbols in order to understand central values of twists of elliptic curve $L$-functions. Two of

Arithmetic statistics of modular symbols II

Posted in
Speaker: 
Morten Risager
Zugehörigkeit: 
University of Copenhagen
Datum: 
Mon, 2018-09-03 12:05 - 12:35
Location: 
MPIM Lecture Hall
Mazur, Rubin, and Stein have recently formulated a series of conjecturesabout statistical properties of
modular symbols in order to understand central values of twists of elliptic curve $L$-functions. Two of
these  conjectures relate to the asymptotic growth of the first and second moments of the modular symbols.

Diophantine inequalities for ternary diagonal forms

Posted in
Speaker: 
Damaris Schindler
Zugehörigkeit: 
Utrecht University
Datum: 
Mon, 2018-09-03 14:10 - 14:55
Location: 
MPIM Lecture Hall

We discuss small solutions to ternary diagonal inequalities of any degree where all of the variables are assumed to be of size $P$. We study this problem on average over a one-parameter family of forms and discuss a generalization of work of Bourgain on generic ternary diagonal quadratic forms to higher degree.

Shintani theta lifts of harmonic Maass forms

Posted in
Speaker: 
Claudia Alfes-Neumann
Zugehörigkeit: 
Universität Paderborn
Datum: 
Mon, 2018-09-03 15:00 - 15:30
Location: 
MPIM Lecture Hall

In this talk we define a Shintani lift for harmonic Maass forms. We show that it maps weight $2k+2$ harmonic Maass forms to harmonic Maass forms of weight $3/2+k$ and describe its Fourier coefficients in terms of traces of CM values and regularized cycle integrals of the input harmonic Maass forms. Moreover, we present some applications of this construction. If time permits, we will also explain the extension of the lift to meromorphic modular forms. All of this is joint work with Markus Schwagenscheidt and the last part also with Kathrin Bringmann.

Speed Talks

Posted in
Speaker: 
tba
Datum: 
Mon, 2018-09-03 15:35 - 16:00
Location: 
MPIM Lecture Hall

The distribution of Hardy's function $Z(t)$ and the argument function $S(t)$

Posted in
Speaker: 
Aleksandar Ivic
Zugehörigkeit: 
Serbian Academy of Sciences and Arts
Datum: 
Mon, 2018-09-03 16:30 - 17:00
Location: 
MPIM Lecture Hall

Hardy's function is ($t \in \mathbb R$)
$$
Z(t)  := \zeta(1/2+it)\bigl(\chi(1/2+it)\bigr)^{-1/2},
$$
where $\zeta(s) \;=\; \chi(s)\zeta(1-s)$ is the functional equation for the Riemann zeta-function $\zeta(s)$.
The argument function is
$$
S(t) \;:=\; \frac{1}{\pi}\arg \zeta(1/2 + it)\qquad(t>0, \;t \ne \gamma),
$$
where $\rho = \beta+i\gamma$ denotes generic complex zeros of $\zeta(s)$. If $t=\gamma,$
$S(t) \;=\; S(t+0)$. These important functions are real-valued, so one may naturally ask

Analytic techniques in Moonshine

Posted in
Speaker: 
Michael Mertens
Zugehörigkeit: 
Universität zu Köln
Datum: 
Die, 2018-09-04 09:25 - 09:45
Location: 
MPIM Lecture Hall

About 20 years after Borcherds's seminal proof of the Conway-Norton's Monstrous Moonshine Conjecture, many other Moonshine phenomena have been discovered and proved, at least abstractly. Most prominent examples include Umbral Moonshine, Thompson Moonshine, and most recently O'Nan Moonshine. In my talk, I present some of the analytic methods that are employed in the proofs of these more recent Moonshine results.

Divisor-sum fibers

Posted in
Speaker: 
Lola Thompson
Zugehörigkeit: 
Oberlin College
Datum: 
Die, 2018-09-04 09:50 - 10:10
Location: 
MPIM Lecture Hall

Let $s(\cdot)$ denote the sum-of-proper-divisors function, that is, $s(n) =\sum_{d\mid n,~d<n}d$.
Erdös--Granville--Pomerance--Spiro conjectured that, for any set $\mathcal{A}$ of asymptotic
density zero, the preimage set $s^{-1}(\mathcal{A})$ also has density zero. We prove a weak
form of this conjecture. In particular, we show that the EGPS conjecture holds for
infinite sets with counting function $O(x^{\frac12 + \epsilon(x)})$. We also disprove a hypothesis
from the same paper of EGPS by showing that for any positive numbers $\alpha$ and $\epsilon$,

© MPI f. Mathematik, Bonn Impressum & Datenschutz
-A A +A