On Curves with Prescribed Number of Points

One of the main problem in curves over finite fields is to determine for which triple (q, g, N) there exists a curve \mathcal{C} over the finite field \mathbb{F}_{q} of genus g having exactly N rational points. A complete solution to the problem is out of reach. Elkies et al. gave a partial answer to the problem and proved that there exists a constant $\gamma_{q}>0$ depending only on q such that for any integer $g \geq 0$ there exists a curve \mathcal{C} over \mathbb{F}_{q} of genus g having $N \geq \gamma_{q} g$ rational points. We extend the result of Elkies et al. substantially and proved the following statement:
there are constants $\alpha_{q}, \beta_{q}>0$ depending only on q such that for any integer $g \geq 0$ and nonnegative integer $N \in\left[0, \alpha_{q} g-\beta_{q}\right]$ there exists a curve \mathcal{C} over \mathbb{F}_{q} of genus g having exactly N rational points.

This is a joint work with Henning Stichtenoth.

