On Curves with Prescribed Number of Points

One of the main problem in curves over finite fields is to determine for which triple (q, g, N)there exists a curve \mathcal{C} over the finite field \mathbb{F}_q of genus g having exactly N rational points. A complete solution to the problem is out of reach. Elkies et al. gave a partial answer to the problem and proved that there exists a constant $\gamma_q > 0$ depending only on q such that for any integer $g \ge 0$ there exists a curve \mathcal{C} over \mathbb{F}_q of genus g having $N \ge \gamma_q g$ rational points. We extend the result of Elkies et al. substantially and proved the following statement:

there are constants $\alpha_q, \beta_q > 0$ depending only on q such that for any integer $g \ge 0$ and nonnegative integer $N \in [0, \alpha_q g - \beta_q]$ there exists a curve \mathcal{C} over \mathbb{F}_q of genus g having exactly Nrational points.

This is a joint work with Henning Stichtenoth.