
SIMPLE-MINDED ENTROPY FOR UP TO AMENABLE

ACTIONS

This note shows how I was gradually discovering the validity of the equality
between the entropy of a process h(G,P) and a simplified notion, which I denoted
h∗(G,P), for actions of more and more complex countable groups. I started with
Z, then Z2, then I passed to amenable right-orderable groups, exercised cyclic
groups, to finally reach general amenable groups. Of course, the last proof overrides
everything that precedes it, but I keep everything as a record of my way through.

The “simple minded formula” fails for free groups (e.g. for F2) in the sense that
it produces a parameter which is not an isomorphism invariant. In this sense it
yields to sofic entropy.

So, I proposed two variants (denoted h∗∗(G,P) and h∗∗∗(G,P)), which are al-
ways going to be isomorphism invariants, however, we I not know whether they
behave well for Bernoulli shifts, i.e., whether for such processes they are equal to
the static entropy of the independent generator.

This subject was presented at Max Planck Institute in Bonn during the activity
“Dynamics and Numbers” (June 17, 2014).

After the presentation, I talked to Benjy Weiss, and (how disappointingly for
me) it turned out that he knew all about it since quite long. He even knew that the
variant h∗∗∗(G,P) works (behaves well for Benoulli shifts) for actions of sofic groups.
(Since this result is currently under preparation, I cannot give any reference.)

So, here we go. Below I present perhaps independent proofs of known facts. But
nothing really new.

It seems, that the field remains open for topological entropy. At least, Benjy
Weiss believes so. The static entropy of an open cover H(Un) (defined as log of
the cardinality of the smallest subcover) is not strongly subadditive (the numbers
r(n, ε), or s(n, ε), i.e., the log’s of the cardinalities of maximal (n, ε)-seprated or
minimal (n, ε)-spanning sets, used to define topological entropy, are not even sub-
additive), so the proofs do not pass directly. Probably, for one open cover the
analogous notion (say h∗(G,U)) does not equal the traditional notion h(G,U) even
for Z-actions, but there is hope that after taking the supremum over all open covers
we will get equality. It is also interesting to see whether topological entropy can
be defined with help of some strongly subadditive notion replacing the imperfect
H(Un) or r(n, ε), or s(n, ε). This is subject of some current efforts of my research
group.

1. Z-actions

We consider a measure preserving transformation (X,Σ, µ, T ), with a finite
(or countable) measurable partition P of X. If F ⊂ Z then by PF we denote∨
n∈F T

−n(P).

Definition 1.1.
h∗(T,P) = inf{ 1

|F |H(PF ) : |F | <∞}.
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Theorem 1.2.

h∗(T,P) = h(T, P ).

Proof. We have

h(T,P) = inf
n

1
nH(P [0,n−1]) = inf{ 1

|F |H(PF ) : F = [0, n− 1], n ∈ N} ≥ h∗(T,P).

For the converse, for any finite set F = {n1, n2, . . . , nk}, we write

H(PF ) = H(P{n1}) +H(P{n2}|P{n1}) +H(P{n3}|P{n1,n2}) + · · ·

· · ·+H(P{nk}|P{n1,n2,...,nk−1}),

hence 1
|F |H(PF ), being an average of the terms on the right, is not smaller than

the smallest term. I.e., there exists i ∈ {1, 2, . . . , k} such that

1
|F |H(PF ) ≥ H(P{ni}|P{n1,n2,...,ni−1}).

By invariance of the measure, the right hand side equals

H(P|P{n1−ni,n2−ni,...,ni−1−ni}).

Since all exponents on the right are strictly negative, this expression is not smaller
than H(P|P{−1,−2,... }) = h(T,P). Application of the infimum over all finite sets
F completes the proof. �

Remark 1.3. The entropy h∗(T,P) can be written as

h∗(T,P) = inf
n

1
n inf{H(PF ) : |F | = n} =: inf

n

1
nH
∗(n,P).

Now, one can prove that the sequenceH∗(n,P) is subadditive (see below), hence the
infimumm over n can be written as a limit or upper limit, according to preference.

Proof of subadditivity.

H∗(n+m,P) = inf{H(PF ) : |F | = n+m} =

inf{H(PF∪E) : |F | = n, |E| = m,F ∩ E = ∅} ≤
inf{H(PF ) +H(PE) : |F | = n, |E| = m,F ∩ E = ∅} =

inf{H(PF ) +H(PE) : |F | = n, |E| = m},

where the last equality follows by invariance and the fact that any finite sets can
be shifted to disjoint positions. Now, since the infimum involves two independent
variables F and E and two expressions each depending on only one of them, the
infimum equals the sum of infima, which, by definition, equals H∗(n,P)+H∗(m,P).

�

By the way, it is completely clear that for Bernoulli shifts (on any countable
group) we have h∗(G,P) = H(P).

2. Z2-actions

We will now prove the analog of Theroem 1.2 for Z2-actions. We will use the
following notation: The action has two generating maps, S and T . Finite sets F
are now subsets of Z2.
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Theorem 2.1. Define, as before,

h∗(S, T,P) = inf{ 1
|F |H(PF ) : |F | <∞}.

Then

h∗(S, T,P) = h(S, T,P).

By [0,m − 1] × [0, n − 1] we will denote the rectangle in Z2, starting at (0, 0),
with dimensions m×n. We will imagine that m is the number of columns and that
it describes the number of iterates of the transformation S. The proof is based on
the following observation:

Lemma 2.2.

h(S, T,P) = H(P|PA ∨ P−)

where A = (−∞,∞) × (−∞,−1], P− = P(−∞,−1]×{0}. (The right hand side will

be alternatively written as H(P|PA′), where A′ = A ∪ ((−∞,−1]× {0}).)

Proof. All facts and formulas cited in this proof come from [1]. By Fact 2.3.4
(formula (2.3.5)), the right hand side equals h(S,P|PA). This, in turn, equals
the limit of conditional dynamical entropies h(S,P|P{0}×[−n,−1]) (see Fact 2.4.16
(formula (2.4.17) and Fact 2.3.7 (formula (2.3.8))). Next, using Fact 2.4.2 (for-
mula (2.4.4), this conditional entropy equals the difference h(S,P{0}×[−n,0]) −
h(S,P{0}×[−n,−1]) = h(S,P{0}×[−n,0]) − h(S,P{0}×[−n+1,0]). Thus the sequence
h(S,P{0}×[−n+1,0]) has decreasing increments and by Fact 2.1.1 the limit of the
increments equals the nonincreasing limit of the nths, leading to

H(P,PA ∨ P−) = lim
n

1
n ↓ h(S,P{0}×[0,n−1])

Further,

h(S,P{0}×[0,n−1]) = lim
m
↓ 1
mH(P [0,m−1]×[0,n−1]).

Iterated noincreasing limits commute and equal the double limit. Hence

lim
n
↓ 1
nh(T,P{0}×[0,n−1]) = lim

m,n

1
mnH(P [0,m−1]×[0,n−1]) = h(S, T,P).

�

Proof of Theorem 2.1. As before, only one inequality is nontrivial. Consider a finite
set F and enumerate it lexicographically, so that for each element (i, j) ∈ F , the
set of all its predecessors in F lies in A′ + (i, j). The rest of the proof is identical
as before: we write H(PF ) as the sum of |F | conditional entropies (each time the
condition depends on the coordinates in the set of predecessors). Thus 1

|F |H(PF ) is

not smaller than the smallest term, which in turn is not smaller than H(P|PA′). �

3. Amenable right-orderable groups

Theorem 2.1 extends to amenable groups which are right orderable, i.e., admit a
linear right-invariant order. Note that every such group is torsion-free. It is known
that an Abelian group is orderable if and only if it is torsion-free.

Theorem 3.1. Suppose G is a countable, amenable and right-orderable group.
Consider an action (X,Σ, µ,G) with a partition P. Define, as before

(3.1) h∗(G,P) = inf{ 1
|F |H(PF ) : |F | <∞}.
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Then h∗(G,P) = h(G,P), where the right hand side denotes the usual amenable
entropy of the partition.

Proof. As before, we will focus on the nontrivial inequality. Let F = {g1, . . . , gk}
be an arbitrary finite set ordered increasingly. As in the proof of Theorem 1.2,
there exists i ∈ {1, 2, . . . , k} such that

1
|F |H(PF ) ≥ H(P{gi}|P{g1,g2,...,gi−1}).

We will denote by E the set {g1, g2, . . . , gi−1}g−1i . Let F be an element of the
Følner sequence which is (E, ε

|E| )-invariant. Then (1−ε)-percent of the elements g

of F satisfy the condition Eg ⊂ F (the set of such elements will be denoted by F′).
Since the order is right-invariant, for g ∈ F′ we have Eg ⊂ Fg, where Fg denotes
the set of predecessors of g contained in F.

Now we can write

1
|F|H(PF) =

1
|F|

∑
g∈F

H(P{g}|PFg ) = 1
|F|

(∑
g∈F′

H(P{g}|PFg ) +
∑

g∈F\F′
H(P{g}|PFg )

)
≤

1
|F|

∑
g∈F

H(P{g}|PEg) + ε log #P = H(P{gi}|P{g1,g2,...,gi−1}) + ε log #P ≤

1
|F |H(PF ) + ε log #P.

Since ε is arbitrarily small, this ends the proof. �

4. Finite cyclic groups

Theorem 3.1 applies to all torsion-free Abelian groups. The first step towards
general Abelian groups is handling the case of finite cyclic groups Zp = Z/pZ (where
p is not necessarily a prime number).

Theorem 4.1. If G = Zp (for some p ∈ N) then h∗(G,P) = h(G,P).

Proof. Note that in this case h(G,P) = 1
|G|H(PG) (this holds for any finite group).

So, we only need to prove that for any finite set F ⊂ G we have 1
|F |H(PF ) ≥

1
|G|H(PG). We will use the following easy observation: Let f̄ denote the average

value of a function f : Zp → R. Let F ⊂ Zp. Then there exists k ∈ Zp such that the
average value f̄F+k of f over F + k is not smaller than f̄ . We skip the elementary
proof obtained by averaging over k.

Now we represent Zp as {0, 1, . . . , p− 1} with addition modulo p and we define

f : Zp → R by f(0) = H(P{0}), f(1) = H(P{1}|P{0}), f(2) = H(P{2}|P{0,1}), . . . ,
f(p − 1) = H(P{p−1}|P{0,1,...,p−2}). Clearly, we have f̄ = h(G,P). Next, if F =
{n1, n2, . . . , nk} (ordered increasingly), we write

H(PF ) = H(P{n1}) +H(P{n2}|P{n1}) + · · ·+H(P{nk}|P{n1,n2,...,nk−1}).

Note that the ith term in this sum is not smaller than f(ni), thus 1
|F |H(PF ) is not

smaller than the average f̄F of f over F . But, by invariance of the measure, the
expression 1

|F |H(PF ) will not change, if F is replaced by F + k (for any k ∈ Zp),
which implies that 1

|F |H(PF ) is not smaller than any average of the form f̄F+k,

and hence also not smaller than f̄ = h(G,P). �
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5. Amenable groups – the general case

The experiments with ordered amenable groups and finite cyclic groups have led
us to discovering a method allowing to handle general amenable groups.

Theorem 5.1. Let G be a countable amenable group. Consider an action (X,Σ, µ,G)
and a partition P. Then h∗(G,P) = h(G,P).

Proof. As in the proof of Theorem 3.1, we only need to show that for every finite
set F ⊂ G and every ε > 0 there exists a set F in the Følner sequence, such that
1
|F|H(PF) ≤ 1

|F |H(PF ) + εC (where C is some constant). It suffices to consider

sets F containing the unity of G.
Let F be an element of the Følner sequence which is (F ∪ F−1, δ

|F | )-invariant

(δ, depending only on ε and |F |, will be specified later). Given an order τ of F we
denote by Fτg the set of predecessors of g ∈ F. Then

H(PF) =
∑
g∈F

H(P{g}|PFτg ) =:
∑
g∈F

A(τ, g).

Likewise, given an order σ of |F | (and using an analogous notation Fσg ) we have

H(PF ) =
∑
g∈F

H(P{g}|PF
σ
g ) =:

∑
g∈F

A′(σ, g).

We know that (1−δ)-percent of the elements g of F satisfy the condition Fg ⊂ F.
We denote the set of such elements g by F′. We will need to consider all possible
positions of the shifted set F inside F. Such positions are indexed by the elements
of F′ and we will use the letter f ′ (rather than g) to denote them. Every pair
(τ, f ′) determines the positions of all elements of the set Ff ′ in the ordered set F,
and hence induces an order στ,f ′ on F (τ introduces an order in Ff ′, which then

transports to F via the multiplication by f ′
−1

).
Let us define A(f ′, τ, g) = A(τ, g) (i.e., we only add the index f ′). We have

produced a three-dimensional matrix and we will analyze its one-dimensional rows
(here f ′ and g are fixed while the permutation τ varies), columns (the shifting f ′ of
F varies), and stacks (the position g in the sum varies). We know that the sum of
each stack equals H(PF), so the total sum of the matrix is |F|!|F′|H(PF). Now, in
this matrix we “mark” the elements A(f ′, τ, g) for which g ∈ Ff ′, i.e., representing
the (conditional) entropy of a coordinate belonging to the shifted copy of our small
set F . We will focus on summing only the marked terms.

Notice that given τ and g, the term A(τ, g) appears as a marked A(f ′, τ, g) in the
corresponding column exactly |F | times, except when there is an f ∈ F such that
ff ′ never equals g, i.e., when F−1g is not fully contained in F′. This is possible for
only a small percentage of g’s in F, the percentage γ depending on δ and |F |. We
denote the corresponding small subset of F by B. So, the sum of all marked terms
in our matrix ranges between |F|!|F |H(PF) and |F|!|F |(H(PF)−γ|F| log #P) (due
to the missing terms corresponding to g ∈ B).

At this point we replace each marked term A(f ′, τ, g) = H(Pg|PFτg ) by a not

smaller term A′′(f ′, τ, g) = H(Pg|PFf
′τ
g ), where Ff ′

τ
g denotes the set of the τ -

predecessors of g belonging to Ff ′. The sum of the new marked terms has not

dropped, while every new term equals A′(στ,f ′ , gf
′−1), a term appearing in the

sum representing the entropy H(PF ) developed in accordance to the order στ,f ′

on F . Our task is to show that every term of the form A′(σ, g) (g ∈ F , σ is an
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order of F ) appears in the sum of the marked terms the same number of times.
Fix an f ′ ∈ F′ and observe the corresponding two-dimensional slice of the matrix.
It is clear that the orders τ of F induce orders σ of Ff ′ in equal proportions, i.e.,

every σ is obtained from the same number of τ ’s (the number being |F|!|F |! ). Once

σ is established, every g ∈ Ff ′ determines both a marked element of the slice and
a term A′(σ, g). Thus, among all marked elements in the slice we will find every

term A′(σ, g) precisely |F|!|F |! times. Hence the sum of the (new) marked terms in a

slice equals |F |! |F|!|F |!H(PF ) = |F|!H(PF ), and in the whole matrix it amounts to

|F|!|F′|H(PF ). We have proved that

|F|!|F′|H(PF ) ≥ |F|!|F |(H(PF)− γ|F| log #P),

i.e., 1
|F |H(PF ) ≥ 1

|F′| (H(PF) − γ|F| log #P) ≥ 1
|F|H(PF) − γ log #P. Since γ is

arbitrarily small, the proof is completed. �

6. Beyond amenability

The “mindblowingly” simple formula h∗(G,P) can be applied to processes under
actions of any countable groups. (It can be applied to uncountable groups as well,
however, it will typically yield zero; such is the case of flows.) How good is this
formula for countable non-amenable groups. The answer depends on the properties
we expect from a good notion of dynamical entropy.

The notion h∗(G,P) has the following advantages:

• It is completely universal, can be defined for arbitrary countable gropus.
• It is extremely simple, requires no details of the group (for instance in

amenable groups it is formulated without referring to any Følner sequence).
• It has a very convincing interpretation (entropy is lost only in finite-dimen-

sional dependencies and all such losses matter).
• Bernoulli shifts have “full” entropy (equal to the static entropy of the par-

tition).

Disadvantages can be detected by examining the action of the free group F2 on
two generators, and they include

• It can increase under factors.
• It can change with change of a generator.

Example 6.1. Let F2 denote the free group with two generators a and b, and consider
X = {−1, 1}F2 with the shift action, the Bernoulli ( 1

2 ,
1
2 )-measure, and the zero-

coordinate partition P = {[−1], [1]}. Clearly, H(P) = log 2 and h∗(F2,P) = log 2.
Next, consider the function ψ : X → {−1, 1} × {−1, 1} given by

ψ(x) = (x(φ)x(a), x(φ)x(b))

and the associated four-element partition R (we have R 4 Q). It is not hard
to see that the process generated by R is the ( 1

4 ,
1
4 ,

1
4 ,

1
4 )-Bernoulli shift: the

one-dimensional distributions are independent. So, H(R) = log 4 and so equals
h∗(F2,R). On the other hand, the process generated by R is clearly a factor of
that generated by P. This failure of the “factors condition” cannot be avoided by
any entropy notion satisfying the “Bernoulli shifts” condition.

Now let E = {φ, a, b} ⊂ F2 and consider Q = PE . Clearly, this partition
is another generator of the process generated by P (the generated processes are
isomorphic). For any finite set F ⊂ F2 we have H(QF ) = H(PEF ) = |EF | log 2.
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However, the ratio |FE||F | does not drop below 2 (and can be arbitrarily close to 2).

Hence h∗(F 2,Q) = 2h∗(F 2,P) = log 4. Sofic entropy behaves better in this aspect,
so that it can be defined for measure-preserving actions regardless of the generator,
and becomes an isomorphism invariant.

So, either we accept h∗(G,P) as a parameter associated with a concrete process,
maintaining its simplicity and interpretation, or we try to force it to become an
isomorphism invariant. As an attempt in this direction we propose two invariants,
both equal to h∗(G,P) for actions of amenable groups. Unfortunately, we are
unable to verify whether these new notions fulfill the Bernoulli shift condition in
the general case.

Definition 6.2.

h∗∗(X,Σ, µ,G) = inf{h∗(G,P) : P is a generator}.
h∗∗∗(X,Σ, µ,G) = inf{H(P) : P is a generator}.

Note that the latter notion has nothing to do with h∗(G,P), we were driven
to it just by analogy to h∗∗(X,Σ, µ,G). Its validity (i.e., the fact that it equals
the dynamic entropy) for actions of amenable groups follows easily from Sinai’s
theorem and the fact that every factor has an ε-independent complementary factor
(see e.g. Corollary 4.4.8 in [1] for Z-actions). Could it be another useful more
general notion?

This is where we stop for now.
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