STURMIAN COLORING OR REGULAR TREES

DONG HAN KIM

Let T be a k-regular tree and G be the group of all automorphisms of T, which is a locally compact topological group with compact-open topology. By a colouring of a tree T, we mean a vertex coloring $\phi : VT \to \mathcal{A}$, where VT is a vertex set of T and \mathcal{A} is a finite set. We define an invariant of a coloring ϕ called subword complexity.

A coloring $\phi: VT \to \mathcal{A}$ is *periodic* if there exists a subgroup $\Gamma \subset G$ such that $\Gamma \setminus T$ is a finite graph and ϕ is Γ -invariant, i.e., $\phi(\gamma x) = \phi(x)$, for all $x \in VT$ and $\gamma \in \Gamma$. Let Γ be a group acting on a k-regular tree T by automorphisms. If Γ acts without torsion, then the quotient $\Gamma \setminus T$ is a k-regular graph, but in general, the quotient has a structure of a graph of groups, a graph version of orbifold quotient.

For an infinite sequence u, the subword complexity $p_u(n)$ is defined as the number of different subwords of length n in u. Hedlund and Morse[2] showed that $p_u(n)$ is bounded if and only if u is eventually periodic. A sequence u is called Sturmian if $p_u(n) = n + 1$.

We define subword complexity $b_{\phi}(n)$ of a coloring ϕ as the number of colored *n*balls in the tree colored by ϕ . We show that ϕ is periodic if and only if its subword complexity $b_{\phi}(n)$ is bounded. Then, we have an analogous theorem as follows

Theorem 1. Let $\phi: VT \to \mathcal{A}$ be a coloring. The following are equivalent.

- (1) The coloring ϕ is periodic.
- (2) The subword complexity of ϕ satisfies $b_{\phi}(n+1) = b_{\phi}(n)$ for some n > 0.
- (3) The subword complexity $b_{\phi}(n)$ is bounded.

For an example, let $\Gamma = \langle a_1, \dots, a_k : a_i^2 = 1 \rangle$ and T be its Cayley graph. Any element g of G is associated a coloring ϕ_g as a permutation of colouring of neighboring vertices. The coloring ϕ_g is periodic if and only if g is an element of the commensurator of $\Gamma[1, 3]$. And as a corollary, an automorphism g of T is contained in the commensurator subgroup of Γ if and only if its subword complexity $b_{\phi_g}(n)$ is bounded.

We define Sturmian colorings as colorings with minimal unbounded subword complexity, i.e. with $b_{\phi}(n) = n + 2$, and study them using the type sets of vertices. The main result of this article is that any Sturmian coloring is a lifting of

DONG HAN KIM

a coloring of a graph X, which is an infinite geodesic or a geodesic ray with loops possibly attached. With an additional condition of bounded type, it is a lifting of a coloring of a geodesic ray with loops possibly attached. We further give a complete characterization of X for eventually periodic Sturmian colorings:

Theorem 2. Let ϕ be a Sturmian coloring of a regular tree T.

There exists a group Γ acting on T such that φ is Γ-invariant, so that φ is a lifting of a coloring φ_X on the quotient graph X = Γ\T. The quotient graph X = Γ\T is one of the following two types of graphs. Here, loops are expressed by dotted lines to indicate that they may exist or not.

- (2) If ϕ is of bounded type, then it falls into the first case above, i.e. ϕ is a lifting of a coloring of a geodesic ray with loops possibly attached.
- (3) Moreover, φ is eventually periodic if and only if X is one of the following two graphs. Here the index on each oriented edge indicates the number of corresponding oriented edges in T.

This is joint work with Seonhee Lim.

References

- [1] N. Avni, S. Lim, E. Nevo, On commensurator growth, Israel J. of Math. 188 (2012), 259–279.
- [2] G. Hedlund, M. Morse, Symbolic dynamics II: Sturmian trajectories, Amer. J. Math. 62 (1940), 1–42.
- [3] A. Lubotzky, S. Mozes, R. Zimmer, Superrigidity for the commensurability group of tree lattices, Comment. Math. Helv. 69 (1994), no.4, 523–548.