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This talk is based on:

MPT M. Marcolli, E. Pierpaoli, K. Teh, The spectral action and
cosmic topology, arXiv:1005.2256.

The NCG standard model and cosmology

CCM A. Chamseddine, A. Connes, M. Marcolli, Gravity and the
standard model with neutrino mixing, Adv. Theor. Math.
Phys. 11 (2007), no. 6, 991–1089.

MP M. Marcolli, E. Pierpaoli, Early universe models from
noncommutative geometry, arXiv:0908.3683

KM D. Kolodrubetz, M. Marcolli, Boundary conditions of the RGE
flow in noncommutative cosmology, arXiv:1006.4000
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Two topics of current interest to cosmologists:
• Modified Gravity models in cosmology:
Einstein-Hilbert action (+cosmological term) replaced or extended
with other gravity terms (conformal gravity, higher derivative
terms) ⇒ cosmological predictions

• The question of Cosmic Topology:
Nontrivial (non-simply-connected) spatial sections of spacetime,
homogeneous spherical or flat spaces: how can this be detected
from cosmological observations?
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Our approach:

NCG provides a modified gravity model through the spectral
action

The nonperturbative form of the spectral action determines a
slow-roll inflation potential

The underlying geometry (spherical/flat) affects the shape of
the potential (possible models of inflation)

Different inflation scenarios depending on geometry

More refined topological properties? (coupling to matter)
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The noncommutative space X × F extra dimensions
product of 4-dim spacetime and finite NC space
The spectral action functional

Tr(f (DA/Λ)) +
1

2
〈 J ξ̃,DA ξ̃〉

DA = D + A + ε′ J A J−1 Dirac operator with inner fluctuations

A = A∗ =
∑

k ak [D, bk ]

Action functional for gravity on X (modified gravity)

Gravity on X × F = gravity coupled to matter on X

Matilde Marcolli Cosmology and the Poisson summation formula



Spectral triples (A,H,D):
• involutive algebra A
• representation π : A → L(H)
• self adjoint operator D on H
• compact resolvent (1 + D2)−1/2 ∈ K
• [a,D] bounded ∀a ∈ A
• even Z/2-grading [γ, a] = 0 and Dγ = −γD
• real structure: antilinear isom J : H → H with J2 = ε, JD = ε′DJ, and
Jγ = ε′′γJ

n 0 1 2 3 4 5 6 7

ε 1 1 -1 -1 -1 -1 1 1
ε′ 1 -1 1 1 1 -1 1 1
ε′′ 1 -1 1 -1

• bimodule: [a, b0] = 0 for b0 = Jb∗J−1

• order one condition: [[D, a], b0] = 0
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Asymptotic formula for the spectral action (Chamseddine–Connes)

Tr(f (D/Λ)) ∼
∑

k∈DimSp

fkΛk

∫
−|D|−k + f (0)ζD(0) + o(1)

for large Λ with fk =
∫∞
0

f (v)vk−1dv and integration given by residues of

zeta function ζD(s) = Tr(|D|−s); DimSp poles of zeta functions

Asymptotic expansion ⇒ Effective Lagrangian
(modified gravity + matter)

At low energies: only nonperturbative form of the spectral action

Tr(f (DA/Λ))

Need explicit information on the Dirac spectrum!
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Product geometry (C∞(X ), L2(X , S),DX ) ∪ (AF ,HF ,DF )

A = C∞(X )⊗AF = C∞(X ,AF )

H = L2(X ,S)⊗HF = L2(X , S ⊗HF )

D = DX ⊗ 1 + γ5 ⊗ DF

Inner fluctuations of the Dirac operator

D → DA = D + A + ε′ J A J−1

A self-adjoint operator

A =
∑

aj [D, bj ] , aj , bj ∈ A

⇒ boson fields from inner fluctuations, fermions from HF
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Get realistic particle physics models [CCM]
Need Ansatz for the NC space F

ALR = C⊕HL ⊕HR ⊕M3(C)

⇒ everything else follows by computation

Representation: MF sum of all inequiv irred odd
ALR -bimodules (fix N generations) HF = ⊕NMF fermions

Algebra AF = C⊕H⊕M3(C): order one condition

F zero dimensional but KO-dim 6

JF = matter/antimatter, γF = L/R chirality

Classification of Dirac operators (moduli spaces)
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Dirac operators and Majorana mass terms

D(Y ) =

(
S T ∗

T S̄

)
, S = S1 ⊕ (S3 ⊗ 13), T = YR : |νR〉 → JF |νR〉

S1 =


0 0 Y ∗(↑1) 0

0 0 0 Y ∗(↓1)
Y(↑1) 0 0 0

0 Y(↓1) 0 0



S3 =


0 0 Y ∗(↑3) 0

0 0 0 Y ∗(↓3)
Y(↑3) 0 0 0

0 Y(↓3) 0 0


Yukawa matrices: Dirac masses and mixing angles in GLN=3(C)

Ye = Y(↓1) (charged leptons)

Yν = Y(↑1) (neutrinos)

Yd = Y(↓3) (d/s/b quarks)

Yu = Y(↑3) (u/c/t quarks)

M = Y t
R Majorana mass terms symm matrix
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Moduli space of Dirac operators on finite NC space F

C3 × C1

• C3 = pairs (Y(↓3),Y(↑3)) modulo Wj unitary matrices:

Y ′(↓3) = W1 Y(↓3) W ∗
3 , Y ′(↑3) = W2 Y(↑3) W ∗

3

G = GL3(C) and K = U(3): C3 = (K × K )\(G × G )/K
dimR C3 = 10 = 3 + 3 + 4 (eigenval, coset 3 angles 1 phase)

• C1 = triplets (Y(↓1),Y(↑1),YR) with YR symmetric modulo

Y ′(↓1) = V1 Y(↓1)V
∗
3 , Y ′(↑1) = V2 Y(↑1) V ∗3 ,

Y ′R = V2 YR V̄ ∗2

π : C1 → C3 surjection forgets YR fiber symm matrices mod YR 7→ λ2YR

dimR(C3 × C1) = 31 (dim fiber 12-1=11)
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Parameters of νMSM
- three coupling constants
- 6 quark masses, 3 mixing angles, 1 complex phase
- 3 charged lepton masses, 3 lepton mixing angles, 1 complex phase
- 3 neutrino masses
- 11 Majorana mass matrix parameters
- QCD vacuum angle

Moduli space of Dirac operators on F ⇒ geometric form of all the
Yukawa and Majorana parameters

Matilde Marcolli Cosmology and the Poisson summation formula



Fields content of the model
• Bosons: inner fluctuations A =

∑
j aj [D, bj ]

- In M direction: U(1), SU(2), and SU(3) gauge bosons
- In F direction: Higgs field H = ϕ1 + ϕ2j

• Fermions: basis of HF

| ↑〉 ⊗ 30, | ↓〉 ⊗ 30, | ↑〉 ⊗ 10, | ↓〉 ⊗ 10

Gauge group SU(AF ) = U(1)× SU(2)× SU(3)
(up to fin abelian group)

• Hypercharges: adjoint action of U(1) (in powers of λ ∈ U(1))

↑ ⊗10 ↓ ⊗10 ↑ ⊗30 ↓ ⊗30

2L −1 −1 1
3

1
3

2R 0 −2 4
3 − 2

3

⇒ Correct hypercharges to the fermions
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Action functional

Tr(f (DA/Λ)) +
1

2
〈 J ξ̃,DA ξ̃〉

Fermion part: antisymmetric bilinear form A(ξ̃) on

H+ = {ξ ∈ H | γξ = ξ}

⇒ nonzero on Grassmann variables
Euclidean functional integral ⇒ Pfaffian

Pf (A) =

∫
e−

1
2A(ξ̃)D[ξ̃]

(avoids Fermion doubling problem of previous models based on
symmetric 〈ξ,DAξ〉 for NC space with KO-dim=0)

Explicit computation gives part of SM Larangian with

• LHf = coupling of Higgs to fermions

• Lgf = coupling of gauge bosons to fermions

• Lf = fermion terms
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The asymptotic expansion of the spectral action from [CCM]

S =
1

π2
(48 f4 Λ4 − f2 Λ2 c +

f0
4
d)

∫ √
g d4x

+
96 f2 Λ2 − f0 c

24π2

∫
R
√

g d4x

+
f0

10π2

∫
(

11

6
R∗R∗ − 3 Cµνρσ Cµνρσ)

√
g d4x

+
(−2 a f2 Λ2 + e f0)

π2

∫
|ϕ|2√g d4x

+
f0a

2π2

∫
|Dµϕ|2

√
g d4x

− f0a

12π2

∫
R |ϕ|2√g d4x

+
f0b

2π2

∫
|ϕ|4√g d4x

+
f0

2π2

∫
(g2

3 G i
µν Gµνi + g2

2 Fαµν Fµνα +
5

3
g2
1 Bµν Bµν)

√
g d4x ,
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Parameters:

f0, f2, f4 free parameters, f0 = f (0) and, for k > 0,

fk =

∫ ∞
0

f (v)vk−1dv .

a, b, c, d, e functions of Yukawa parameters of SM+r.h.ν

a = Tr(Y †νYν + Y †e Ye + 3(Y †u Yu + Y †d Yd))

b = Tr((Y †νYν)2 + (Y †e Ye)2 + 3(Y †u Yu)2 + 3(Y †d Yd)2)

c = Tr(MM†)

d = Tr((MM†)2)

e = Tr(MM†Y †νYν).
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Normalization and coefficients

S =
1

2κ20

∫
R
√

g d4x + γ0

∫ √
g d4x

+ α0

∫
Cµνρσ Cµνρσ√g d4x + τ0

∫
R∗R∗

√
g d4x

+
1

2

∫
|DH|2√g d4x − µ2

0

∫
|H|2√g d4x

− ξ0

∫
R |H|2√g d4x + λ0

∫
|H|4√g d4x

+
1

4

∫
(G i
µν Gµνi + Fαµν Fµνα + Bµν Bµν)

√
g d4x ,

Energy scale: Unification (1015 – 1017 GeV)

g2f0
2π2

=
1

4

Preferred energy scale, unification of coupling constants
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Coefficients

1
2κ2

0
=

96f2Λ2 − f0c

24π2
γ0 =

1

π2
(48f4Λ4 − f2Λ2c +

f0
4
d)

α0 = − 3f0
10π2

τ0 =
11f0
60π2

µ2
0 = 2

f2Λ2

f0
− e

a
ξ0 = 1

12

λ0 =
π2b

2f0a2

In [MP] [KM]: running coefficients with RGE flow of particle
physics content from unification energy down to electroweak.
⇒ Very early universe models! (10−36s < t < 10−12s)
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Effective gravitational constant

Geff =
κ20
8π

=
3π

192f2Λ2 − 2f0c(Λ)

Effective cosmological constant

γ0 =
1

4π2
(192f4Λ4 − 4f2Λ2c(Λ) + f0d(Λ))

Conformal non-minimal coupling of Higgs and gravity

1

16πGeff

∫
R
√

gd4x − 1

12

∫
R |H|2√gd4x

Conformal gravity

−3f0
10π2

∫
CµνρσCµνρσ√gd4x

Cµνρσ = Weyl curvature tensor (trace free part of Riemann tensor)
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Cosmological implications of the NCG SM

Linde’s hypothesis (antigravity in the early universe)

Primordial black holes and gravitational memory

Gravitational waves in modified gravity

Gravity balls

Varying effective cosmological constant

Higgs based slow-roll inflation

Spontaneously arising Hoyle-Narlikar in EH backgrounds

Effects in the very early universe: inflation mechanisms
- Remark: Cannot extrapolate to modern universe, nonperturbative
effects in the spectral action: requires nonperturbative spectral
action
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Cosmological models for the not-so-early-universe?
Need to work with non-perturbative form of the spectral action
Can to for specially symmetric geometries!
Concentrate on pure gravity part: X instead of X × F

The spectral action and the question of cosmic topology
(with E. Pierpaoli and K. Teh)

Spatial sections of spacetime closed 3-manifolds 6= S3?
- Cosmologists search for signatures of topology in the CMB
- Model based on NCG distinguishes cosmic topologies?

Yes! the non-perturbative spectral action predicts different models
of slow-roll inflation
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Cosmic topology

4 S. Caillerie et al.: A new analysis of the Poincaré dodecahedral space model

out-diameter of the fundamental domain may well be different
from the theoretical k1 expectation, since these scales represent
the physical size of the whole universe, and the observational
arguments for a k1 spectrum at these scales are only valid by
assuming simple connectedness. This can be considered as a
caveat for the interpretation of the following results.

Such a distribution of matter fluctuations generates a temper-
ature distribution on the CMB that results from different physical
effects. If we subtract foreground contamination, it will mainly
be generated by the ordinary Sachs-Wolfe (OSW) effect at large
scales, resulting from the the energy exchanges between the
CMB photons and the time-varying gravitational fields on the
last scattering surface (LSS). At smaller scales, Doppler oscilla-
tions, which arise from the acoustic motion of the baryon-photon
fluid, are also important, as well as the OSW effect. The ISW ef-
fect, important at larger scales, has the same physical origin as
the OSW effect but is integrated along the line of sight rather
than on the LSS. This is summarized in the Sachs-Wolfe for-
mula, which gives the temperature fluctuations in a given direc-
tion n̂ as

δT

T
(n̂) =

(
1

4

δρ

ρ
+ Φ

)
(ηLSS) − n̂.ve(ηLSS) +

∫ η0
ηLSS

(Φ̇ + Ψ̇) dη (22)

where the quantities Φ and Ψ are the usual Bardeen potentials,
and ve is the velocity within the electron fluid; overdots denote
time derivatives. The first terms represent the Sachs-Wolfe and
Doppler contributions, evaluated at the LSS. The last term is
the ISW effect. This formula is independent of the spatial topol-
ogy, and is valid in the limit of an infinitely thin LSS, neglecting
reionization.

The temperature distribution is calculated with a CMBFast–
like software developed by one of us1, under the form of temper-
ature fluctuation maps at the LSS. One such realization is shown
in Fig. 1, where the modes up to k = 230 give an angular res-
olution of about 6◦ (i.e. roughly comparable to the resolution
of COBE map), thus without as fine details as in WMAP data.
However, this suffices for a study of topological effects, which
are dominant at larger scales.

Such maps are the starting point for topological analysis:
firstly, for noise analysis in the search for matched circle pairs,
as described in Sect. 3.2; secondly, through their decompositions
into spherical harmonics, which predict the power spectrum, as
described in Sect. 4. In these two ways, the maps allow direct
comparison between observational data and theory.

3.2. Circles in the sky

A multi-connected space can be seen as a cell (called the fun-
damental domain), copies of which tile the universal cover. If
the radius of the LSS is greater than the typical radius of the
cell, the LSS wraps all the way around the universe and inter-
sects itself along circles. Each circle of self-intersection appears
to the observer as two different circles on different parts of the
sky, but with the same OSW components in their temperature
fluctuations, because the two different circles on the sky are re-
ally the same circle in space. If the LSS is not too much bigger
than the fundamental cell, each circle pair lies in the planes of
two matching faces of the fundamental cell. Figure 2 shows the
intersection of the various translates of the LSS in the universal
cover, as seen by an observer sitting inside one of them.

1 A. Riazuelo developed the program CMBSlow to take into account
numerous fine effects, in particular topological ones.

Fig. 1. Temperature map for a Poincaré dodecahedral space with
Ωtot = 1.02, Ωmat = 0.27 and h = 0.70 (using modes up to
k = 230 for a resolution of 6◦).

Fig. 2. The last scattering surface seen from outside in the uni-
versal covering space of the Poincaré dodecahedral space with
Ωtot = 1.02, Ωmat = 0.27 and h = 0.70 (using modes up to
k = 230 for a resolution of 6◦). Since the volume of the physical
space is about 80% of the volume of the last scattering surface,
the latter intersects itself along six pairs of matching circles.

These circles are generated by a pure Sachs-Wolfe effect; in
reality additional contributions to the CMB temperature fluctua-
tions (Doppler and ISW effects) blur the topological signal. Two

(Luminet, Lehoucq, Riazuelo, Weeks, et al.: simulated CMB sky)

Best candidates: Poincaré homology 3-sphere and other spherical
forms (quaternionic space), flat tori
Testable Cosmological predictions? (in various gravity models)
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Poisson summation formula∑
n∈Z

h(x + λn) =
1

λ

∑
n∈Z

exp

(
2πinx

λ

)
ĥ(

n

λ
)

λ ∈ R∗+ and x ∈ R with

ĥ(x) =

∫
R

h(u) e−2πiux du

Idea: write Tr(f (D/Λ)) as sums over lattices
- Need explicit spectrum of D with multiplicities
- Need to write as a union of arithmetic progressions λn,i , n ∈ Z
- Multiplicities polynomial functions mλn,i = Pi (λn,i )

Tr(f (D/Λ)) =
∑
i

∑
n∈Z

Pi (λn,i )f (λn,i/Λ)
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The standard topology S3 (Chamseddine–Connes)

Dirac spectrum ±a−1( 1
2 + n) for n ∈ Z, with multiplicity n(n + 1)

Tr(f (D/Λ)) = (Λa)3f̂ (2)(0)− 1

4
(Λa)f̂ (0) + O((Λa)−k)

with f̂ (2) Fourier transform of v2f (v) 4-dimensional Euclidean S3× S1

Tr(h(D2/Λ2)) = πΛ4a3β

∫ ∞
0

u h(u) du−1

2
πΛaβ

∫ ∞
0

h(u) du+O(Λ−k)

g(u, v) = 2P(u) h(u2(Λa)−2 + v2(Λβ)−2)

ĝ(n,m) =

∫
R2

g(u, v)e−2πi(xu+yv) du dv
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A slow roll potential from non-perturbative effects
perturbation D2 7→ D2 + φ2 gives potential V (φ) scalar field
coupled to gravity

Tr(h((D2+φ2)/Λ2))) = πΛ4βa3
∫ ∞
0

uh(u)du−π
2

Λ2βa

∫ ∞
0

h(u)du

+πΛ4βa3 V(φ2/Λ2) +
1

2
Λ2βaW(φ2/Λ2)

V(x) =

∫ ∞
0

u(h(u + x)− h(u))du, W(x) =

∫ x

0
h(u)du
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Slow roll parameters Minkowskian Friedmann metric on S × R

ds2 = a(t)2ds2S − dt2

accelerated expansion ä
a = H2(1− ε) Hubble parameter

H2(φ)

(
1− 1

3
ε(φ)

)
=

8π

3m2
Pl

V (φ)

mPl Planck mass

ε(φ) =
m2

Pl

16π

(
V ′(φ)

V (φ)

)2

inflation phase ε(φ) < 1

η(φ) =
m2

Pl

8π

(
V ′′(φ)

V (φ)

)
−

m2
Pl

16π

(
V ′(φ)

V (φ)

)2

second slow-roll parameter ⇒ measurable quantities

ns = 1− 6ε+ 2η r = 16ε

spectral index and tensor-to-scalar ratio
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Slow-roll parameters from spectral action S = S3

ε(x) =
m2

Pl

16π

(
h(x)− 2π(Λa)2

∫∞
x h(u)du∫ x

0 h(u)du + 2π(Λa)2
∫∞
0 u(h(u + x)− h(u))du

)2

η(x) =
m2

Pl

8π

h′(x) + 2π(Λa)2h(x)∫ x
0 h(u)du + 2π(Λa)2

∫∞
0 u(h(u + x)− h(u))du

−
m2

Pl

16π

(
h(x)− 2π(Λa)2

∫∞
x h(u)du∫ x

0 h(u)du + 2π(Λa)2
∫∞
0 u(h(u + x)− h(u))du

)2

In Minkowskian Friedmann metric Λ(t) ∼ 1/a(t)
Also independent of β (artificial Euclidean compactification)
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The quaternionic space SU(2)/Q8 (quaternion units ±1,±σk)

Dirac spectrum (Ginoux)

3

2
+ 4k with multiplicity 2(k + 1)(2k + 1)

3

2
+ 4k + 2 with multiplicity 4k(k + 1)

Polynomial interpolation of multiplicities

P1(u) =
1

4
u2 +

3

4
u +

5

16

P2(u) =
1

4
u2 − 3

4
u − 7

16
Spectral action

Tr(f (D/Λ)) =
1

8
(Λa)3f̂ (2)(0)− 1

32
(Λa)f̂ (0) + O(Λ−k)

(1/8 of action for S3) with gi (u) = Pi (u)f (u/Λ):

Tr(f (D/Λ)) =
1

4
(ĝ1(0) + ĝ2(0)) + O(Λ−k)

from Poisson summation ⇒ Same slow-roll parameters
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The dodecahedral space Poincaré homology sphere S3/Γ
binary icosahedral group 120 elements
Dirac spectrum: eigenvalues of S3 different multiplicities ⇒
generating function (Bär)

F+(z) =
∞∑
k=0

m(
3

2
+ k ,D)zk F−(z) =

∞∑
k=0

m(−(
3

2
+ k),D)zk

F+(z) = − 16(710647 + 317811
√

5)G+(z)

(7 + 3
√

5)3(2207 + 987
√

5)H+(z)

G+(z) = 6z11+18z13+24z15+12z17−2z19−6z21−2z23+2z25+4z27+3z29+z31

H+(z) = −1−3z2−4z4−2z6+2z8+6z10+9z12+9z14+4z16−4z18−9z20

−9z22 − 6z24 − 2z26 + 2z28 + 4z30 + 3z32 + z34

F−(z) = −1024(5374978561 + 2403763488
√

5)G−(z)

(7 + 3
√

5)8(2207 + 987
√

5)H−(z)

G−(z) = 1+3z2+4z4+2z6−2z8−6z10−2z12+12z14+24z16+18z18+6z20

H−(z) = −1−3z2−4z4−2z6+2z8+6z10+9z12+9z14+4z16−4z18−9z20

−9z22 − 6z24 − 2z26 + 2z28 + 4z30 + 3z32 + z34
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Polynomial interpolation of multiplicities: 60 polynomials Pi (u)

59∑
j=0

Pj(u) =
1

2
u2 − 1

8

Spectral action: functions gj(u) = Pj(u)f (u/Λ)

Tr(f (D/Λ)) =
1

60

59∑
j=0

ĝj(0) + O(Λ−k)

=
1

60

∫
R

∑
j

Pj(u)f (u/Λ)du + O(Λ−k)

by Poisson summation ⇒ 1/120 of action for S3

Same slow-roll parameters
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The flat tori
Dirac spectrum (Bär)

± 2π ‖ (m, n, p) + (m0, n0, p0) ‖, (1)

(m, n, p) ∈ Z3 multiplicity 1 and constant vector (m0, n0, p0)
depending on spin structure

Tr(f (D2
3/Λ2)) =

∑
(m,n,p)∈Z3

2f

(
4π2((m + m0)2 + (n + n0)2 + (p + p0)2)

Λ2

)

Poisson summation∑
Z3

g(m, n, p) =
∑
Z3

ĝ(m, n, p)

ĝ(m, n, p) =

∫
R3

g(u, v ,w)e−2πi(mu+nv+pw)dudvdw

g(m, n, p) = f

(
4π2((m + m0)2 + (n + n0)2 + (p + p0)2)

Λ2

)
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Spectral action for the flat tori

Tr(f (D2
3/Λ2)) =

Λ3

4π3

∫
R3

f (u2 + v2 + w2)du dv dw + O(Λ−k)

X = T 3 × S1
β :

Tr(h(D2
X/Λ2)) =

Λ4β`3

4π

∫ ∞
0

uh(u)du + O(Λ−k)

using∑
(m,n,p,r)∈Z4

2 h

(
4π2

(Λ`)2
((m + m0)2 + (n + n0)2 + (p + p0)2) +

1

(Λβ)2
(r +

1

2
)2
)

g(u, v ,w , y) = 2 h

(
4π2

Λ2
(u2 + v2 + w2) +

y2

(Λβ)2

)
∑

(m,n,p,r)∈Z4

g(m +m0, n +n0, p +p0, r +
1

2
) =

∑
(m,n,p,r)∈Z4

(−1)r ĝ(m, n, p, r)
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Different slow-roll potential and parameters Introducing the
perturbation D2 7→ D2 + φ2:

Tr(h((D2
X + φ2)/Λ2)) = Tr(h(D2

X/Λ2)) +
Λ4β`3

4π
V(φ2/Λ2)

slow-roll potential

V (φ) =
Λ4β`3

4π
V(φ2/Λ2)

V(x) =

∫ ∞
0

u (h(u + x)− h(u)) du

Slow-roll parameters (different from spherical cases)

ε =
m2

Pl

16π

( ∫∞
x

h(u)du∫∞
0

u(h(u + x)− h(u))du

)2

η =
m2

Pl

8π

 h(x)∫∞
0

u(h(u + x)− h(u))du
− 1

2

( ∫∞
x

h(u)du∫∞
0

u(h(u + x)− h(u))du

)2

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Conclusion (for now)

A modified gravity model based on the spectral action cannot rule
out most likely cosmic topology candidates (dodecahedral,
quaternionic) but can distinguish the spherical candidates from the
flat ones on the basis of different inflation scenarios!

Matilde Marcolli Cosmology and the Poisson summation formula


