REPORT ON "DYNAMICS IN QUASICRYSTALS"

JENS MARKLOF

This report is based on the joint paper with Andreas Strömbergsson [20]. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 291147. J.M. was furthermore supported by a Royal Society Wolfson Research Merit Award, and A.S. is a Royal Swedish Academy of Sciences Research Fellow supported by a grant from the Knut and Alice Wallenberg Foundation.

1. The setting

The Lorentz gas is defined as an ensemble of non-interacting point particles moving in an array of spherical scatterers placed at the elements of a given point set $\mathcal{P} \subset \mathbb{R}^d$ $(d \geq 2)$, and we assume that the scatterers do not overlap). Each particle travels with constant velocity along straight lines until it collides with a scatterer, and is then reflected elastically. We denote by $\boldsymbol{q}(t), \boldsymbol{v}(t)$ the position and velocity of a particle at time t. Since the reflection is elastic, speed is a constant of motion; we may assume without loss of generality that $\|\boldsymbol{v}(t)\| = 1$. The "phase space" is then the unit tangent bundle $T^1(\mathcal{K}_{\rho})$ where $\mathcal{K}_{\rho} \subset \mathbb{R}^d$ is the complement of the set $\mathcal{B}^d_{\rho} + \mathcal{P}$ (the "billiard domain"), and \mathcal{B}^d_{ρ} denotes the open ball of radius ρ , centered at the origin. We parametrize $T^1(\mathcal{K}_{\rho})$ by $(\boldsymbol{q}, \boldsymbol{v}) \in \mathcal{K}_{\rho} \times S_1^{d-1}$, where we use the convention that for $\boldsymbol{q} \in \partial \mathcal{K}_{\rho}$ the vector \boldsymbol{v} points away from the scatterer (so that \boldsymbol{v} describes the velocity after the collision). The Liouville measure on $T^1(\mathcal{K}_{\rho})$ is

(1.1)
$$d\nu(\boldsymbol{q}, \boldsymbol{v}) = d\mathrm{vol}(\boldsymbol{q}) \, d\omega(\boldsymbol{v})$$

where vol and ω refer to the Lebesgue measures on \mathbb{R}^d and S_1^{d-1} , respectively.

The first collision time corresponding to the initial condition $(\boldsymbol{q}, \boldsymbol{v}) \in T^1(\mathcal{K}_{\rho})$ is

(1.2)
$$\tau_1(\boldsymbol{q}, \boldsymbol{v}; \rho) = \inf\{t > 0 : \boldsymbol{q} + t\boldsymbol{v} \notin \mathcal{K}_{\rho}\}.$$

Since all particles are moving with unit speed, we may also refer to $\tau_1(\boldsymbol{q}, \boldsymbol{v}; \rho)$ as the free path length. The distribution of free path lengths in the limit of small scatterer density (Boltzmann-Grad limit) has been studied extensively when \mathcal{P} is a fixed realisation of a random point process (such as a spatial Poisson process) [5, 11, 23, 29] and when \mathcal{P} is a Euclidean lattice [1, 2, 6, 7, 9, 10, 12, 16, 22, 23]. In the Boltzmann-Grad limit, the Lorentz process in fact converges to a random flight process, see [11, 29, 5] for the case of random \mathcal{P} and [8, 17, 18, 19] for periodic \mathcal{P} .

2. Cut and project

In the present work, we consider the Lorentz gas for scatterer configurations \mathcal{P} given by regular cut-and-project sets, cf. [14, 31]. Examples of such \mathcal{P} include large classes of quasicrystals, for instance the vertex set of any of the classical Penrose tilings [26]. Further examples include all locally finite periodic point sets such as graphene's honeycomb lattice [3, 4].

To give a precise definition of cut-and-project sets in \mathbb{R}^d , denote by π and π_{int} the orthogonal projection of $\mathbb{R}^n = \mathbb{R}^d \times \mathbb{R}^m$ onto the first d and last m coordinates, and refer to \mathbb{R}^d and \mathbb{R}^m as the *physical space* and *internal space*, respectively. Let $\mathcal{L} \subset \mathbb{R}^n$ be a lattice of full rank. Then the closure of the set $\pi_{int}(\mathcal{L})$ is an abelian subgroup \mathcal{A} of \mathbb{R}^m . We denote by \mathcal{A}° the connected subgroup of \mathcal{A} containing **0**; then \mathcal{A}° is a linear subspace of \mathbb{R}^m , say of dimension

JENS MARKLOF

 m_1 , and there exist $\boldsymbol{b}_1, \ldots, \boldsymbol{b}_{m_2} \in \mathcal{L}$ $(m = m_1 + m_2)$ such that $\pi_{int}(\boldsymbol{b}_1), \ldots, \pi_{int}(\boldsymbol{b}_{m_2})$ are linearly independent in $\mathbb{R}^m/\mathcal{A}^\circ$ and

(2.1)
$$\mathcal{A} = \mathcal{A}^{\circ} + \mathbb{Z}\pi_{\mathrm{int}}(\boldsymbol{b}_1) + \ldots + \mathbb{Z}\pi_{\mathrm{int}}(\boldsymbol{b}_{m_2})$$

Given \mathcal{L} and a bounded subset $\mathcal{W} \subset \mathcal{A}$ with non-empty interior, we define

(2.2)
$$\mathcal{P}(\mathcal{W},\mathcal{L}) = \{\pi(\boldsymbol{y}) : \boldsymbol{y} \in \mathcal{L}, \ \pi_{\mathrm{int}}(\boldsymbol{y}) \in \mathcal{W}\} \subset \mathbb{R}^d$$

We will call $\mathcal{P} = \mathcal{P}(\mathcal{W}, \mathcal{L})$ a *cut-and-project set*, and \mathcal{W} the *window*. We denote by $\mu_{\mathcal{A}}$ the Haar measure of \mathcal{A} , normalized so that its restriction to \mathcal{A}° is the standard m_1 -dimensional Lebesgue measure. If \mathcal{W} has boundary of measure zero with respect to $\mu_{\mathcal{A}}$, we will say $\mathcal{P}(\mathcal{W}, \mathcal{L})$ is *regular*. Set $\mathcal{V} = \mathbb{R}^d \times \mathcal{A}^{\circ}$; then $\mathcal{L}_{\mathcal{V}} = \mathcal{L} \cap \mathcal{V}$ is a lattice of full rank in \mathcal{V} . Let $\mu_{\mathcal{V}} = \operatorname{vol} \times \mu_{\mathcal{A}}$ be the natural volume measure on $\mathbb{R}^d \times \mathcal{A}$ (this restricts to the standard $d + m_1$ dimensional Lebesgue measure on \mathcal{V}). It follows from Weyl equidistribution (see [13]) that for any regular cut-and-project set \mathcal{P} and any bounded $\mathcal{D} \subset \mathbb{R}^d$ with boundary of measure zero with respect to Lebesgue measure,

(2.3)
$$\lim_{T \to \infty} \frac{\#\{ \boldsymbol{b} \in \mathcal{L} : \pi(\boldsymbol{b}) \in \mathcal{P} \cap T\mathcal{D} \}}{T^d} = \delta_{d,m}(\mathcal{L}) \operatorname{vol}(\mathcal{D}) \mu_{\mathcal{A}}(\mathcal{W})$$

where

(2.4)
$$\delta_{d,m}(\mathcal{L}) := \frac{1}{\mu_{\mathcal{V}}(\mathcal{V}/\mathcal{L}_{\mathcal{V}})}.$$

A further condition often imposed in the quasicrystal literature is that $\pi|_{\mathcal{L}}$ is injective (i.e., the map $\mathcal{L} \to \pi(\mathcal{L})$ is one-to-one); we will not require this here. To avoid coincidences in \mathcal{P} , we simply assume in the following that the window is appropriately chosen so that the map $\pi_{\mathcal{W}}: \{ \boldsymbol{y} \in \mathcal{L} : \pi_{int}(\boldsymbol{y}) \in \mathcal{W} \} \to \mathcal{P}$ is bijective. Then (2.3) implies

(2.5)
$$\lim_{T \to \infty} \frac{\#(\mathcal{P} \cap T\mathcal{D})}{T^d} = \delta_{d,m}(\mathcal{L}) \operatorname{vol}(\mathcal{D}) \mu_{\mathcal{A}}(\mathcal{W}).$$

Under the above assumptions $\mathcal{P}(\mathcal{W}, \mathcal{L})$ is a Delone set, i.e., uniformly discrete and relatively dense in \mathbb{R}^d .

We may obviously extend the definition of cut-and-project sets $\mathcal{P}(\mathcal{W}, \widetilde{\mathcal{L}})$ to affine lattices $\widetilde{\mathcal{L}} = \mathcal{L} + \boldsymbol{x}$, for any $\boldsymbol{x} \in \mathbb{R}^n$; note that $\mathcal{P}(\mathcal{W}, \mathcal{L} + \boldsymbol{x}) = \mathcal{P}(\mathcal{W} - \pi_{int}(\boldsymbol{x}), \mathcal{L}) + \pi(\boldsymbol{x})$.

3. The distribution of free path lengths in the Boltzmann-Grad limit

In order to study the distribution of the free path length for random initial data $(\boldsymbol{q}, \boldsymbol{v})$ we need to specify a probability measure on $T^1(\mathcal{K}_{\rho})$. A natural choice is of course any Borel probability measure which is absolutely continuous with respect to the Liouville measure ν . Given s > 0 and a Borel probability measure Λ on $T^1(\mathbb{R}^d)$, we define the family of Borel probability measures $\Lambda^{(s)}$ on $T^1(\mathbb{R}^d)$ by

(3.1)
$$\Lambda^{(s)}(E) = \Lambda\left(\left\{(s^{-1}\boldsymbol{q},\boldsymbol{v}) : (\boldsymbol{q},\boldsymbol{v}) \in E\right\}\right).$$

Theorem 3.1. Given any regular cut-and-project set \mathcal{P} there is a non-increasing continuous function $F_{\mathcal{P}} : [0, \infty] \to [0, 1]$ with $F_{\mathcal{P}}(0) = 1$, $F_{\mathcal{P}}(\infty) = 0$, such that for any Borel probability measure Λ on $T^1(\mathbb{R}^d)$ which is absolutely continuous with respect to Liouville measure, and any $s_0 > 0$, $\xi > 0$, we have

(3.2)
$$\Lambda^{(s)}(\{(\boldsymbol{q},\boldsymbol{v})\in\mathrm{T}^{1}(\mathcal{K}_{\rho}):\rho^{d-1}\tau_{1}(\boldsymbol{q},\boldsymbol{v};\rho)\geq\xi\})\to F_{\mathcal{P}}(\xi),$$

as $\rho \to 0$, uniformly over all $s \ge s_0$.

We highlight the fact that the limit distribution is independent of Λ . Our techniques will allow us to prove limit theorems for more singular measures. A natural example is to fix a generic point $q \notin \mathcal{P}$ and take v random: **Theorem 3.2.** Given any regular cut-and-project set \mathcal{P} there is a subset $\mathfrak{S} \subset \mathbb{R}^d$ of Lebesgue measure zero such that for any $q \in \mathbb{R}^d \setminus \mathfrak{S}$, any $\xi > 0$ and any Borel probability measure λ on S_1^{d-1} which is absolutely continuous with respect to Lebesgue measure, we have

(3.3)
$$\lim_{\boldsymbol{a}\to 0} \lambda(\{\boldsymbol{v}\in \mathbf{S}_1^{d-1}: \rho^{d-1}\tau_1(\boldsymbol{q},\boldsymbol{v};\rho) \ge \xi\}) = F_{\mathcal{P}}(\xi),$$

with $F_{\mathcal{P}}(\xi)$ as in Theorem 3.1.

In fact our proof shows that the limit in (3.3) exists for every $q \in \mathbb{R}^d$; however for $q \in \mathfrak{S}$ the limit in general depends on q.

Another possibility is to specify the location $\boldsymbol{q} \in \mathcal{P}$ of a scatterer and consider the initial data $(\boldsymbol{q}_{\rho,\boldsymbol{\beta}}(\boldsymbol{v}), \boldsymbol{v}) \in \mathrm{T}^{1}(\mathbb{R}^{d})$ where $\boldsymbol{q}_{\rho,\boldsymbol{\beta}}(\boldsymbol{v}) := \boldsymbol{q} + \rho \boldsymbol{\beta}(\boldsymbol{v})$ is on (or near) the scatterer's boundary. Here $\boldsymbol{\beta} : \mathrm{S}_{1}^{d-1} \to \mathbb{R}^{d}$ is some fixed continuous function and \boldsymbol{v} is again chosen at random on S_{1}^{d-1} . To avoid pathologies, we assume that $(\boldsymbol{\beta}(\boldsymbol{v}) + \mathbb{R}_{>0}\boldsymbol{v}) \cap \mathcal{B}_{1}^{d} = \emptyset$ for all $\boldsymbol{v} \in \mathrm{S}_{1}^{d-1}$. Let us also write $\boldsymbol{\beta}_{\perp}(\boldsymbol{v}) = \sqrt{\|\boldsymbol{\beta}(\boldsymbol{v})\|^{2} - (\boldsymbol{\beta}(\boldsymbol{v}) \cdot \boldsymbol{v})^{2}}$ for the length of the orthogonal projection of $\boldsymbol{\beta}(\boldsymbol{v})$ onto the orthogonal complement of \boldsymbol{v} in \mathbb{R}^{n} .

Theorem 3.3. Given any regular cut-and-project set \mathcal{P} and $\mathbf{q} \in \mathcal{P}$, there is a continuous function $F_{\mathcal{P},\mathbf{q}}: [0,\infty] \times \mathbb{R}_{\geq 0} \to [0,1]$ with $F_{\mathcal{P},\mathbf{q}}(\cdot,r)$ non-increasing, $F_{\mathcal{P},\mathbf{q}}(0,r) = 1$, $F_{\mathcal{P},\mathbf{q}}(\infty,r) = 0$ for all $r \in \mathbb{R}_{\geq 0}$, such that for any $\xi > 0$ and any Borel probability measure λ on S_1^{d-1} which is absolutely continuous with respect to Lebesgue measure, we have

(3.4)
$$\lim_{\rho \to 0} \lambda(\{\boldsymbol{v} \in \mathbf{S}_1^{d-1} : \rho^{d-1} \tau_1(\boldsymbol{q}_{\rho,\boldsymbol{\beta}}(\boldsymbol{v}), \boldsymbol{v}; \rho) \ge \xi\}) = \int_{\mathbf{S}_1^{d-1}} F_{\mathcal{P},\boldsymbol{q}}(\xi, \beta_{\perp}(\boldsymbol{v})) \, d\lambda(\boldsymbol{v}).$$

The convergence in (3.4) is uniform over all $q \in \mathcal{P}$.

We remark that the proof actually shows that (3.4) holds for any fixed $q \in \pi(\mathcal{L})$, and uniformly over all q in any set of the form $\pi(\mathcal{L} \cap \pi_{int}^{-1}(B))$ with B a bounded subset of \mathcal{A} .

4. Spaces of quasicrystals

We will now characterise the limit distributions in Theorems 3.2 and 3.3 in terms of a certain homogeneous space $(\Gamma \cap H_g) \setminus H_g$ equipped with a translation-invariant probability measure μ_g . In analogy with the space of Euclidean lattices of covolume one, $SL(n,\mathbb{Z}) \setminus SL(n,\mathbb{R})$, we will call such a space a space of quasicrystals.

Set $G = ASL(n, \mathbb{R}) = SL(n, \mathbb{R}) \ltimes \mathbb{R}^n$, $\Gamma = ASL(n, \mathbb{Z})$. The multiplication law in G is defined by

(4.1)
$$(M, \boldsymbol{\xi})(M', \boldsymbol{\xi}') = (MM', \boldsymbol{\xi}M' + \boldsymbol{\xi}').$$

For $g \in G$ we define an embedding of $ASL(d, \mathbb{R})$ in G by

(4.2)
$$\varphi_g : \operatorname{ASL}(d, \mathbb{R}) \to G, \quad (A, \boldsymbol{x}) \mapsto g\left(\begin{pmatrix} A & 0\\ 0 & 1_m \end{pmatrix}, (\boldsymbol{x}, \boldsymbol{0})\right) g^{-1}.$$

We also set $G^1 = \mathrm{SL}(n,\mathbb{R})$ and $\Gamma^1 = \mathrm{SL}(n,\mathbb{Z})$, and identify G^1 with a subgroup of G in the standard way; similarly we identify $\mathrm{SL}(d,\mathbb{R})$ with a subgroup of $\mathrm{ASL}(d,\mathbb{R})$. It follows from Ratner's work [24], [25] that there exists a unique closed connected subgroup H_g of Gsuch that $\Gamma \cap H_g$ is a lattice in H_g , $\varphi_g(\mathrm{SL}(d,\mathbb{R})) \subset H_g$, and the closure of $\Gamma \setminus \Gamma \varphi_g(\mathrm{SL}(d,\mathbb{R}))$ in $\Gamma \setminus G$ is given by $\Gamma \setminus \Gamma H_g$ (cf. in particular [25, p. 237 (lines 1–2 and Cor. B)], and note that $\varphi_g(\mathrm{SL}(d,\mathbb{R}))$ is connected and generated by Ad-unipotent one-parameter subgroups of G). Note that $\Gamma \setminus \Gamma H_g$ can be naturally identified with the homogeneous space $(\Gamma \cap H_g) \setminus H_g$. We denote the unique right- H_g invariant probability measure on either of these spaces by μ_g ; sometimes we will also let μ_g denote the corresponding Haar measure on H_q .

Similarly, there exists a unique closed connected subgroup H_g of G such that $\Gamma \cap H_g$ is a lattice in \widetilde{H}_g , $\varphi_g(\operatorname{ASL}(d,\mathbb{R})) \subset \widetilde{H}_g$, and the closure of $\Gamma \setminus \Gamma \varphi_g(\operatorname{ASL}(d,\mathbb{R}))$ in $\Gamma \setminus G$ is given by $\Gamma \setminus \widetilde{H}_g$. Note that $\Gamma \setminus \Gamma \widetilde{H}_g$ can be naturally identified with the homogeneous space $(\Gamma \cap \widetilde{H}_g) \setminus \widetilde{H}_g$.

We denote the unique right- \widetilde{H}_g invariant probability measure on either of these spaces by $\mu_{\widetilde{H}_g}$; sometimes we will also use $\mu_{\widetilde{H}_g}$ to denote the corresponding Haar measure on \widetilde{H}_g . Of course, $H_g \subset \widetilde{H}_g$, and $\widetilde{H}_g = \widetilde{H}_{g(1_n, \boldsymbol{x})}$ for any $\boldsymbol{x} \in \mathbb{R}^d \times \{\mathbf{0}\}$.

We will refer to H_g and \widetilde{H}_g as Ratner subgroups. Note that if $g \in G^1$ then $H_g \subset G^1$; in fact in this case H_g is the unique closed connected subgroup of G^1 such that $\Gamma^1 \cap H_g$ is a lattice in H_g , $\varphi_g(\mathrm{SL}(d,\mathbb{R})) \subset H_g$, and the closure of $\Gamma^1 \backslash \Gamma^1 \varphi_g(\mathrm{SL}(d,\mathbb{R}))$ in $\Gamma^1 \backslash \underline{G^1}$ is given by $\Gamma^1 \backslash \Gamma^1 H_g$.

Given $g \in G$ and $\delta > 0$ we set $\mathcal{L} = \delta^{1/n}(\mathbb{Z}^n g)$ and let $\mathcal{A} = \overline{\pi_{int}(\mathcal{L})}$ as before. Then $\overline{\pi_{int}(\delta^{1/n}(\mathbb{Z}^n hg))} \subset \mathcal{A}$ for all $h \in \widetilde{H}_g$ and $\overline{\pi_{int}(\delta^{1/n}(\mathbb{Z}^n hg))} = \mathcal{A}$ for $\mu_{\widetilde{H}_g}$ -almost all $h \in \widetilde{H}_g$ and also for μ_g -almost all $h \in H_g$. We fix $\delta > 0$ and a window $\mathcal{W} \subset \mathcal{A}$, and consider the map from $\Gamma \setminus \widetilde{F}_g$ to the set of point sets in \mathbb{R}^d ,

(4.3)
$$\Gamma \backslash \Gamma h \mapsto \mathcal{P}(\mathcal{W}, \delta^{1/n}(\mathbb{Z}^n hg)).$$

We denote the image of this map by $\widetilde{\mathfrak{Q}}_g = \widetilde{\mathfrak{Q}}_g(\mathcal{W}, \delta)$, and define a probability measure on $\widetilde{\mathfrak{Q}}_g$ as the push-forward of $\mu_{\widetilde{H}_g}$ (for which we will use the same symbol). This defines a random point process in \mathbb{R}^d which is invariant under the natural action of $\mathrm{ASL}(d, \mathbb{R})$ on \mathbb{R}^d . Similarly we denote by $\mathfrak{Q}_g = \mathfrak{Q}_g(\mathcal{W}, \delta)$ the image of $\Gamma \setminus \Gamma H_g$ under the map (4.3), and define a probability measure on \mathfrak{Q}_g as the push-forward of μ_g ; this again defines a random point process in \mathbb{R}^d , invariant under the natural action of $\mathrm{SL}(d, \mathbb{R})$ on \mathbb{R}^d .

We let \mathfrak{Z}_{ξ} be the cylinder in \mathbb{R}^d defined by

(4.4)
$$\mathfrak{Z}_{\xi} = \left\{ (x_1, \dots, x_d) \in \mathbb{R}^d : 0 < x_1 < \xi, \ x_2^2 + \dots + x_d^2 < 1 \right\}.$$

The following theorem provides formulas for the limit distributions in Theorems 3.1, 3.2 and 3.3 in terms of \tilde{H}_g and H_g .

Theorem 4.1. Let $\mathcal{P} = \mathcal{P}(\mathcal{L}, \mathcal{W})$ be a regular cut-and-project set, and $\mathbf{q} \in \mathbb{R}^d$. Choose $g \in G$ and $\delta > 0$ so that $\mathcal{L} - (\mathbf{q}, \mathbf{0}) = \delta^{1/n}(\mathbb{Z}^n g)$. Then the function $F_{\mathcal{P}}(\xi)$ in Theorems 3.1 and 3.2 is given by

(4.5)
$$F_{\mathcal{P}}(\xi) = \mu_{\widetilde{H}_g}(\{\mathcal{P}' \in \widetilde{\mathfrak{Q}}_g : \mathfrak{Z}_{\xi} \cap \mathcal{P}' = \emptyset\}).$$

In fact if $\mathbf{q} \in \mathbb{R}^d \setminus \mathfrak{S}$ (as in Theorem 3.2), then $H_g = \widetilde{H}_g$ and this group is independent of the choice of \mathbf{q} . On the other hand if $\mathbf{q} \in \mathcal{P}$, then the function $F_{\mathcal{P},\mathbf{q}}(\xi,r)$ in Theorem 3.3 is given by

(4.6)
$$F_{\mathcal{P},\boldsymbol{q}}(\xi,r) = \mu_g(\{\mathcal{P}' \in \mathfrak{Q}_g : (\mathfrak{Z}_{\xi} + r\boldsymbol{e}_d) \cap \mathcal{P}' = \emptyset\})$$

with $e_d = (0, \ldots, 0, 1)$.

5. The Siegel integral formula for quasicrystals

The Siegel integral formula is a fundamental identity in the geometry of numbers [27, 28]. We will prove an analogue for the space of quasicrystals, which in fact is a special case of the Siegel-Veech formula [30, Thm. 0.12]. Let $f \in L^1(\mathbb{R}^d)$. Define for every $\mathcal{P} \in \mathfrak{Q}_g$ the Siegel transform

(5.1)
$$\widehat{f}(\mathcal{P}) = \sum_{\boldsymbol{q} \in \mathcal{P} \setminus \{\boldsymbol{0}\}} f(\boldsymbol{q}).$$

Recall the definition of $\delta_{d,m}(\mathcal{L})$ in (2.4); for \mathcal{L} an affine lattice we extend the definition by setting $\delta_{d,m}(\mathcal{L}) := \delta_{d,m}(\mathcal{L} - \mathcal{L})$; note that $\mathcal{L} - \mathcal{L}$ is the lattice in \mathbb{R}^n of which \mathcal{L} is a translate.

Theorem 5.1. Let $\mathcal{L} = \delta^{1/n}(\mathbb{Z}^n g)$ and $\mathfrak{Q}_g = \mathfrak{Q}_g(\mathcal{W}, \delta)$ as above, and assume that $\mathcal{P} = \mathcal{P}(\mathcal{W}, \mathcal{L})$ is regular and the map $\pi_{\mathcal{W}} : \{ \boldsymbol{y} \in \mathcal{L} : \pi_{int}(\boldsymbol{y}) \in \mathcal{W} \} \to \mathcal{P}$ is bijective. Then for any $f \in L^1(\mathbb{R}^d)$ we have

(5.2)
$$\int_{\mathfrak{Q}_g} \widehat{f}(\mathcal{P}) \, d\mu_g(\mathcal{P}) = \delta_{d,m}(\mathcal{L})\mu_{\mathcal{A}}(\mathcal{W}) \int_{\mathbb{R}^d} f(\boldsymbol{x}) \, d\mathrm{vol}(\boldsymbol{x}).$$

The continuity for $\xi < \infty$ of the limit distributions $F_{\mathcal{P}}$ and $F_{\mathcal{P},\boldsymbol{q}}$ in Theorems 3.1, 3.2 and 3.3 is an immediate consequence of Theorem 5.1 and the formulas in Theorem 4.1; for $F_{\mathcal{P}}$ one uses also the fact that each $\widetilde{\mathfrak{Q}}_{g}$ can be obtained as $\mathfrak{Q}_{g'}$ for an appropriate g'.

References

- F.P. Boca, R.N. Gologan and A. Zaharescu, The statistics of the trajectory of a certain billiard in a flat two-torus. Comm. Math. Phys. 240 (2003), 53–73.
- [2] F.P. Boca and A. Zaharescu, The distribution of the free path lengths in the periodic two-dimensional Lorentz gas in the small-scatterer limit, Commun. Math. Phys. 269 (2007), 425–471.
- [3] F.P. Boca, R.N. Gologan, On the distribution of the free path length of the linear flow in a honeycomb. Ann. Inst. Fourier (Grenoble) 59 (2009), 1043–1075.
- [4] F. P. Boca, Distribution of the linear flow length in a honeycomb in the small-scatterer limit, New York J. Math. 16 (2010), 651–735.
- [5] C. Boldrighini, L.A. Bunimovich and Y.G. Sinai, On the Boltzmann equation for the Lorentz gas. J. Statist. Phys. 32 (1983), 477–501.
- [6] J. Bourgain, F. Golse and B. Wennberg, On the distribution of free path lengths for the periodic Lorentz gas. Comm. Math. Phys. 190 (1998), 491–508.
- [7] E. Caglioti and F. Golse, On the distribution of free path lengths for the periodic Lorentz gas. III. Comm. Math. Phys. 236 (2003), 199–221.
- [8] E. Caglioti and F. Golse, On the Boltzmann-Grad limit for the two dimensional periodic Lorentz gas. J. Stat. Phys. 141 (2010), 264–317.
- [9] P. Dahlqvist, The Lyapunov exponent in the Sinai billiard in the small scatterer limit. Nonlinearity 10 (1997), 159–173.
- [10] C.P. Dettmann, New horizons in multidimensional diffusion: the Lorentz gas and the Riemann hypothesis. J. Stat. Phys. 146 (2012), 181–204.
- [11] G. Gallavotti, Divergences and approach to equilibrium in the Lorentz and the Wind-tree-models, Physical Review 185 (1969), 308–322.
- [12] F. Golse and B. Wennberg, On the distribution of free path lengths for the periodic Lorentz gas. II. M2AN Math. Model. Numer. Anal. 34 (2000), no. 6, 1151–1163.
- [13] A. Hof, Uniform distribution and the projection method, in Quasicrystals and discrete geometry (Toronto, ON, 1995), Fields Inst. Monogr. 10, (1998), 201–206.
- [14] A.S. Kraemer and D.P. Sanders, Periodizing quasicrystals: Anomalous diffusion in quasiperiodic systems, arXiv:1206.1103
- [15] H. Lorentz, Le mouvement des électrons dans les métaux, Arch. Néerl. 10 (1905), 336–371.
- [16] J. Marklof and A. Strömbergsson, The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems, Annals of Math. 172 (2010), 1949–2033.
- [17] J. Marklof and A. Strömbergsson, The Boltzmann-Grad limit of the periodic Lorentz gas, Annals of Math. 174 (2011) 225–298.
- [18] J. Marklof and A. Strömbergsson, Kinetic transport in the two-dimensional periodic Lorentz gas, Nonlinearity 21 (2008) 1413–1422.
- [19] J. Marklof and A. Strömbergsson, The periodic Lorentz gas in the Boltzmann-Grad limit: Asymptotic estimates, GAFA. 21 (2011), 560-647.
- [20] J. Marklof and A. Strömbergsson, Free path lengths in quasicrystals, Comm. Math. Phys. 330 (2014) 723–755.
- [21] J. Marklof and A. Strömbergsson, Power-law distributions for the free path length in Lorentz gases, J. Stat. Phys. 155 (2014) 1072–1086.
- [22] P. Nandori, D. Szasz and T. Varju, Tail asymptotics of free path lengths for the periodic Lorentz process. On Dettmann's geometric conjectures, arXiv:1210.2231
- [23] G. Polya, Zahlentheoretisches und Wahrscheinlichkeitstheoretisches über die Sichtweite im Walde, Arch. Math. Phys. 27 (1918), 135–142.
- [24] M. Ratner, On Raghunathan's measure conjecture, Ann. of Math. 134 (1991) 545–607.
- [25] M. Ratner, Raghunathan's topological conjecture and distributions of unipotent flows, Duke Math. J. 63 (1991), 235–280.
- [26] M. Senechal, Quasicrystals and geometry, Cambridge University Press, Cambridge, 1995.
- [27] C. L. Siegel, A mean value theorem in geometry of numbers, Ann. of Math. 46 (1945), 340–347.
- [28] C. L. Siegel, Lectures on the Geometry of Numbers, Springer-Verlag, Berlin-Heidelberg-New York, 1989.
- [29] H. Spohn, The Lorentz process converges to a random flight process, Comm. Math. Phys. 60 (1978), 277–290.
- [30] W. A. Veech, Siegel Measures, Ann. of Math. 148 (1998), 895–944.
- [31] B. Wennberg, Free path lengths in quasi crystals. J. Stat. Phys. 147 (2012), 981–990.

JENS MARKLOF

School of Mathematics, University of Bristol, Bristol BS8 1TW, U.K. j.marklof@bristol.ac.uk