REPORT ON "DYNAMICS IN QUASICRYSTALS"

JENS MARKLOF

This report is based on the joint paper with Andreas Strömbergsson [20]. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 291147. J.M. was furthermore supported by a Royal Society Wolfson Research Merit Award, and A.S. is a Royal Swedish Academy of Sciences Research Fellow supported by a grant from the Knut and Alice Wallenberg Foundation.

1. The setting

The Lorentz gas is defined as an ensemble of non-interacting point particles moving in an array of spherical scatterers placed at the elements of a given point set $\mathcal{P} \subset \mathbb{R}^{d}(d \geq 2$, and we assume that the scatterers do not overlap). Each particle travels with constant velocity along straight lines until it collides with a scatterer, and is then reflected elastically. We denote by $\boldsymbol{q}(t), \boldsymbol{v}(t)$ the position and velocity of a particle at time t. Since the reflection is elastic, speed is a constant of motion; we may assume without loss of generality that $\|\boldsymbol{v}(t)\|=1$. The "phase space" is then the unit tangent bundle $\mathrm{T}^{1}\left(\mathcal{K}_{\rho}\right)$ where $\mathcal{K}_{\rho} \subset \mathbb{R}^{d}$ is the complement of the set $\mathcal{B}_{\rho}^{d}+\mathcal{P}$ (the "billiard domain"), and \mathcal{B}_{ρ}^{d} denotes the open ball of radius ρ, centered at the origin. We parametrize $\mathrm{T}^{1}\left(\mathcal{K}_{\rho}\right)$ by $(\boldsymbol{q}, \boldsymbol{v}) \in \mathcal{K}_{\rho} \times \mathrm{S}_{1}^{d-1}$, where we use the convention that for $\boldsymbol{q} \in \partial \mathcal{K}_{\rho}$ the vector \boldsymbol{v} points away from the scatterer (so that \boldsymbol{v} describes the velocity after the collision). The Liouville measure on $\mathrm{T}^{1}\left(\mathcal{K}_{\rho}\right)$ is

$$
\begin{equation*}
d \nu(\boldsymbol{q}, \boldsymbol{v})=d \operatorname{vol}(\boldsymbol{q}) d \omega(\boldsymbol{v}) \tag{1.1}
\end{equation*}
$$

where vol and ω refer to the Lebesgue measures on \mathbb{R}^{d} and S_{1}^{d-1}, respectively.
The first collision time corresponding to the initial condition $(\boldsymbol{q}, \boldsymbol{v}) \in \mathrm{T}^{1}\left(\mathcal{K}_{\rho}\right)$ is

$$
\begin{equation*}
\tau_{1}(\boldsymbol{q}, \boldsymbol{v} ; \rho)=\inf \left\{t>0: \boldsymbol{q}+t \boldsymbol{v} \notin \mathcal{K}_{\rho}\right\} . \tag{1.2}
\end{equation*}
$$

Since all particles are moving with unit speed, we may also refer to $\tau_{1}(\boldsymbol{q}, \boldsymbol{v} ; \rho)$ as the free path length. The distribution of free path lengths in the limit of small scatterer density (Boltzmann-Grad limit) has been studied extensively when \mathcal{P} is a fixed realisation of a random point process (such as a spatial Poisson process) [5, 11, 23, 29] and when \mathcal{P} is a Euclidean lattice [1, 2, 6, 7, 9, 10, 12, 16, 22, 23]. In the Boltzmann-Grad limit, the Lorentz process in fact converges to a random flight process, see [11, 29, 5] for the case of random \mathcal{P} and [8, 17, 18, 19] for periodic \mathcal{P}.

2. Cut and project

In the present work, we consider the Lorentz gas for scatterer configurations \mathcal{P} given by regular cut-and-project sets, cf. [14, 31]. Examples of such \mathcal{P} include large classes of quasicrystals, for instance the vertex set of any of the classical Penrose tilings [26. Further examples include all locally finite periodic point sets such as graphene's honeycomb lattice [3, 4.

To give a precise definition of cut-and-project sets in \mathbb{R}^{d}, denote by π and $\pi_{\text {int }}$ the orthogonal projection of $\mathbb{R}^{n}=\mathbb{R}^{d} \times \mathbb{R}^{m}$ onto the first d and last m coordinates, and refer to \mathbb{R}^{d} and \mathbb{R}^{m} as the physical space and internal space, respectively. Let $\mathcal{L} \subset \mathbb{R}^{n}$ be a lattice of full rank. Then the closure of the set $\pi_{\mathrm{int}}(\mathcal{L})$ is an abelian subgroup \mathcal{A} of \mathbb{R}^{m}. We denote by \mathcal{A}° the connected subgroup of \mathcal{A} containing $\mathbf{0}$; then \mathcal{A}° is a linear subspace of \mathbb{R}^{m}, say of dimension
m_{1}, and there exist $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{m_{2}} \in \mathcal{L}\left(m=m_{1}+m_{2}\right)$ such that $\pi_{\mathrm{int}}\left(\boldsymbol{b}_{1}\right), \ldots, \pi_{\mathrm{int}}\left(\boldsymbol{b}_{m_{2}}\right)$ are linearly independent in $\mathbb{R}^{m} / \mathcal{A}^{\circ}$ and

$$
\begin{equation*}
\mathcal{A}=\mathcal{A}^{\circ}+\mathbb{Z} \pi_{\mathrm{int}}\left(\boldsymbol{b}_{1}\right)+\ldots+\mathbb{Z} \pi_{\mathrm{int}}\left(\boldsymbol{b}_{m_{2}}\right) \tag{2.1}
\end{equation*}
$$

Given \mathcal{L} and a bounded subset $\mathcal{W} \subset \mathcal{A}$ with non-empty interior, we define

$$
\begin{equation*}
\mathcal{P}(\mathcal{W}, \mathcal{L})=\left\{\pi(\boldsymbol{y}): \boldsymbol{y} \in \mathcal{L}, \pi_{\mathrm{int}}(\boldsymbol{y}) \in \mathcal{W}\right\} \subset \mathbb{R}^{d} \tag{2.2}
\end{equation*}
$$

We will call $\mathcal{P}=\mathcal{P}(\mathcal{W}, \mathcal{L})$ a cut-and-project set, and \mathcal{W} the window. We denote by $\mu_{\mathcal{A}}$ the Haar measure of \mathcal{A}, normalized so that its restriction to \mathcal{A}° is the standard m_{1}-dimensional Lebesgue measure. If \mathcal{W} has boundary of measure zero with respect to $\mu_{\mathcal{A}}$, we will say $\mathcal{P}(\mathcal{W}, \mathcal{L})$ is regular. Set $\mathcal{V}=\mathbb{R}^{d} \times \mathcal{A}^{\circ}$; then $\mathcal{L}_{\mathcal{V}}=\mathcal{L} \cap \mathcal{V}$ is a lattice of full rank in \mathcal{V}. Let $\mu_{\mathcal{V}}=\operatorname{vol} \times \mu_{\mathcal{A}}$ be the natural volume measure on $\mathbb{R}^{d} \times \mathcal{A}$ (this restricts to the standard $d+m_{1}$ dimensional Lebesgue measure on \mathcal{V}). It follows from Weyl equidistribution (see [13]) that for any regular cut-and-project set \mathcal{P} and any bounded $\mathcal{D} \subset \mathbb{R}^{d}$ with boundary of measure zero with respect to Lebesgue measure,

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{\#\{\boldsymbol{b} \in \mathcal{L}: \pi(\boldsymbol{b}) \in \mathcal{P} \cap T \mathcal{D}\}}{T^{d}}=\delta_{d, m}(\mathcal{L}) \operatorname{vol}(\mathcal{D}) \mu_{\mathcal{A}}(\mathcal{W}) \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta_{d, m}(\mathcal{L}):=\frac{1}{\mu_{\mathcal{V}}\left(\mathcal{V} / \mathcal{L}_{\mathcal{V}}\right)} \tag{2.4}
\end{equation*}
$$

A further condition often imposed in the quasicrystal literature is that $\left.\pi\right|_{\mathcal{L}}$ is injective (i.e., the map $\mathcal{L} \rightarrow \pi(\mathcal{L})$ is one-to-one); we will not require this here. To avoid coincidences in \mathcal{P}, we simply assume in the following that the window is appropriately chosen so that the map $\pi_{\mathcal{W}}:\left\{\boldsymbol{y} \in \mathcal{L}: \pi_{\text {int }}(\boldsymbol{y}) \in \mathcal{W}\right\} \rightarrow \mathcal{P}$ is bijective. Then (2.3) implies

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{\#(\mathcal{P} \cap T \mathcal{D})}{T^{d}}=\delta_{d, m}(\mathcal{L}) \operatorname{vol}(\mathcal{D}) \mu_{\mathcal{A}}(\mathcal{W}) \tag{2.5}
\end{equation*}
$$

Under the above assumptions $\mathcal{P}(\mathcal{W}, \mathcal{L})$ is a Delone set, i.e., uniformly discrete and relatively dense in \mathbb{R}^{d}.

We may obviously extend the definition of cut-and-project sets $\mathcal{P}(\mathcal{W}, \widetilde{\mathcal{L}})$ to affine lattices $\widetilde{\mathcal{L}}=\mathcal{L}+\boldsymbol{x}$, for any $\boldsymbol{x} \in \mathbb{R}^{n} ;$ note that $\mathcal{P}(\mathcal{W}, \mathcal{L}+\boldsymbol{x})=\mathcal{P}\left(\mathcal{W}-\pi_{\text {int }}(\boldsymbol{x}), \mathcal{L}\right)+\pi(\boldsymbol{x})$.

3. The distribution of free path lengths in the Boltzmann-Grad limit

In order to study the distribution of the free path length for random initial data $(\boldsymbol{q}, \boldsymbol{v})$ we need to specify a probability measure on $\mathrm{T}^{1}\left(\mathcal{K}_{\rho}\right)$. A natural choice is of course any Borel probability measure which is absolutely continuous with respect to the Liouville measure ν. Given $s>0$ and a Borel probability measure Λ on $\mathrm{T}^{1}\left(\mathbb{R}^{d}\right)$, we define the family of Borel probability measures $\Lambda^{(s)}$ on $\mathrm{T}^{1}\left(\mathbb{R}^{d}\right)$ by

$$
\begin{equation*}
\Lambda^{(s)}(E)=\Lambda\left(\left\{\left(s^{-1} \boldsymbol{q}, \boldsymbol{v}\right):(\boldsymbol{q}, \boldsymbol{v}) \in E\right\}\right) \tag{3.1}
\end{equation*}
$$

Theorem 3.1. Given any regular cut-and-project set \mathcal{P} there is a non-increasing continuous function $F_{\mathcal{P}}:[0, \infty] \rightarrow[0,1]$ with $F_{\mathcal{P}}(0)=1, F_{\mathcal{P}}(\infty)=0$, such that for any Borel probability measure Λ on $\mathrm{T}^{1}\left(\mathbb{R}^{d}\right)$ which is absolutely continuous with respect to Liouville measure, and any $s_{0}>0, \xi>0$, we have

$$
\begin{equation*}
\Lambda^{(s)}\left(\left\{(\boldsymbol{q}, \boldsymbol{v}) \in \mathrm{T}^{1}\left(\mathcal{K}_{\rho}\right): \rho^{d-1} \tau_{1}(\boldsymbol{q}, \boldsymbol{v} ; \rho) \geq \xi\right\}\right) \rightarrow F_{\mathcal{P}}(\xi) \tag{3.2}
\end{equation*}
$$

as $\rho \rightarrow 0$, uniformly over all $s \geq s_{0}$.
We highlight the fact that the limit distribution is independent of Λ. Our techniques will allow us to prove limit theorems for more singular measures. A natural example is to fix a generic point $\boldsymbol{q} \notin \mathcal{P}$ and take \boldsymbol{v} random:

Theorem 3.2. Given any regular cut-and-project set \mathcal{P} there is a subset $\mathfrak{S} \subset \mathbb{R}^{d}$ of Lebesgue measure zero such that for any $\boldsymbol{q} \in \mathbb{R}^{d} \backslash \mathfrak{S}$, any $\xi>0$ and any Borel probability measure λ on S_{1}^{d-1} which is absolutely continuous with respect to Lebesgue measure, we have

$$
\begin{equation*}
\lim _{\rho \rightarrow 0} \lambda\left(\left\{\boldsymbol{v} \in \mathrm{~S}_{1}^{d-1}: \rho^{d-1} \tau_{1}(\boldsymbol{q}, \boldsymbol{v} ; \rho) \geq \xi\right\}\right)=F_{\mathcal{P}}(\xi) \tag{3.3}
\end{equation*}
$$

with $F_{\mathcal{P}}(\xi)$ as in Theorem 3.1.
In fact our proof shows that the limit in (3.3) exists for every $\boldsymbol{q} \in \mathbb{R}^{d}$; however for $\boldsymbol{q} \in \mathfrak{S}$ the limit in general depends on \boldsymbol{q}.

Another possibility is to specify the location $\boldsymbol{q} \in \mathcal{P}$ of a scatterer and consider the initial data $\left(\boldsymbol{q}_{\rho, \boldsymbol{\beta}}(\boldsymbol{v}), \boldsymbol{v}\right) \in \mathrm{T}^{1}\left(\mathbb{R}^{d}\right)$ where $\boldsymbol{q}_{\rho, \boldsymbol{\beta}}(\boldsymbol{v}):=\boldsymbol{q}+\rho \boldsymbol{\beta}(\boldsymbol{v})$ is on (or near) the scatterer's boundary. Here $\boldsymbol{\beta}: S_{1}^{d-1} \rightarrow \mathbb{R}^{d}$ is some fixed continuous function and \boldsymbol{v} is again chosen at random on S_{1}^{d-1}. To avoid pathologies, we assume that $\left(\boldsymbol{\beta}(\boldsymbol{v})+\mathbb{R}_{>0} \boldsymbol{v}\right) \cap \mathcal{B}_{1}^{d}=\emptyset$ for all $\boldsymbol{v} \in \mathrm{S}_{1}^{d-1}$. Let us also write $\beta_{\perp}(\boldsymbol{v})=\sqrt{\|\boldsymbol{\beta}(\boldsymbol{v})\|^{2}-(\boldsymbol{\beta}(\boldsymbol{v}) \cdot \boldsymbol{v})^{2}}$ for the length of the orthogonal projection of $\boldsymbol{\beta}(\boldsymbol{v})$ onto the orthogonal complement of \boldsymbol{v} in \mathbb{R}^{n}.

Theorem 3.3. Given any regular cut-and-project set \mathcal{P} and $\boldsymbol{q} \in \mathcal{P}$, there is a continuous function $F_{\mathcal{P}, \boldsymbol{q}}:[0, \infty] \times \mathbb{R}_{\geq 0} \rightarrow[0,1]$ with $F_{\mathcal{P}, \boldsymbol{q}}(\cdot, r)$ non-increasing, $F_{\mathcal{P}, \boldsymbol{q}}(0, r)=1, F_{\mathcal{P}, \boldsymbol{q}}(\infty, r)=0$ for all $r \in \mathbb{R}_{\geq 0}$, such that for any $\xi>0$ and any Borel probability measure λ on S_{1}^{d-1} which is absolutely continuous with respect to Lebesgue measure, we have

$$
\begin{equation*}
\lim _{\rho \rightarrow 0} \lambda\left(\left\{\boldsymbol{v} \in \mathrm{~S}_{1}^{d-1}: \rho^{d-1} \tau_{1}\left(\boldsymbol{q}_{\rho, \boldsymbol{\beta}}(\boldsymbol{v}), \boldsymbol{v} ; \rho\right) \geq \xi\right\}\right)=\int_{\mathrm{S}_{1}^{d-1}} F_{\mathcal{P}, \boldsymbol{q}}\left(\xi, \beta_{\perp}(\boldsymbol{v})\right) d \lambda(\boldsymbol{v}) \tag{3.4}
\end{equation*}
$$

The convergence in (3.4) is uniform over all $\boldsymbol{q} \in \mathcal{P}$.
We remark that the proof actually shows that (3.4) holds for any fixed $\boldsymbol{q} \in \pi(\mathcal{L})$, and uniformly over all \boldsymbol{q} in any set of the form $\pi\left(\mathcal{L} \cap \pi_{\text {int }}^{-1}(B)\right)$ with B a bounded subset of \mathcal{A}.

4. Spaces of quasicrystals

We will now characterise the limit distributions in Theorems 3.2 and 3.3 in terms of a certain homogeneous space $\left(\Gamma \cap H_{g}\right) \backslash H_{g}$ equipped with a translation-invariant probability measure μ_{g}. In analogy with the space of Euclidean lattices of covolume one, $\mathrm{SL}(n, \mathbb{Z}) \backslash \mathrm{SL}(n, \mathbb{R})$, we will call such a space a space of quasicrystals.

Set $G=\operatorname{ASL}(n, \mathbb{R})=\operatorname{SL}(n, \mathbb{R}) \ltimes \mathbb{R}^{n}, \Gamma=\operatorname{ASL}(n, \mathbb{Z})$. The multiplication law in G is defined by

$$
\begin{equation*}
(M, \boldsymbol{\xi})\left(M^{\prime}, \boldsymbol{\xi}^{\prime}\right)=\left(M M^{\prime}, \boldsymbol{\xi} M^{\prime}+\boldsymbol{\xi}^{\prime}\right) \tag{4.1}
\end{equation*}
$$

For $g \in G$ we define an embedding of $\operatorname{ASL}(d, \mathbb{R})$ in G by

$$
\varphi_{g}: \operatorname{ASL}(d, \mathbb{R}) \rightarrow G, \quad(A, \boldsymbol{x}) \mapsto g\left(\left(\begin{array}{cc}
A & 0 \tag{4.2}\\
0 & 1_{m}
\end{array}\right),(\boldsymbol{x}, \mathbf{0})\right) g^{-1}
$$

We also set $G^{1}=\operatorname{SL}(n, \mathbb{R})$ and $\Gamma^{1}=\operatorname{SL}(n, \mathbb{Z})$, and identify G^{1} with a subgroup of G in the standard way; similarly we identify $\operatorname{SL}(d, \mathbb{R})$ with a subgroup of $\operatorname{ASL}(d, \mathbb{R})$. It follows from Ratner's work [24], [25] that there exists a unique closed connected subgroup H_{g} of G such that $\Gamma \cap H_{g}$ is a lattice in $H_{g}, \varphi_{g}(\operatorname{SL}(d, \mathbb{R})) \subset H_{g}$, and the closure of $\Gamma \backslash \Gamma \varphi_{g}(\operatorname{SL}(d, \mathbb{R}))$ in $\Gamma \backslash G$ is given by $\Gamma \backslash \Gamma H_{g}$ (cf. in particular [25, p. 237 (lines $1-2$ and Cor. B)], and note that $\varphi_{g}(\mathrm{SL}(d, \mathbb{R}))$ is connected and generated by Ad-unipotent one-parameter subgroups of $G)$. Note that $\Gamma \backslash \Gamma H_{g}$ can be naturally identified with the homogeneous space $\left(\Gamma \cap H_{g}\right) \backslash H_{g}$. We denote the unique right- H_{g} invariant probability measure on either of these spaces by μ_{g}; sometimes we will also let μ_{g} denote the corresponding Haar measure on H_{g}.

Similarly, there exists a unique closed connected subgroup \widetilde{H}_{g} of G such that $\Gamma \cap \widetilde{H}_{g}$ is a lattice in $\widetilde{H}_{g}, \varphi_{g}(\operatorname{ASL}(d, \mathbb{R})) \subset \widetilde{H}_{g}$, and the closure of $\Gamma \backslash \Gamma \varphi_{g}(\operatorname{ASL}(d, \mathbb{R}))$ in $\Gamma \backslash G$ is given by $\Gamma \backslash \Gamma \widetilde{H}_{g}$. Note that $\Gamma \backslash \Gamma \widetilde{H}_{g}$ can be naturally identified with the homogeneous space $\left(\Gamma \cap \widetilde{H}_{g}\right) \backslash \widetilde{H}_{g}$.

We denote the unique right- \widetilde{H}_{g} invariant probability measure on either of these spaces by $\mu_{\widetilde{H}_{g}}$; sometimes we will also use $\mu_{\widetilde{H}_{g}}$ to denote the corresponding Haar measure on \widetilde{H}_{g}. Of course, $H_{g} \subset \widetilde{H}_{g}$, and $\widetilde{H}_{g}=\widetilde{H}_{g\left(1_{n}, \boldsymbol{x}\right)}$ for any $\boldsymbol{x} \in \mathbb{R}^{d} \times\{\mathbf{0}\}$.

We will refer to H_{g} and \widetilde{H}_{g} as Ratner subgroups. Note that if $g \in G^{1}$ then $H_{g} \subset G^{1}$; in fact in this case H_{g} is the unique closed connected subgroup of G^{1} such that $\Gamma^{1} \cap H_{g}$ is a lattice in $H_{g}, \varphi_{g}(\mathrm{SL}(d, \mathbb{R})) \subset H_{g}$, and the closure of $\Gamma^{1} \backslash \Gamma^{1} \varphi_{g}(\mathrm{SL}(d, \mathbb{R}))$ in $\Gamma^{1} \backslash G^{1}$ is given by $\Gamma^{1} \backslash \Gamma^{1} H_{g}$. Given $g \in G$ and $\delta>0$ we set $\mathcal{L}=\delta^{1 / n}\left(\mathbb{Z}^{n} g\right)$ and let $\mathcal{A}=\overline{\pi_{\text {int }}(\mathcal{L})}$ as before. Then $\overline{\pi_{\text {int }}\left(\delta^{1 / n}\left(\mathbb{Z}^{n} h g\right)\right)} \subset \mathcal{A}$ for all $h \in \widetilde{H}_{g}$ and $\overline{\pi_{\text {int }}\left(\delta^{1 / n}\left(\mathbb{Z}^{n} h g\right)\right)}=\mathcal{A}$ for $\mu_{\widetilde{H}_{g}}$-almost all $h \in \widetilde{H}_{g}$ and also for μ_{g}-almost all $h \in H_{g}$. We fix $\delta>0$ and a window $\mathcal{W} \subset \mathcal{A}$, and consider the map from $\Gamma \backslash \Gamma \widetilde{H}_{g}$ to the set of point sets in \mathbb{R}^{d},

$$
\begin{equation*}
\Gamma \backslash \Gamma h \mapsto \mathcal{P}\left(\mathcal{W}, \delta^{1 / n}\left(\mathbb{Z}^{n} h g\right)\right) \tag{4.3}
\end{equation*}
$$

We denote the image of this map by $\widetilde{\mathfrak{Q}}_{g}=\widetilde{\mathfrak{Q}}_{g}(\mathcal{W}, \delta)$, and define a probability measure on $\widetilde{\mathfrak{Q}}_{g}$ as the push-forward of $\mu_{\widetilde{\mu}_{g}}$ (for which we will use the same symbol). This defines a random point process in \mathbb{R}^{d} which is invariant under the natural action of $\operatorname{ASL}(d, \mathbb{R})$ on \mathbb{R}^{d}. Similarly we denote by $\mathfrak{Q}_{g}=\mathfrak{Q}_{g}(\mathcal{W}, \delta)$ the image of $\Gamma \backslash \Gamma H_{g}$ under the map 4.3), and define a probability measure on \mathfrak{Q}_{g} as the push-forward of μ_{g}; this again defines a random point process in \mathbb{R}^{d}, invariant under the natural action of $\operatorname{SL}(d, \mathbb{R})$ on \mathbb{R}^{d}.

We let \mathfrak{Z}_{ξ} be the cylinder in \mathbb{R}^{d} defined by

$$
\begin{equation*}
\mathfrak{Z}_{\xi}=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}: 0<x_{1}<\xi, x_{2}^{2}+\ldots+x_{d}^{2}<1\right\} . \tag{4.4}
\end{equation*}
$$

The following theorem provides formulas for the limit distributions in Theorems 3.1, 3.2 and 3.3 in terms of \widetilde{H}_{g} and H_{g}.

Theorem 4.1. Let $\mathcal{P}=\mathcal{P}(\mathcal{L}, \mathcal{W})$ be a regular cut-and-project set, and $\boldsymbol{q} \in \mathbb{R}^{d}$. Choose $g \in G$ and $\delta>0$ so that $\mathcal{L}-(\boldsymbol{q}, \mathbf{0})=\delta^{1 / n}\left(\mathbb{Z}^{n} g\right)$. Then the function $F_{\mathcal{P}}(\xi)$ in Theorems 3.1 and 3.2 is given by

$$
\begin{equation*}
F_{\mathcal{P}}(\xi)=\mu_{\widetilde{H}_{g}}\left(\left\{\mathcal{P}^{\prime} \in \widetilde{\mathfrak{Q}}_{g}: \mathfrak{Z}_{\xi} \cap \mathcal{P}^{\prime}=\emptyset\right\}\right) . \tag{4.5}
\end{equation*}
$$

In fact if $\boldsymbol{q} \in \mathbb{R}^{d} \backslash \mathfrak{S}$ (as in Theorem 3.2), then $H_{g}=\widetilde{H}_{g}$ and this group is independent of the choice of \boldsymbol{q}. On the other hand if $\boldsymbol{q} \in \mathcal{P}$, then the function $F_{\mathcal{P}, \boldsymbol{q}}(\xi, r)$ in Theorem 3.3 is given by

$$
\begin{equation*}
F_{\mathcal{P}, \boldsymbol{q}}(\xi, r)=\mu_{g}\left(\left\{\mathcal{P}^{\prime} \in \mathfrak{Q}_{g}:\left(\mathfrak{Z}_{\xi}+r \boldsymbol{e}_{d}\right) \cap \mathcal{P}^{\prime}=\emptyset\right\}\right) \tag{4.6}
\end{equation*}
$$

with $\boldsymbol{e}_{d}=(0, \ldots, 0,1)$.

5. The Siegel integral formula for quasicrystals

The Siegel integral formula is a fundamental identity in the geometry of numbers [27, 28]. We will prove an analogue for the space of quasicrystals, which in fact is a special case of the Siegel-Veech formula [30, Thm. 0.12]. Let $f \in \mathrm{~L}^{1}\left(\mathbb{R}^{d}\right)$. Define for every $\mathcal{P} \in \mathfrak{Q}_{g}$ the Siegel transform

$$
\begin{equation*}
\widehat{f}(\mathcal{P})=\sum_{\boldsymbol{q} \in \mathcal{P} \backslash\{0\}} f(\boldsymbol{q}) . \tag{5.1}
\end{equation*}
$$

Recall the definition of $\delta_{d, m}(\mathcal{L})$ in (2.4); for \mathcal{L} an affine lattice we extend the definition by setting $\delta_{d, m}(\mathcal{L}):=\delta_{d, m}(\mathcal{L}-\mathcal{L})$; note that $\mathcal{L}-\mathcal{L}$ is the lattice in \mathbb{R}^{n} of which \mathcal{L} is a translate.
Theorem 5.1. Let $\mathcal{L}=\delta^{1 / n}\left(\mathbb{Z}^{n} g\right)$ and $\mathfrak{Q}_{g}=\mathfrak{Q}_{g}(\mathcal{W}, \delta)$ as above, and assume that $\mathcal{P}=$ $\mathcal{P}(\mathcal{W}, \mathcal{L})$ is regular and the map $\pi_{\mathcal{W}}:\left\{\boldsymbol{y} \in \mathcal{L}: \pi_{\mathrm{int}}(\boldsymbol{y}) \in \mathcal{W}\right\} \rightarrow \mathcal{P}$ is bijective. Then for any $f \in \mathrm{~L}^{1}\left(\mathbb{R}^{d}\right)$ we have

$$
\begin{equation*}
\int_{\mathfrak{Q}_{g}} \widehat{f}(\mathcal{P}) d \mu_{g}(\mathcal{P})=\delta_{d, m}(\mathcal{L}) \mu_{\mathcal{A}}(\mathcal{W}) \int_{\mathbb{R}^{d}} f(\boldsymbol{x}) d \operatorname{vol}(\boldsymbol{x}) . \tag{5.2}
\end{equation*}
$$

The continuity for $\xi<\infty$ of the limit distributions $F_{\mathcal{P}}$ and $F_{\mathcal{P}, \boldsymbol{q}}$ in Theorems 3.1, 3.2 and 3.3 is an immediate consequence of Theorem 5.1 and the formulas in Theorem 4.1\} for $F_{\mathcal{P}}$ one uses also the fact that each $\widetilde{\mathfrak{Q}}_{g}$ can be obtained as $\mathfrak{Q}_{g^{\prime}}$ for an appropriate g^{\prime}.

References

[1] F.P. Boca, R.N. Gologan and A. Zaharescu, The statistics of the trajectory of a certain billiard in a flat two-torus. Comm. Math. Phys. 240 (2003), 53-73.
[2] F.P. Boca and A. Zaharescu, The distribution of the free path lengths in the periodic two-dimensional Lorentz gas in the small-scatterer limit, Commun. Math. Phys. 269 (2007), 425-471.
[3] F.P. Boca, R.N. Gologan, On the distribution of the free path length of the linear flow in a honeycomb. Ann. Inst. Fourier (Grenoble) 59 (2009), 1043-1075.
[4] F. P. Boca, Distribution of the linear flow length in a honeycomb in the small-scatterer limit, New York J. Math. 16 (2010), 651-735.
[5] C. Boldrighini, L.A. Bunimovich and Y.G. Sinai, On the Boltzmann equation for the Lorentz gas. J. Statist. Phys. 32 (1983), 477-501.
[6] J. Bourgain, F. Golse and B. Wennberg, On the distribution of free path lengths for the periodic Lorentz gas. Comm. Math. Phys. 190 (1998), 491-508.
[7] E. Caglioti and F. Golse, On the distribution of free path lengths for the periodic Lorentz gas. III. Comm. Math. Phys. 236 (2003), 199-221.
[8] E. Caglioti and F. Golse, On the Boltzmann-Grad limit for the two dimensional periodic Lorentz gas. J. Stat. Phys. 141 (2010), 264-317.
[9] P. Dahlqvist, The Lyapunov exponent in the Sinai billiard in the small scatterer limit. Nonlinearity 10 (1997), 159-173.
[10] C.P. Dettmann, New horizons in multidimensional diffusion: the Lorentz gas and the Riemann hypothesis. J. Stat. Phys. 146 (2012), 181-204.
[11] G. Gallavotti, Divergences and approach to equilibrium in the Lorentz and the Wind-tree-models, Physical Review 185 (1969), 308-322.
[12] F. Golse and B. Wennberg, On the distribution of free path lengths for the periodic Lorentz gas. II. M2AN Math. Model. Numer. Anal. 34 (2000), no. 6, 1151-1163.
[13] A. Hof, Uniform distribution and the projection method, in Quasicrystals and discrete geometry (Toronto, ON, 1995), Fields Inst. Monogr. 10, (1998), 201-206.
[14] A.S. Kraemer and D.P. Sanders, Periodizing quasicrystals: Anomalous diffusion in quasiperiodic systems, arXiv:1206.1103
[15] H. Lorentz, Le mouvement des électrons dans les métaux, Arch. Néerl. 10 (1905), 336-371.
[16] J. Marklof and A. Strömbergsson, The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems, Annals of Math. 172 (2010), 1949-2033.
[17] J. Marklof and A. Strömbergsson, The Boltzmann-Grad limit of the periodic Lorentz gas, Annals of Math. 174 (2011) 225-298.
[18] J. Marklof and A. Strömbergsson, Kinetic transport in the two-dimensional periodic Lorentz gas, Nonlinearity 21 (2008) 1413-1422.
[19] J. Marklof and A. Strömbergsson, The periodic Lorentz gas in the Boltzmann-Grad limit: Asymptotic estimates, GAFA. 21 (2011), 560-647.
[20] J. Marklof and A. Strömbergsson, Free path lengths in quasicrystals, Comm. Math. Phys. 330 (2014) 723-755.
[21] J. Marklof and A. Strömbergsson, Power-law distributions for the free path length in Lorentz gases, J. Stat. Phys. 155 (2014) 1072-1086.
[22] P. Nandori, D. Szasz and T. Varju ,Tail asymptotics of free path lengths for the periodic Lorentz process. On Dettmann's geometric conjectures, arXiv:1210.2231
[23] G. Polya, Zahlentheoretisches und Wahrscheinlichkeitstheoretisches über die Sichtweite im Walde, Arch. Math. Phys. 27 (1918), 135-142.
[24] M. Ratner, On Raghunathan's measure conjecture, Ann. of Math. 134 (1991) 545-607.
[25] M. Ratner, Raghunathan's topological conjecture and distributions of unipotent flows, Duke Math. J. 63 (1991), 235-280.
[26] M. Senechal, Quasicrystals and geometry, Cambridge University Press, Cambridge, 1995.
[27] C. L. Siegel, A mean value theorem in geometry of numbers, Ann. of Math. 46 (1945), 340-347.
[28] C. L. Siegel, Lectures on the Geometry of Numbers, Springer-Verlag, Berlin-Heidelberg-New York, 1989.
[29] H. Spohn, The Lorentz process converges to a random flight process, Comm. Math. Phys. 60 (1978), 277-290.
[30] W. A. Veech, Siegel Measures, Ann. of Math. 148 (1998), 895-944.
[31] B. Wennberg, Free path lengths in quasi crystals. J. Stat. Phys. 147 (2012), 981-990.

School of Mathematics, University of Bristol, Bristol BS8 1TW, U.K.
j.marklof@bristol.ac.uk

