Dynamics of units and packing constants of ideals

Curtis T McMullen
Harvard University

Perspectives

- Continued Fractions in $Q(\sqrt{ } D)$
- The Diophantine semigroup
- Geodesics in $\mathrm{SL}_{2}(\mathbb{R}) / \mathrm{SL}_{2}(\mathbb{Z})$
- (Classical) Arithmetic Chaos
- Well-packed ideals
- Dynamics of units on $P^{\prime}(\mathbb{Z} / f)$
- Link Littlewood \& Zaremba conjectures

Diophantine numbers

$$
x=\left[a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right]=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ldots}}}
$$

$$
\mathrm{B}_{\mathrm{N}}=\left\{\mathrm{x} \text { real }: \mathrm{a}_{\mathrm{i}} \leq \mathrm{N}\right\}
$$

$\mathrm{B}_{\mathrm{N}}-\mathrm{Q}$ is a Cantor set of $\operatorname{dim} \rightarrow \mathrm{I}$ as $\mathrm{N} \rightarrow \infty$.
Conjecture: x algebraic and Diophantine iff x is rational or quadratic

Diophantine sets in $[0,1]$

$$
B_{N}=\left\{x: a_{i} \leq N\right\}
$$

Theorem
Every real quadratic field contains infinitely many uniformly bounded, periodic continued fractions.

Wilson, Woods (1978)

Example: $[1,4,2,3],[I, I, 4,2, I, 3],[I, I, I, 4,2, I, I, 3] \ldots$ all lie in $\mathrm{Q}(\sqrt{ } 5)$.

Examples

$\gamma=$ golden ratio $=(I+\sqrt{ } 5) / 2=[I, I, I, I \ldots]=.[I]$
$\sigma=$ silver ratio $=1+\sqrt{ } 2=[2]$
$[1,2] \quad Q(\sqrt{ } 3) \quad[1,2,2,2] \quad Q(\sqrt{ } 30)$
$[1,2,2] \quad Q(\sqrt{ } 85) \quad[1,1, I, 2] \quad Q(\sqrt{ } 6)$
$[1, I, 2] \quad Q(\sqrt{ } 10) \quad[1, I, 2,2] \quad Q(\sqrt{ } 22 I)$

Question: Does $Q(\sqrt{ } 5)$ contain infinitely many periodic continued fractions with $a_{i} \leq M$?

Thin group perspective

$\mathrm{G}_{\mathrm{N}}=$ Diophantine semigroup in $\mathrm{SL}_{2}(\mathbb{Z})$ generated by

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 2
\end{array}\right), \ldots\left(\begin{array}{ll}
0 & 1 \\
1 & N
\end{array}\right) .
$$

Theorem
Infinitely many primitive A in G_{N} have eigenvalues in $Q(\sqrt{ } D)$, provided $N \gg 0$.

Thin group questions

$\mathrm{G}_{\mathrm{N}}=$ semigroup generated by
$\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 2\end{array}\right), \ldots\left(\begin{array}{ll}0 & 1 \\ 1 & N\end{array}\right)$.
Open Question
Does $\left\{\operatorname{tr}(A): A\right.$ in $\left.G_{N}\right\}$ have density one in $\{I, 2,3,4, \ldots\}$ for $N \gg 0$?

Yes for $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \rightarrow d$ instead of $(a+d)$.
Bourgain-Kontorovich

Hyperbolic 3-manifolds

$$
Y \subset M=\mathbb{H}^{3} / \mathrm{SL}_{2}([\mathbb{Z} \sqrt{ }-D])
$$

e.g.

beyond continued fractions

Theorem
Again, there is a bounded set $B \subset M$ made up of ∞ many loops with lengths in $\{L, 2 L, 3 L, 4 L, \ldots\}$.
Given one loop of length L , there is a bounded
set $\mathrm{B} \subset \mathrm{M}$ containing ∞ many loops
with lengths in $\{\mathrm{L}, 2 \mathrm{~L}, 3 \mathrm{~L}, 4 \mathrm{~L}, \ldots\}$.
Even though most loops of with these lengths
are uniformly distributed (Duke).

Dynamical perspective

Cross-section to geodesic flow

Arithmetic chaos?

Does the number of $\left[a_{1}, \ldots, a_{p}\right]$ in $\in Q(\sqrt{ } D)$ with $a_{i} \leq 2$ grow exponentially as the period $p \rightarrow \infty$?

Example:

[I], [I, I, I, I, I, I, 2, I, I, 2, 2, I, I, I, I, 2, 2], lie in $\mathrm{Q}(\sqrt{ } 5)$.

Packing Perspective

$K / Q=$ number field of degree d
$\mathrm{J} \subset \mathrm{K}:$ an "ideal" in $\mathrm{K} \quad\left(\mathrm{J} \simeq \mathbb{Z}^{d}\right)$
\{ideals J\} / K ${ }^{*}=$ class " group" (infinite)

Every J is an ideal for an order $O(J)$ in K.

Packing constant $\quad \delta(J)=\frac{N(J)}{\operatorname{det}(J)}$

$N(x)=$ Norm from K to $Q=x_{1} \ldots x_{d}$
$N(J)=\inf \{|N(x)|: x$ in $J, N(x) \neq 0\}$
$\operatorname{det}(J)=\sqrt{ }|\operatorname{disc}(J)|=\sqrt{ }\left|\operatorname{det} \operatorname{Tr}\left(a_{i} a_{j}\right)\right|$

Unit group rank I

Conjecture

If K is a number field whose unit group has rank one, then there are infinitely many ideal classes with $\delta(\mathrm{J})>\delta_{K}>0$.

Cubic fields, I complex place
Quartic fields, 2 complex places
No cubic case is known
(e.g. $x^{3}=x+1$ is open)

Well-packed ideals

Theorem

In any real quadratic field $K=Q(\sqrt{ } D)$, there are infinitely many ideal classes with $\delta(J)>\delta_{K}>0$.

Dictionary

$$
x \text { in } K \Leftrightarrow J=\mathbb{Z}+\mathbb{Z} x
$$

A in $\mathrm{SL}_{2}(\mathbb{Z}) \quad \Leftrightarrow \quad \mathrm{J}=\mathbb{Z}^{2}$ as a $\mathbb{Z}[\mathrm{A}]$-module

Higher rank

Conjecture [Cassel-Swinnerton-Dyer 1955]
In a total real cubic field K, only finitely many ideal classes satisfy $\delta($ () $>\delta>0$.

$\mathrm{SL}_{3}(\mathbb{R}) / \mathrm{SL}_{3}(\mathbb{Z})$
Margulis Conjecture $2000 \Rightarrow$
Littlewood's Conjecture \& Conjecture above

Einsiedler, Katok, Lindenstrauss,
Michel, Venkatesh; CTM-, Minkowski's Conjecture

Fibonacci orders

$\mathcal{O}_{D}=$ the real quadratic order of discriminant D

$$
=\mathbb{Z}[x] /\left(x^{2}+b x+c\right), \quad D=b^{2}-4 c
$$

$K=Q(\sqrt{ })=$ real quadratic field
$\varepsilon=$ unit in K
$D=$ discriminant of $\mathbb{Z}[\varepsilon]$
$D f_{m}{ }^{2}=$ discriminant of $\mathbb{Z}\left[\varepsilon^{m}\right]$
$\mathbb{Z}\left[\varepsilon^{\mathrm{m}}\right]=\mathrm{m}^{\text {th }}$ Fibonacci order $\cong \mathcal{O}_{f_{m}^{2} D}$

Fibonacci orders for golden mean

$$
\begin{gathered}
K=Q(\sqrt{ } 5)=\text { real quadratic field } \\
\varepsilon=\text { unit in } K=(I+\sqrt{ } 5) / 2 \\
\mathbb{Z}[\varepsilon] \cong \mathcal{O}_{D} \quad D=5 \\
D f_{m}^{2}=\text { discriminant of } \mathbb{Z}\left[\varepsilon^{m}\right] \\
\left(f_{1}, f_{2}, \ldots\right)=(I, I, 2,3,5,8,13,2 I, 34,55,89, \ldots) \\
f_{m} \sim \varepsilon^{m}, \quad \varepsilon>I
\end{gathered}
$$

grows exponentially fast

Dynamics of units

$$
U=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) \quad \text { Acts on } \mathbb{Z}^{2}
$$

Acts on $E=\mathbb{R}^{2} / \mathbb{Z}^{2}$ and on $E[f]=(\mathbb{Z} / f)^{2}$

$$
\text { KEY FACT: } \quad U^{2 m}=\operatorname{ld} \text { on } E\left[f_{m}\right]
$$

Proof.

$$
U^{m}=\left(\begin{array}{cc}
f_{m-1} & f_{m} \\
f_{m} & f_{m+1}
\end{array}\right) \equiv f_{m+1}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \bmod f_{m} .
$$

Height and packing

$$
\begin{aligned}
& U=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) \quad \begin{array}{c}
\text { Acts on } \mathbb{P}^{\prime}(Z / f) \\
\text { Height } \\
H(x)=\inf \mathrm{a}^{2}+\mathrm{b}^{2}: \mathrm{x}=[\mathrm{a}: b]
\end{array} \\
& H(x)=O(f) \\
& \delta(J(x)) \approx \min _{i} H\left(U^{i} x\right) / f
\end{aligned}
$$

Events $\mathrm{E}_{\mathrm{i}}=\mathrm{H}\left(U^{i} \mathrm{x}\right) / \mathrm{f}>\delta \quad$ Each have probability $\mathrm{p} \approx 1$
Assume more or less independent! [Arithmetic chaos]

$$
\Rightarrow|x: \delta(J(x))>\delta| \approx p^{m} f_{m} \geq f_{m}^{l-\alpha}
$$

\Rightarrow Fibonacci Conjecture

Dynamics of units (con't)

$$
U=\left(\begin{array}{cc}
0 & 1 \\
1 & 1
\end{array}\right) \quad \begin{gathered}
\text { Acts on } \mathbb{P}^{\prime}(\mathbb{Z} / f) \\
\{\mathrm{x}=[\mathrm{a}: \mathrm{b}]\}
\end{gathered}
$$

$\mathrm{J}(\mathrm{x})=\mathbb{Z}(\mathrm{a}+\mathrm{b} \varepsilon)+\mathrm{f} \mathbb{Z}[\varepsilon]$ an ideal for $\mathcal{O}_{D f^{2}}$

Pic $\mathcal{O}_{D f^{2}} \approx\left\{\right.$ orbits of U acting on $\left.\mathbb{P}^{\prime}(\mathbb{Z} / f)\right\}$
$U^{m}=I d \Rightarrow$ Pic $\mathbb{Z}\left[\varepsilon^{m}\right]$ has order $\approx f_{m} / m$ large class numbers

The quadratic ‘field' $K=Q \oplus Q$
$\mathbb{Z} \oplus \mathbb{Z}=$ quadratic ring \mathcal{O}_{1} of discriminant I $\mathcal{O}_{f^{2}}=\{(\mathrm{a}, \mathrm{b}): \mathrm{a}=\mathrm{b} \bmod \mathrm{f}\} \subset \mathbb{Z} \oplus \mathbb{Z}$

Conjecture

Given $\alpha>0$, there is a $\delta>0$ s.t.
$\mid\left\{\mathrm{J}\right.$ in $\left.\operatorname{Pic} \mathcal{O}_{f^{2}}: \delta(\mathrm{J})>\delta\right\}>\mathrm{f}^{\mathrm{l}-\alpha}$ for all $\mathrm{f} \gg 0$.
[All class numbers large.]
This conjecture implies Zaremba's conjecture.

Zaremba's Conjecture

$\exists N$: For any $q>0, \exists p / q=\left[a_{I}, \ldots, a_{n}\right]$
with $a_{i} \leq N$.

```
How it follows: Pic \(\mathcal{O}_{f^{2}}=(\mathbb{Z} / \mathrm{f})^{*}\)
\(J(x)=\{(a, b): a=x b \bmod f\} \subset \mathbb{Z} \oplus \mathbb{Z} \quad \operatorname{det} J(x)=f\)
\[
\begin{gathered}
\delta(\mathrm{J}(\mathrm{x}))>\delta \Leftrightarrow \\
\mathrm{N}(\mathrm{~J}(\mathrm{x}))=\min _{\mathrm{p}, \mathrm{q}}\{|\mathrm{q}||\mathrm{xq}-\mathrm{pf}|\}>\delta \mathrm{f} \quad \Leftrightarrow \\
|\mathrm{x} / \mathrm{f}-\mathrm{p} / \mathrm{q}|>\delta / \mathrm{q}^{2} \Leftrightarrow
\end{gathered}
\]
```

continued fraction of x / f is bounded by $N(\delta)$.

Coda: Expanders from $\mathcal{O}_{d^{2}}$
$V\left(X_{d}\right)=$ \{genus 2 covering spaces

$$
S \rightarrow E=\mathbb{R}^{2} / \mathbb{Z}^{2},
$$

branched over one point\}
$\mathrm{SL}_{2}(\mathbb{Z})$ acts transitively \Rightarrow Graphs X_{d}

Conjecture: These X_{d} are expanders. $\mathrm{X}_{\mathrm{d}}=\mathrm{SL}_{2}(\mathrm{Z}) / \Gamma_{\mathrm{d}}, \Gamma_{\mathrm{d}}$ not congruence!
$Z * Z \rightarrow S_{d} \quad \operatorname{Jac}(\mathrm{~S})$ real multiplication by $\mathcal{O}_{d^{2}}$

Restrospective

- CF's; Geodesics/A-orbits; Packing constants
- Arithmetic chaos in rank I
- Margulis-Littlewood-CSD rigidity in higher rank

Uniformly Diophantine numbers in a fixed real quadratic field.
Compos. Math. I45(2009)

Theorem 2.2 Given $A \in \mathrm{GL}_{2}(\mathbb{Z})$ such that $A^{2}=I, \operatorname{tr}(A)=0$ and $\operatorname{tr}\left(A^{\dagger} U\right)=$ ± 1, let

$$
L_{m}=U^{m}+U^{-m} A
$$

Then for all $m \geq 0$:

1. $\left|\operatorname{det}\left(L_{m}\right)\right|=f_{2 m}$ is a generalized Fibonacci number;
2. The lattice $\left[L_{m}\right]$ is fixed by $U^{2 m}$;
3. We have $L_{-m}=L_{m} A$;
4. For $0 \leq i \leq m$ we have:

$$
\begin{equation*}
\left\|U^{i} L_{m} U^{-i}\right\|,\left\|U^{-i} L_{-m} U^{i}\right\| \leq C \sqrt{\left|\operatorname{det} L_{m}\right|} \tag{2.7}
\end{equation*}
$$

where C depends only on A and U.

