

Curtis T McMullen Harvard University

Perspectives

- Continued Fractions in $\mathbb{Q}(\sqrt{D})$
- The Diophantine semigroup
- Geodesics in $SL_2(\mathbb{R})/SL_2(\mathbb{Z})$
- (Classical) Arithmetic Chaos
- Well-packed ideals
- Dynamics of units on $P^{1}(\mathbb{Z}/f)$
- Link Littlewood & Zaremba conjectures

Continued Fractions

- Q. How to test if a real number x is in \mathbb{Q} ?
- Q. How to test if a real number x is in $\mathbb{Q}(\sqrt{D})$?

$$\mathbf{x} = [\mathbf{a}_0, \mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \dots] = \mathbf{a}_0 + \frac{|\mathbf{a}_1 + \mathbf{a}_1|}{|\mathbf{a}_1| + |\mathbf{a}_2| + |\mathbf{a}_3| +$$

A. x is in $\mathbb{Q}(\sqrt{D})$ iff ai's repeat.

Diophantine numbers

$$\mathbf{x} = [\mathbf{a}_0, \mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \dots] = \mathbf{a}_0 + \frac{1}{\mathbf{a}_1 + \frac{1}{\mathbf{a}_2 + \frac{1}{\mathbf{a}_3 + \dots}}}$$

 $B_N = \{x \text{ real} : a_i \leq N\}$

 B_{N-Q} is a Cantor set of dim $\rightarrow 1$ as $N \rightarrow \infty$.

Conjecture: x algebraic and Diophantine iff x is rational or quadratic

Examples

$\gamma = \text{golden ratio} = (1 + \sqrt{5})/2 = [1, 1, 1, 1,] = [1]$		
σ = silver ratio = 1+ $\sqrt{2}$ = [2]		
[1,2] ℚ(√3)	[1,2,2,2]	Q(√30)
[1,2,2] Q(√85)	[1,1,1,2]	ℚ(√6)
[I,I,2] ℚ(√I0)	[1,1,2,2]	Q(√22I)

Question: Does $Q(\sqrt{5})$ contain infinitely many periodic continued fractions with $a_i \le M$?

Theorem Every real quadratic field contains infinitely many uniformly bounded, periodic continued fractions.

Wilson, Woods (1978)

Example: [1,4,2,3], [1,1,4,2,1,3], [1,1,1,4,2,1,1,3]...all lie in $Q(\sqrt{5})$.

Thin group perspective

 G_N = Diophantine semigroup in $SL_2(\mathbb{Z})$ generated by

 $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix}, \dots, \begin{pmatrix} 0 & 1 \\ 1 & N \end{pmatrix}.$

Theorem Infinitely many primitive A in G_N have eigenvalues in $\mathbb{Q}(\sqrt{D})$, provided N $\gg 0$.

Arithmetic chaos?

Does the number of $[a_1,...,a_p]$ in $\in \mathbb{Q}(\sqrt{D})$ with $a_i \le 2$ grow exponentially as the period $p \rightarrow \infty$?

Example:[1], [1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2], ...?...lie in $Q(\sqrt{5})$.

Packing Perspective

K/Q = number field of degree d

 $J \subset K$: an "ideal" in K $(J \simeq \mathbb{Z}^d)$

{ideals J} / K^{*} = class ``group'' (infinite)

Every J is an ideal for an order O(J) in K.

Well-packed ideals

 $\label{eq:constraint} \begin{array}{l} \mbox{Theorem} \\ \mbox{In any real quadratic field $K=\mathbb{Q}(\sqrt{D})$, there are} \\ \mbox{infinitely many ideal classes with $\delta(J) > $\delta_K > 0$.} \end{array}$

Dictionary

 $\begin{array}{lll} x \text{ in } K & \Leftrightarrow & J = \mathbb{Z} + \mathbb{Z} x \\ A \text{ in } SL_2(\mathbb{Z}) & \Leftrightarrow & J = \mathbb{Z}^2 \text{ as a } \mathbb{Z}[A]\text{-module} \end{array}$

Unit group rank I

 $\begin{array}{l} \label{eq:conjecture} \mbox{ Conjecture} \\ \mbox{ If K is a number field whose unit} \\ \mbox{ group has rank one, then there are} \\ \mbox{ infinitely many ideal classes with } \delta(J) > \delta_K > 0. \end{array}$

Cubic fields, I complex place

Quartic fields, 2 complex places

No cubic case is known (e.g. $x^3 = x+1$ is open)

Higher rank

 $\begin{array}{l} \textbf{Conjecture [Cassel-Swinnerton-Dyer 1955]}\\ In a total real cubic field K, only finitely many\\ ideal classes satisfy \delta(J) > \delta > 0. \end{array}$

A·I

 $SL_3(\mathbb{R})/SL_3(\mathbb{Z})$

Margulis Conjecture 2000 ⇒ Littlewood's Conjecture & Conjecture above

Einsiedler, Katok, Lindenstrauss, Michel, Venkatesh; CTM-, Minkowski's Conjecture

Fibonacci orders

 $\mathcal{O}_{D} = \text{the real quadratic order of discriminant D}$ $= \mathbb{Z} [x]/(x^{2}+bx+c), \quad D = b^{2}-4c$ $K = \mathbb{Q} (\sqrt{D}) = \text{real quadratic field}$ $\epsilon = \text{unit in K}$ $D = \text{discriminant of } \mathbb{Z}[\epsilon]$ $D f_{m}^{2} = \text{discriminant of } \mathbb{Z}[\epsilon^{m}]$ $\mathbb{Z}[\epsilon^{m}] = m^{\text{th}} \text{Fibonacci order} \cong \mathcal{O}_{f_{m}^{2}D}$

Fibonacci orders for golden mean

Class numbers

Pic $\mathbb{Z}[\epsilon^m]$ has order about $f_m \sim \sqrt{(D f_m^2)}$

(as large as possible)

Fibonacci Conjecture

Given $\alpha > 0$, there is a $\delta > 0$ such that $|\{J \text{ in Pic } \mathbb{Z}[\epsilon^m] : \delta(J) > \delta\}| > f_m^{1-\alpha}$

for all $m \gg 0$.

Lots of ideals ⇒ many well packed (But not most)

Dynamics of units

$$U = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \qquad \begin{array}{c} \operatorname{Acts} \text{ on } \mathbb{Z}^2 \\ \end{array}$$

$$Just \text{ as } \mathfrak{E} \operatorname{acts} \text{ on } \mathbb{Z}[\mathfrak{E}]$$

Acts on E = $\mathbb{R}^2/\mathbb{Z}^2$ and on E[f] = $(\mathbb{Z}/f)^2$

KEY FACT:
$$U^{2m} = Id \text{ on } E[f_m]$$

Proof.
$$U^m = \begin{pmatrix} f_{m-1} & f_m \\ f_m & f_{m+1} \end{pmatrix} \equiv f_{m+1} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mod f_m.$$

Dynamics of units (con't)
$$U = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$
Acts on $\mathbb{P}^{1}(\mathbb{Z}/f)$
 $\{x = [a:b]\}$ $J(x) = \mathbb{Z} (a+b \epsilon) + f \mathbb{Z}[\epsilon]$ an ideal for $\mathcal{O}_{Df^{2}}$ Pic $\mathcal{O}_{Df^{2}} \approx \{ \text{orbits of U acting on } \mathbb{P}^{1}(\mathbb{Z}/f) \}$ $\bigcup^{m} = \mathbb{Id} \Rightarrow \operatorname{Pic} \mathbb{Z}[\epsilon^{m}] \text{ has order } \approx f_{m} / m$
Large class numbers

 $\begin{array}{l} \mbox{Height and packing} \\ U = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} & \mbox{Acts on } \mathbb{P}^{1}(\mathbb{Z}/f) \\ \mbox{Height } H(x) = \inf a^{2} + b^{2} : x = [a:b] \\ & H(x) = O(f) \\ & \delta(J(x)) \approx \min_{i} H(U^{i} x)/f \end{array}$ Events E_i = H(Uⁱ x)/f > δ Each have probability p \approx I Assume more or less independent! [Arithmetic chaos] $\Rightarrow |x : \delta(J(x)) > \delta| \approx p^{m} f_{m} \ge f_{m}^{1-\alpha}$ \Rightarrow Fibonacci Conjecture The quadratic `field' $K = \mathbb{Q} \oplus \mathbb{Q}$ $\mathbb{Z} \oplus \mathbb{Z} =$ quadratic ring \mathcal{O}_1 of discriminant I $\mathcal{O}_{f^2} = \{(a,b) : a = b \mod f\} \subset \mathbb{Z} \oplus \mathbb{Z}$

Conjecture

Given $\alpha > 0$, there is a $\delta > 0$ s.t. $|\{ J \text{ in Pic } \mathcal{O}_{f^2} : \delta(J) > \delta \} > f^{1-\alpha}$ for all $f \gg 0$. [All class numbers large.]

This conjecture implies Zaremba's conjecture.

Restrospective

- CF's; Geodesics/A-orbits; Packing constants
- Arithmetic chaos in rank I
- Margulis-Littlewood-CSD rigidity in higher rank

Uniformly Diophantine numbers in a fixed real quadratic field. Compos. Math. 145(2009)

slides online

Theorem 2.2 Given $A \in \operatorname{GL}_2(\mathbb{Z})$ such that $A^2 = I$, $\operatorname{tr}(A) = 0$ and $\operatorname{tr}(A^{\dagger}U) = \pm 1$, let $L_m = U^m + U^{-m}A.$

Then for all $m \ge 0$:

- 1. $|\det(L_m)| = f_{2m}$ is a generalized Fibonacci number;
- 2. The lattice $[L_m]$ is fixed by U^{2m} ;
- 3. We have $L_{-m} = L_m A$;
- 4. For $0 \le i \le m$ we have:

$$\|U^{i}L_{m}U^{-i}\|, \|U^{-i}L_{-m}U^{i}\| \leq C\sqrt{|\det L_{m}|}, \qquad (2.7)$$

where C depends only on A and U.