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Abstract. We use an explicit form of Hilbert’s Nullstellensatz to estimate the largest
prime and the number of primes p such that a reduction modulo p of a zero dimensional
variety over Q becomes of positive dimension. We apply these estimates to studying cyclic
points and intersection of orbits of algebraic dynamical systems in finite fields.

1. Introduction

The goal of the work, which is still in progress, is to extend the scope of application of
algebraic geometric methods to algebraic dynamical systems, that is, to dynamical systems
generated by iterations of rational functions.

For simplicity, in this short description I will present the results we obtain only for poly-
nomial systems, however, similar results also hold for rational functions, see [6].

Let

(1) F = {F1, . . . , Fm}, F1, . . . , Fm ∈ Z[X1, . . . , Xm],

a system of be m polynomials in m variables over Z. For each i = 1, . . . ,m we define the
k-th iteration of the rational function Fi by the recurrence relation

(2) F
(0)
i = Xi, F

(n)
i = Fi

(
F

(n−1)
1 , . . . , F (n−1)

m

)
, n = 1, 2, . . . ,

see [2, 14, 15] for a background on dynamical systems associated with such iterations.
Given a vector u ∈ Cm over the complex numbers, we define the orbit of u, which we

denote by OF ,u, as the sequence of vectors un = (un,1, . . . , un,m) ∈ Cm defined by the
recurrence relation

un+1,i = Fi(un,1, . . . , un,m), n = 0, 1, . . . , i = 1, . . . ,m,

with u0 = u. Sometimes we also write

un = F (n)(u).

We say that u is a periodic point of the polynomial system (1) of order k ≥ 1 if un = un+k

for every n = 0, 1, . . .. We note that it is convenient for us not to request that k is the smallest
positive integer with this property (that is, a periodic point of order k is also a periodic point
of order k` for any integer ` ≥ 1).

Given a prime p we extend the above definitions in a natural way to periodic points
modulo p. We refer to [1, 3, 9, 13, 16] for recent advances in the study of periodic points
and period lengths in reductions of orbits of dynamical systems modulo distinct primes.
In fact most of our motivation comes from the recently introduced idea of transferring the
Hasse principle for periodic points and thus linking local and global periodicity properties,
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see [17]. Here we show that an explicit form of Hilbert’s Nullstellensatz provides a powerful
tool which may produce various results in this direction.

2. Number of points on modular reductions of varieties

Here we use several algebraic geometry tools, such as an explicit version of Hilbert’s
Nullstellensatz , see [5, 10], to obtain new results about orbits of reductions modulo a prime
p of algebraic dynamical systems.

Our approach is based on several new results about the number of points on reductions
modulo primes of an algebraic variety, defined by polynomials over Z, that has only finitely
many zeros over C. Namely, we show that for a sufficiently large prime p, such a variety V/C
also has finitely many zeros over the algebraic closure Fp of the finite field Fp of p elements.

Given a polynomial F ∈ Z[X1, . . . , Xm], we define its height, denoted h(F ), as the loga-
rithm of the maximum of the absolute values of its coefficients. Using Chow forms and an
explicit version of Hilbert’s Nullstellensatz, given in [5], we derive:

Theorem 2.1. Let F1, . . . , Fm ∈ Z[X1, . . . , Xm] be polynomials of degree at most d and of
height at most h. Assume that the zero set of F1, . . . , Fm in Cm has a finite number T of
distinct points. Then there exists A ∈ N with

logA ≤ (10m + 4)d2m−1h + (54m + 98)d2m log(2m + 5)

such that, if p is a prime not dividing A, then the zero set of F1, . . . , Fm in Fm
p has exactly

T points.

Clearly, there are at most O(logA) = O(d2m−1h+ d2m) primes p | A (where the impplied
constant depends only on m).

We also recall that by the Bézout theorem, if T is finite then T ≤ dm.

3. Periodic points and orbit intersections of polynomial dynamical systems

Estimating the growth of the height and the degrees of the iterations of polynomial
systems, we show that Theorem 2.1 yields:

Theorem 3.1. Let F1, . . . , Fm ∈ Z[X1, . . . , Xm] be polynomials of degree at most d and of
height at most h. Assume that a polynomial system (1) has finitely many periodic points of
order k over C. Then there exists an integer Ak ≥ 1 with

logAk ≤ d2km
(

(10m + 4)
h

d− 1
+ 125(m + 2) log(m + 1)

)
such that, if p is a prime number not dividing Ak, then the reduction of F modulo p has at
most

Nk(p) ≤ dkm

periodic points of order k.

Our next application is to frequency of orbit intersections of orbits of two polynomial
systems. We note that in the univariate case, Ghioca, Tucker and Zieve [7, 8] proved that
if two univariate nonlinear complex polynomials have an infinite intersection of their orbits,
then they have a common iterate. Clearly such a result cannot hold in finite fields. Instead,
based again on an explicit version of Hilbert’s Nullstellensatz , see [5, 10], we obtain results
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for the frequency of points in an orbit of the reduction modulo p of an algebraic dynamical
system that belong to a given algebraic variety or coincide with a similar point coming from
another algebraic dynamical system.

Let F of the form (1). For a vector w ∈ Qm, we denote by

Orbw(F) = {F (n)(w) | n = 0, 1, . . .}.
For an algebraic variety V = Z (Φ1, . . . ,Φs), Φi ∈ Z[X1, . . . , Xm], i = 1, . . . , s, we consider

the elements of orbits that fall into V and denote

(3) Vw(F , V ) =
{
n ∈ N | F (n)(w) ∈ V

}
.

We say that the intersection of orbits of F with V is L-uniformly bounded if there is a
constant L depending only on F and V so that for all initial values w ∈ Qm, we have

#Vw(F , V ) ≤ L.

For a prime p and an integer N , we define

Vw(F , V ; p,N) =
{
n ∈ {0, . . . , N − 1} | F (n)

p (w) ∈ V p

}
for some initial values w ∈ Fm

p , where Fp and V p are defined by the reductions of the
rational function system F and of the polynomials Φj , j = 1, . . . , s, modulo p.

We prove the following result.

Theorem 3.2. Let F = {F1, . . . , Fm} be a system of m ≥ 2 polynomials in Z[X1, . . . , Xm]
of degree at most d and of height at most h. Let V be an algebraic variety defined by the
polynomials Φ1, . . . ,Φs ∈ Z[X1, . . . , Xm] of degree at most D and height at most H. We also
assume that the intersection of orbits of F with V is L-uniformly bounded. Then, for any
ε > 0 there exists B ∈ N with

logB ≤ML+1(dM−1D)s(L+1)

(
s

(
4 log(m + 1) +

H

dM−1D
+

h

d− 1

)
+ (4m + 8) log(m + 3)

)
,

where M =
⌊
2ε−1(L + 2)

⌋
+ 1, such that, if p is a prime number not dividing B, then for

any integer N ≥M , we have

max
w∈Fm

p

#Vw(F , V ; p,N) ≤ εN.

We consider now two polynomial systems F ,G of the form (1). Taking the polynomials
Φj = Xj − Yj , j = 1, . . . ,m, in (3), we say that F and G have a uniformly bounded
synchronised orbit intersection over Q if the size of the synchronised intersection of Orbw(F)
and Orbw(G), that is, the size of the set

Iw(F ,G) =
{
n ∈ N | F (n)(w) = G(n)(w)

}
is L-uniformly bounded over all initial values w ∈ Qm, as defined above.

Theorem 3.2 implies that for polynomial systems over Z with a uniformly bounded syn-
chronised orbit intersection over Q, the orbits of their reductions modulo a prime p have a
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density of intersections at most ε > 0, provided that p does not divide a certain quantity
depending only on ε > 0 (and the systems themselves).

Since the polynomial systems F and G are defined by polynomials over Z, then for a
prime p and an integer N , we can also define, for u,v ∈ Fm

p ,

Iu,v(F ,G; p,N) =
{
n = 0, . . . , N − 1 | F (n)

p (u) = G(n)p (v)
}
,

where Fp and Gp are the reductions of the polynomial systems F and G modulo p. Note
that the quantity Iu,v(F ,G; p,N) is defined in a more general situation for arbitrary initial
points u,v ∈ Fm

p while the uniform boundness is requested only for the same initial vector.
However this distinction is not essential (as if two orbit intersect, after this intersection they
can be considered as orbits originating from the same point). For instance, we obviously
have

max
u,v∈Fm

p

#Iu,v(F ,G; p,N) ≤ 1 + max
w∈Fm

p

#Iw,w(F ,G; p,N).

We derive from Theorem 3.2 the following result:

Corollary 3.3. Let F = {F1, . . . , Fm} and G = {G1, . . . , Gm} be two systems of polynomials
in Z[X1, . . . , Xm] of degree at most d and of height at most h and with an L-uniformly
bounded synchronised orbit intersection over Q. For any ε > 0 there exists B ∈ N with

logB ≤ML+1dm(M−1)(L+1)

(
h

m

d− 1
+ (12m + 8) log(2m + 3)

)
,

where M =
⌊
2ε−1(L + 2)

⌋
+ 1, such that, if p is a prime number not dividing B, then for

any integer N ≥M , we have

max
u,v∈Fm

p

#Iu,v(F ,G; p,N) ≤ εN.

Remark 3.4. Our bounds depend on the bounds on degree and height (that is, the size of
the coefficients) growth of the iterates (2). So it is natural to expect that when the growth
is slower then “generic” one can expect stronger estimates. In [6] we demonstrate this on
the example of the polynomial system F = {F1, . . . , Fm} with

Fi = XiGi + Hi, Gi, Hi ∈ Z[Xi+1, . . . , Xm], i = 1, . . . ,m,

satisfying certain conditions. Such systems have been introduced in [12], where it is also
shown that the degree of the kth iterates grows polynomially with k (instead of the typically
expected exponential growth).
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