Dynamics and Numbers 2014 Abstract

Computing the Teichmüller polynomial.

Ferrán Valdez. UNAM Campus Morelia. Mexico

ferran@matmor.unam.mx

A fibered hyperbolic 3-manifold M is a rich source¹ for pseudo-Anosov mapping classes. Indeed, Thurston's theory of fibered faces tells us that integer points in the fibered cone $\mathbb{R}^+ \cdot F \subset H^1(M, \mathbb{R})$ over the fibered face F of the Thurston norm unit ball correspond to fibrations of M over the circle. Given that M is hyperbolic, the monodromy of each such fibration is a pseudo-Anosov class $[\psi]$ with stretch factor $\lambda(\psi) > 1$. These stretch factors are packaged in the Teichmüller polynomial, defined by McMullen at the end of the 1990's. This is an element $\Theta_F = \sum_{g \in G} a_g g$ in the group ring $\mathbb{Z}[H_1(M,\mathbb{Z})/\text{Torsion}]$, which is associated to the fibered face F and that is used to compute effectively the stretch factor $\lambda(\psi)$. More precisely, if $[\alpha] \in H^1(M,\mathbb{Z})$ is the integer class in the fibered cone which corresponds to ψ and $\xi_{\alpha} \in H_1(M, \mathbb{Z})$ is its dual, then the largest root of the Laurent polynomial $\Theta_F(\alpha) := \sum_{g \in G} a_g \cdot t^{\xi_{\alpha}(g)} \in \mathbb{Z}[t, t^{-1}]$ is the stretch factor $\lambda(\psi)$. The Teichmüller polynomial plays a useful role in the construction of mapping classes with small entropy (equivalently small stretch factor). It has been used as a natural source of pseudo-Anosov homeomorphism having small normalized stretch factors: infinite families of pseudo-Anosov homeomorphism $[\psi] \in Mod(\Sigma_g)$ satisfying $\lambda(\psi)^g = O(1)$ as $q \to \infty$.

The main goal of this talk is to present an algorithm to compute explicitly the Teichmüller polynomial and to give a unified presentation of the aforementioned papers. More precisely we will denote the mapping torus of $[\psi] \in Mod(S)$ by

$$M_{\psi} := S \times [0,1]/(x,1) \sim (\psi(x),0)$$

and we will suppose that the first Betti number of M_{ψ} is at least 2.

Based on the results of Penner and Papadopoulos on train tracks and elementary operations (folding operations in the present paper), we provide an algorithm that

- (1) computes the Teichmüller polynomial Θ_F of the fibered face F of M_{ψ} where $[\psi] \in \text{Mod}(\mathbf{D}_n)$ is a pseudo-Anosov class on an *n*-punctured disc \mathbf{D}_n .
- (2) computes the topology (genus, number of singularities and type) of the fibers of fibrations in the cone $\mathbb{R}^+ \cdot F$.

As a byproduct, our algorithm allows us also to derive all the relevant informations on the topology of the different fibers that belong to the fibered face.

¹provided that the first Betti number $b_1(M) \ge 2$.