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Abstract. Let G = SL(2,R) n R2 and Γ = SL(2,Z) n Z2. Building on recent work of
Strömbergsson we prove a rate of equidistribution for the orbits of a certain 1-dimensional
unipotent flow of Γ\G, which projects to a closed horocycle in the unit tangent bundle to
the modular surface. We use this to answer a question of Elkies and McMullen by making
effective the convergence of the gap distribution of

√
n mod 1.

Results of Ratner on measure rigidity and equidistribution of orbits [4, 5] play a fundamen-
tal role in the study of unipotent flows on homogeneous spaces. They have many applications
beyond the world of dynamics, ranging from problems in number theory to mathematical
physics. This paper is concerned with the problem of obtaining effective versions of results
that build on Ratner’s theorem and is inspired by recent work of Strömbergsson [8].

Let G = ASL(2,R) = SL(2,R) n R2 be the group of affine linear transformations of R2.
We define the product on G by

(M,x)(M ′,x′) = (MM ′,xM ′ + x′),

and the right action is given by x(M,x′) = xM + x′. We always think of x ∈ R2 as a
row vector. Put Γ = ASL(2,Z) = SL(2,Z) n Z2 and let X = Γ\G be the associated
homogeneous space. The group G is unimodular and so the Haar measure µ on G projects
to a right-invariant measure on X. The space X is non-compact, but it has finite volume
with respect to the projection of µ. Following the usual abuse of notation, we denote the
projected measure by µ and normalize it so that µ(X) = 1.

Let

a(y) =

(√
y 0

0 1/
√
y

)
,

and write A+ = {a(y) : y > 0}. In what follows we will use the embedding SL(2,R) ↪→ G,
given by M 7→ (M,0), which thereby allows us to think of SL(2,R) as a subgroup of G.
Strömbergsson [8] works with the unipotent flow on X generated by right multiplication by
the subgroup

U0 =

{((
1 x
0 1

)
, (0, 0)

)
: x ∈ R

}
.

He considers orbits of a point (Id2, (ξ1, ξ2)) subject to a certain Diophantine condition. In
[8, Thm. 1.2], effective rates of convergence are obtained for the equidistribution of such
orbits under the flow a(y) as y → 0. The goal of the present paper is to extend the methods
of Strömbergsson to handle the orbit generated by right multiplication by the subgroup
U = {u(x) : x ∈ R}, where

u(x) =

((
1 x
0 1

)
,

(
x

2
,
x2

4

))
.
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As noted by Strömbergsson [8, §1.3], any Ad-unipotent 1-parameter subgroup of G with
non-trivial image in SL(2,R) is conjugate to either U0 or U .

With this notation we will study the rate of equidistribution of the closed orbit Γ\ΓU
under the action of a(y), as y → 0. Geometrically this orbit is a lift of a closed horocy-
cle in SL(2,Z)\SL(2,R) to Γ\G, and the behaviour of horocycles under the flow A+ on
SL(2,Z)\SL(2,R) is very well understood. The main obstruction to treating the problem
of horocycle lifts with the usual techniques of ergodic theory (such as thickening) is the
fact that U is not the entire unstable manifold of the flow a(y), but only a codimension
1 submanifold. Elkies and McMullen [3] used Ratner’s measure classification theorem [4]
to prove that the horocycle lifts equidistribute, but their method is ineffective. In [3, §3.6]
they ask whether explicit error estimates can be obtained. The following result answers this
affirmatively.

Theorem 1. There exists C > 0 such that for every f ∈ C8
b(X) and y > 0 we have∣∣∣∣12

∫ 1

−1
f(u(x)a(y)) dx−

∫
X

f dµ

∣∣∣∣ < C‖f‖C8
b
y

1
4 log2(2 + y−1).

Here Ck
b(X) denotes the space of k times continuously differentiable functions on X whose

left-invariant derivatives up to order k are bounded.

Our next result shows that we can replace dx by a sufficiently smooth absolutely continuous
measure. Let ρ : R→ R>0 be a compactly supported function that has 1+ε derivatives in L1.
For simplicity we follow [8] and interpolate between the Sobolev norms ‖ρ‖W 1,1 and ‖ρ‖W 2,1 ,
which give the L1 norms of first and second derivatives, respectively. This interpolation
allows us to treat the case of piecewise constant functions with an ε-loss in the rate.

Theorem 2. Let η ∈ (0, 1). There exists K > 1 and C(η) > 0 such that for every f ∈ C8
b(X)

and y > 0 we have∣∣∣∣∫
R
f(u(x)a(y))ρ(x)dx−

∫
X

f dµ

∫
R
ρ(x) dx

∣∣∣∣ < C(η)‖ρ‖1−ηW 1,1‖ρ‖ηW 2,1‖f‖C8
b
y

1
4 logK−1(2 + y−1).

The constant K in this result is absolute and does not depend on η. The proof of Theorems
1 and 2 builds on the proof of [8, Thm. 1.2]. It relies on Fourier analysis and estimates for
complete exponential sums which are essentially due to Weil. Let us remark that while we
strive to obtain the best possible decay in y, we take little effort to optimize the norms of
f and ρ that appear in the estimates. The exponent 1

4
in the error term is optimal for our

method, but we surmise it can be improved by exploiting additional cancellation in certain
two dimensional exponential sums. The natural upper limit is 1

2
, which holds for horocycles

on SL(2,Z)\SL(2,R) due to work of Sarnak [6].

We may apply Theorem 1 to study gaps between the fractional parts of
√
n. Consider the

sequence
√
n mod 1 ⊂ R/Z ∼= S1. It is easy to see from Weyl’s criterion that this sequence

is uniformly distributed on the circle. This means that for every interval J ⊂ S1, we have

lim
N→∞

#{
√
n mod 1: 1 6 n 6 N} ∩ J

N
= |J |,

where | · | denotes length. The statistic we focus on is the gap distribution. For each N ∈ N,
we consider the set {

√
n mod 1}16n6N and we allow 0 ∈ R/Z to be included for each perfect

square. This set of N points divides the circle into N intervals (a few of which could be of
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zero length) which we refer to as gaps. For t > 0, we define the gap distribution λN(t) to be
the proportion of gaps whose length is less than t/N . This function satisfies λN(0) = 0 and
λN(∞) = 1, and it is left-continuous.

The behaviour of λN(t), as N → ∞, has been analyzed by Elkies and McMullen [3]
and later also by Sinai [7]. It is shown in [3] that there exists a function λ∞(t) such that
λN(t)→ λ∞(t) for each t. We have

λ∞(t) =

∫ t

0

F (ξ) dξ, (0.1)

where F is given in [3, Thm. 1.1]. It is defined by analytic functions on three intervals, but
it is not analytic at the endpoints joining these intervals. Moreover, it is constant on the
interval [0, 1/2].

The approach of Elkies and McMullen [3] is to relate λN(t) to a function on X, so that
the problem of understanding λN(t) is translated into studying

1

2

∫ 1

−1
f(u(x)a(1/N)) dx,

as N → ∞, for a certain function f that depends on t. The error terms appearing in this
step are worked out explicitly in [3]. In fact, f is directly related to

σN(t) =

∫ t

0

ξdλN(ξ), (0.2)

which is the total length of gaps whose length is less than t/N . The key input in [3] comes
from Ratner’s theorem [4], which is used in [3, Thm. 2.2] to find the limiting distribution of
σN(t). Armed with Theorem 1, we will refine this approach to get the following result.

Corollary 3. Let λN(t), λ∞(t) be as above and let t > N−1/40 logN. Then there exists a
function C(t) such that

|λN(t)− λ∞(t)| � C(t)N−1/36 log2/9N

for any N > 2.

The sequence
√
n mod 1 has also been studied from the perspective of its pair correlation

function. This is a useful statistic for measuring randomness in sequences and, in this setting,
it has been shown to converge to that of a Poisson point process by El-Baz, Marklof, and
the second author [2]. In the light of Theorem 1, although we will not carry out the details
here, by developing effective versions of the results in [2] it would be possible to conclude
that the pair correlation function converges effectively. By way of comparison, we remark
that Strömbergsson [8, §1.3] indicates how one might make effective the convergence of the
pair correlation function in the problem of visible lattice points (see [1]).
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