
“Mein Vater, mein Vater, und hoerest du nicht,

Was Erlenkoenig mir leise verspricht?”

“Sei ruhig, bleib ruhig, mein Kind!

In duerren Blaettern saeuselt der Wind.”

J. W. Goethe

CRIES AND WHISPERS IN WINDTREE FORESTS

VINCENT DELECROIX AND ANTON ZORICH

Abstract. We study billiard in the plane endowed with Z2-periodic obstacles
of a right-angled polygonal shape. One of our mane interests is dependence
of the diffusion rate of the billiard on the number of components and on the
shape of the obstacle. We prove, in particular, that when the number of angles
of a symmetric connected obstacle grows, the diffusion rate tends to zero.

Our results are based on computation of Lyapunov exponents of the Hodge
bundle over hyperelliptic loci in the moduli spaces of quadratic differentials,
which represents independent interest. In particular, we study hyperelliptic
loci over the stratum with only simple zeros and poles in genus zero and
compute explicit asymptotics for the sum of the Lyapunov exponents in two
opposite regimes: when most of simple poles are ramified and when only few
simple poles are ramified.

The computation of Lyapunov exponents uses, in particular, certain new
combinatorial identities for hypergeometric sums.

1. Introduction

The wind-tree corresponds to a billiard in the plane endowed with a Z2-periodic
obstacles of rectangular shape; the sides of the rectangles are aligned along the
lattice, see Figure 1.

Figure 1. Original windtree model.

The wind-tree model was introduced by P. Ehrenfest and T. Ehrenfest [Eh] and
studied by J. Hardy and J. Weber [HaWe] who had physical motivations.

Several advances were obtained recently using the powerful technology of devi-
ation spectrum of measured foliations on surfaces and the underlying dynamics in
the moduli space. For all parameters of the obstacle and for almost all directions
the trajectories are known to be nonclosed and recurrent [AH]; there are examples
of divergent trajectories constructed in [D]; the non-ergodicity is proved in [FU].
It was proved in [DHL] that the diffusion rate is 2

3 , and does not depend neither
on the concrete values parameters of the obstacle nor on almost any direction and
starting point , see Figure 2.

In other words, the maximal deviation of the trajectory from the starting point

during the time t has the order of t
2

3 for large t. Thus, this behavior is quite
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Figure 2. The diffusion rate 2
3 does not depend on particular

values of the parameters of the rectangular scatterer: it is the same
both for narrow periodic corridors and for the plane with horizontal
walls having tiny periodic holes.

different from the brownian motion, random walk in the plane, or billiards in the
plane with periodic dispersing scatterers: for all of them the diffusion has the order√
t (and, thus, the diffusion rate is 1

2 ).
We address the natural question “what happens if we change the shape of the

obstacle?”. We do not have ambition to solve this problem in the most general set-
ting. We consider several interesting families of obstacles which represent different
behavior and study the properties of the corresponding windtrees as the combina-
torics of the obstacle inside the family becomes more complicated. We show, in
particular, that if the obstacle is a connected right-angled polygon as on Figure 3,
then the diffusion rate in the corresponding windtree model tends to zero as the
number of corners of the obstacle grows; see Theorem 1 for more precise state-
ment. This result gives an explicit affirmative answer to a question addressed by
J.-C. Yoccoz.

Figure 3. The diffusion rate in this windtree forest tends to zero
when the number of corners of the obstacle grows.

For some families of obstacles (in particular, for the family as in Figure 3) we
also count periodic trajectories and the generalized diagonals, and find explicit
quadratic asymptotics for these counting problems.

We apply the technique from dynamics in the moduli space to resolve the original
billiard problem. To describe families of windtrees we study the associated families
of hyperelliptic loci in the moduli spaces of quadratic differentials. Using recent
results from [AEZ] where all Siegel–Veech constants were explicitly computed for
the moduli spaces of quadratic differentials in genus zero, we compute the Siegel–
Veech constants for the hyperelliptic loci. Part of the computation relies on certain
combinatorial identities. Together this allows us to compute the sum Λ+ of the
Lyapunov exponents of the Hodge bundle H1

+ over the corresponding hyperelliptic
loci with respect to the Teichmüller geodesic flow.

The current technology of Teichmüller dynamics is applicable to the moduli
spaces of holomorphic 1-forms and to the moduli spaces of meromorphic quadratic
differentials with at most simple poles. The natural parameter of complexity of
a stratum of holomorphic 1-forms is the genus of the underlying Riemann surface
while for the moduli spaces of quadratic differentials the number of simple poles
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serves as an extra parameter. Our results provide certain evidence that when the
genus is fixed and the number of simple poles grows, the Lyapunov exponents of the
Hodge bundle tend to zero (see [GrHu] in this connection). We explicitly compute
the asymptotics for the sum Λ+ of positive Lyapunov exponents for the hyperel-
liptic locus over the stratum Q(1m,−1m+4) when the cover has small number of
ramification points.

The transition from billiard dynamics to dynamics in the moduli space is de-
scribed in the original paper [DHL] for the aspects concerning the generic trajec-
tories, and in [AEZ] in what concerns the closed trajectories. In the current paper
we cover only complementary issues. One of additional difficulties is related to the
fact that for many windtree families , the dimension of subvariety B of flat surfaces
arising from billiards is smaller than half dimension of the ambient invariant locus
Q in the moduli space of quadratic differentials. In this situation we provide extra
arguments proving that nevertheless the PSL(2,R)-orbit closure of B is still entire
Q. Combining the standard transversality arguments and recent results [CE] we
then prove that almost all flat surfaces in B share the same Lyapunov spectrum as
almost all flat surfaces in Q.

As often in the problems related to Siegel–Veech constants of the invariant loci
in the moduli spaces of quadratic differentials (compare to [AEZ]) at some stage
we run into certain combinatorial problems. Namely, we have to find the values of
the sums of the kind

m
∑

k=0

(

m+p1

k+q1

)(

m+p2

k+q2

)

(2(m+p3)
2(k+q3)

)
.

or
m
∑

k=0

(2(m+p1)
2(k+q1)

)(2(m+p2)
2(k+q2)

)

(4(m+p3)
4(k+q3)

)
,

where pi, qi are integer parameters. We find the combinatorial identities for the
values of relevant sums. In most cases some elementary manipulations allow us
to transform the sum to an expression S(m) for which the Zeilberger’s creative
telescoping algorithm [Ze1], [Ze2] provides a simple relation of the form

S(m+ 1) = Q(m)S(m) ,

where Q(m) is already an explicit rational function. The same algorithm provides
also the certificate function R(m, k) which proves the relation above. In certain
cases we use computer assistant implementation [PSR] of Zeilberger’s algorithm.

2. Main results

Denote by B(m) the family of billiards such that the obstacle has 4m corners with
the angle π/2. Say, all billiards from the original windtree family as in Figures 1
and 2 live in B(1); the billiard in Figure 3 belongs to B(3); the billiard in Figure 3
belongs to B(17).

Theorem 1. For almost all billiard tables in the family B(m) and for almost all

directions the diffusion rate δ(m) is the same and equals

δ(m) =
(2m)!!

(2m+ 1)!!
.

When m → +∞ δ(m) has asymptotics

δ(m) =

√
π

2
√
m

(

1 +O

(

1

m

))

.
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Here the double factorial means the product of all even (correspondingly odd)
natural numbers from 2 to 2m (correspondingly from 1 to 2m+1). For the original
windtree, when the obstacle is a rectangle m = 1 we see the value δ(1) = 2

3 found
in [DHL].

Figure 4. The diffusion rate depends only on the number of
corners of the obstacle and not on the particular values of (almost
all) length parameters nor on the particular shape of the obstacle.
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Institut de Mathématiques de Jussieu (Paris Rive Gauche), Université Paris 7 and
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