Traces on log-polyhomogeneous pseudodifferential operators

C. DUCOURTIOUX¹ M. F. OUEDRAOGO²

¹University of Corsica

²University of Ouagadougou

Ducourtioux-Ouedraogo ()

Traces on log-polyhomogeneous PDOs

MPIM June 2010 1 / 14

< 6 b

Contents

2 Traces on polyhomogeneous operators

3 Traces on log-polyhomogeneous operators

A b

Introduction

Here are some known uniqueness results for traces on certain algebras of polyhomogeneous (or classical) PDOs:

- The usual trace on smoothing operators. [Guillemin]
- The noncommutative residue on classical PDOs. [Wodzicki]
- The canonical trace on non integer order classical PDOs (follows from [Lesch]) and odd-class PDOs in odd dimension. [Maniccia-Schrohe-Seiler]

We derive from these results of uniqueness on classical PDOs, similar uniqueness results on subalgebras of log-polyhomogeneous PDOs. Precisely, let τ be a trace on a class of log-polyhomogeneous PDOs:

This also holds for $\mathbb Z$ -graded traces

Introduction

Here are some known uniqueness results for traces on certain algebras of polyhomogeneous (or classical) PDOs:

- The usual trace on smoothing operators. [Guillemin]
- The noncommutative residue on classical PDOs. [Wodzicki]
- The canonical trace on non integer order classical PDOs (follows from [Lesch]) and odd-class PDOs in odd dimension. [Maniccia-Schrohe-Seiler]

We derive from these results of uniqueness on classical PDOs, similar uniqueness results on subalgebras of log-polyhomogeneous PDOs. Precisely, let τ be a trace on a class of log-polyhomogeneous PDOs:

This also holds for \mathbb{Z} -graded traces.

Pseudodifferential operators

M : closed riemannian manifold of finite dimension n.

E : finite rank hermitian vector bundle over M.

All operators will act on sections of E.

We recall that a PDO *A* is polyhomogeneous (or classical) if locally its symbol $\sigma(A)(x,\xi)$ admits an asymptotic expansion in positively homogeneous components with decreasing degree of homogeneity:

$$\sigma(\mathbf{A})(\mathbf{x},\xi) \sim \sum_{j=0}^{\infty} \chi(\xi) \, \sigma_{m-j}(\mathbf{A})(\mathbf{x},\xi).$$

m is the order of the PDO *A*.

A PDO L is log-polyhomogeneous if locally its symbol has the form

 $a_k(x,\xi) \ln^k |\xi| + a_{k-1}(x,\xi) \ln^{k-1} |\xi| + \dots + a_1(x,\xi) \ln |\xi| + a_0(x,\xi).$

 $k \in \mathbb{N}$ and a_0, \cdots, a_k are classical symbols.

The integer k is the *log-degree* of L.

Pseudodifferential operators

M : closed riemannian manifold of finite dimension n.

E : finite rank hermitian vector bundle over *M*.

All operators will act on sections of E.

We recall that a PDO *A* is polyhomogeneous (or classical) if locally its symbol $\sigma(A)(x,\xi)$ admits an asymptotic expansion in positively homogeneous components with decreasing degree of homogeneity:

$$\sigma(\mathbf{A})(\mathbf{x},\xi) \sim \sum_{j=0}^{\infty} \chi(\xi) \, \sigma_{m-j}(\mathbf{A})(\mathbf{x},\xi).$$

m is the order of the PDO *A*.

A PDO L is log-polyhomogeneous if locally its symbol has the form

 $a_k(x,\xi) \ln^k |\xi| + a_{k-1}(x,\xi) \ln^{k-1} |\xi| + \cdots + a_1(x,\xi) \ln |\xi| + a_0(x,\xi).$

 $k \in \mathbb{N}$ and a_0, \cdots, a_k are classical symbols.

The integer k is the *log-degree* of L.

Odd-class operators

A classical PDO A with local symbol

$$\sigma(\mathbf{A})(\mathbf{x},\xi) \sim \sum_{j=0}^{\infty} \chi(\xi) \, \sigma_{m-j}(\mathbf{A})(\mathbf{x},\xi).$$

is *odd-class* if the positively homogeneous components of its symbol $\{\sigma_{m-j}(A) : j \in \mathbb{N}\}$ are simply homogeneous, i.e. they have the property

$$\sigma_{m-j}(\boldsymbol{A})(\boldsymbol{x},-\boldsymbol{\xi}) = (-1)^{m-j}\sigma_{m-j}(\boldsymbol{A})(\boldsymbol{x},\boldsymbol{\xi})$$

A log-polyhomogeneous PDO *L* is odd-class if locally, all the classical symbols a_0, \dots, a_k arising in its symbol have the above property.

4 D K 4 B K 4 B K 4 B K

Usual trace

We denote by $C\ell$ the algebra generated by all classical PDOs.

A classical PDO *A* of order < -n is trace-class. Its symbol $\sigma(A)(x, \cdot)$ at a point *x* lies in $L^1(\mathbb{R}^n)$ and the *trace* of *A*, which is finite, is given by

$$\operatorname{Tr}(A) := \int_{M} \left(\int_{\mathcal{T}_{X}^{*}M} \operatorname{tr}_{X} \left(\sigma(A)(x,\xi) \right) d\xi \right) dx$$

Properties:

- The trace Tr is the unique trace on smoothing operators. [Guillemin]
- The trace Tr does not extend to a trace functional on the whole algebra Cℓ. (Follows from [Wodzicki])

Noncommutative residue ([Guillemin] and [Wodzicki])

The noncommutative residue of A is defined by

$$\operatorname{res}(A) = \int_{M} \operatorname{res}_{X}(A) dx = \int_{M} \left(\int_{S_{X}^{*}M} \operatorname{tr}_{X} \left(\sigma_{-n}(A)(x,\xi) \right) d\xi \right) dx.$$

Properties:

• $\operatorname{ord}(A) < -n$ or $\operatorname{ord}(A) \notin \mathbb{Z} \Rightarrow \operatorname{res}(A) = 0$.

 If the manifold *M* is connected with dimension >1, res is the unique trace defined on *Cℓ*. [Wodzicki]

The residue density extends to log-polyhomogeneous PDOs. [Lesch] For *L* of log-degree *k* with local symbol $\sigma(L)(x,\xi) = a_k(x,\xi) \ln^k |\xi| + a_{k-1}(x,\xi) \ln^{k-1} |\xi| + \dots + a_0(x,\xi)$,

$$\operatorname{res}_k(L) = (k+1)! \int_M \int_{S_x^*M} \operatorname{tr}_x((a_k)_{-n}(x,\xi)) d\xi dx.$$

Canonical trace ([Kontsevich] and [Vishik])

Let *A* be a classical PDO with non integer order. The canonical trace of *A* is defined by

$$\mathrm{TR}(A) := \int_{M} \mathrm{TR}_{x}(A) dx = \int_{M} \oint_{\mathcal{T}_{x}^{*}M} \mathrm{tr}_{x} \left(\sigma(A)(x,\xi) \right) d\xi dx.$$

Properties:

- $\operatorname{TR}(A) = \operatorname{Tr}(A)$ if $\operatorname{ord}(A) < -n$.
- TR is the unique trace on classical PDOs with non integer order which extends the usual trace. [Maniccia-Schrohe-Seiler] (also follows from [Lesch])
- If the dimension of *M* is odd, TR is the unique trace on Cl_{odd}. [Maniccia-Schrohe-Seiler]

Remark

The canonical trace TR has been extended to log-polyhomogeneous PDOs with non integer order. [Lesch]

Subalgebra ${\mathcal A}$ of ${\mathcal L}$

Let Q be an admissible classical PDO with positive order. \mathcal{L} denotes the algebra of log-polyhomogeneous PDOs.

Lemma

•
$$\mathcal{L} = \bigoplus_{k=0}^{\infty} C\ell \operatorname{Log}^{k} Q$$
 so that \mathcal{L} is a \mathbb{Z} -graded algebra.
• $\mathcal{L}_{odd} = \bigoplus_{k=0}^{\infty} C\ell_{odd} \operatorname{Log}^{k} Q$ with Q odd-class and even order.

Definition

Let \mathcal{A} be a subalgebra of \mathcal{L} which contains Log Q.

$$\mathcal{A} = \bigoplus_{k=0}^{+\infty} \mathcal{A}_{C\ell} \operatorname{Log}^k Q$$

where $A_{C\ell}$ is the subalgebra of classical PDOs of A.

- R is the ideal of smoothing operators in A.
- \mathcal{A}^k is the space of operators in \mathcal{A} of log degree k.

Useful result

Assumption: there exists a unique non-trivial trace τ on $\mathcal{A}_{C\ell}$.

Lemma

There exists $P \in \mathcal{A}_{C\ell}$ with $\tau(P) \neq 0$ such that for $A \in \mathcal{A}^k$, there exists $Q_i \in \mathcal{A}^k$, $P_i \in \mathcal{A}_{C\ell}$ and complex scalars α_i such that $A = \sum_{i=1}^{M} [P_i, Q_i] + P(\alpha_0 + \alpha_1 \text{Log}Q + \dots + \alpha_k \text{Log}^k Q).$

Sketch of proof: By induction on the log-degree k of A.

•
$$k = 0$$
. $\mathcal{A}^0 = \mathcal{A}_{C\ell} \Rightarrow$ there exists $P \in \mathcal{A}_{C\ell}$ such that $\tau(P) = 1$ and
 $A = \sum_{i=1}^{M} [P_i, Q_i] + \tau(A)P.$
• $k > 0$. $A = A_0 + A_1 \log Q + \dots + A_{k+1} \log^k Q.$
 $A_k \log^k Q = \left(\sum_{i=1}^{N} [P_i, Q_i] + \tau(A_k)P\right) \log^k Q$
 $= \sum_{i=1}^{N} [P_i, Q_i \log^k Q] + \sum_{i=1}^{N} Q_i [\log^k Q, P_i] + \tau(A_k)P \log^k Q.$

First result: Uniqueness of graded trace

Definition

On a \mathbb{Z} -graded algebra $\mathcal{B} = \bigoplus_{k \ge 0} \mathcal{B}^k$, a \mathbb{Z} -graded trace is a sequence $\tau^{gr} = (\tau_k)_{k \in \mathbb{N}}$ s. t. τ_k vanishes on $\bigoplus_{0 \le j \le k-1} \mathcal{B}^j$ and for $A \in \mathcal{B}^k, B \in \mathcal{B}^j$, $\tau_{k+j}[A, B] = 0$.

Theorem 1

Let τ^{gr} be a \mathbb{Z} -graded trace on \mathcal{A} . Then τ_0 unique $\Rightarrow \tau^{gr}$ unique.

Sketch of proof: Let $A = A_0 + A_1 \text{Log}Q + \cdots + A_k \text{Log}^k Q$.

If τ_{0|R} ≠ 0, we choose P smoothing and so is PLog^kQ. Then τ_k(A) = α_kτ_k(PLog^kQ) = α_kTr(PLog^kQ). τ_k is determined by its restriction to smoothing operators.
If τ_{0|R} = 0, then τ₀ is proportional to res and we have τ_k(A) = res_k(A)τ_k(PLog^kQ).

 τ_k is unique and proportional to res_k.

A D A A B A A B A A B A B B

Application of Theorem 1

Example

We consider $\mathcal{A} = \mathcal{L}$. It follows that $\mathcal{A}_{C\ell} = C\ell$.

The $\ensuremath{\mathbb{Z}}\xspace$ -graded trace is given by the higher noncommutative residues

 $\tau^{gr} = (\operatorname{res}_k)_{k \in \mathbb{N}}$

defined by Lesch. Since $\tau_0 = \text{res}$, Theorem 1 gives back the uniqueness of this \mathbb{Z} -graded trace proved by Lesch.

Second result: uniqueness of trace

Theorem 2

Let τ be a trace on \mathcal{A} . Then $\tau_{|\mathcal{A}_{C\ell}}$ unique $\Rightarrow \tau$ unique.

Sketch of proof: Let $A = A_0 + A_1 \text{Log}Q + \cdots + A_k \text{Log}^k Q$.

If _{T|R} ≠ 0, then we choose P smoothing. L_k is also smoothing and hence

$$\tau(\mathbf{A})=\mathrm{Tr}(\mathbf{L}_k).$$

This implies the uniqueness of the trace τ on A.

• If $\tau_{|\mathcal{R}} = 0$, then $(\operatorname{res}_k)_{k \in \mathbb{N}}$ is the unique \mathbb{Z} -graded trace on \mathcal{A} . Since $\operatorname{res}_{k+1}(\mathcal{A}) = 0$, \mathcal{A} is a sum of commutators $[P_i, Q_i]$ with $P_i \in \mathcal{A}_{C\ell}$ and $Q_i \in \mathcal{A}^{k+1}$. Hence $\tau(\mathcal{A}) = 0$.

Application of Theorem 2

Example (2)

We consider $\mathcal{A} = \mathcal{L}_{odd}$ so that $\mathcal{A}_{C\ell} = C\ell_{odd}$. We assume that *M* is odd-dimensional.

The canonical trace TR can be extended to \mathcal{L}_{odd} . Recently Maniccia, Schrohe and Seiler proved that TR is the unique trace on $C\ell_{odd}$.

Theorem 2 gives the uniqueness of the canonical trace on \mathcal{L}_{odd} .

4 3 5 4 3 5 5