
INFINITE DETERMINANTAL MEASURES

ALEXANDER I. BUFETOV

ABSTRACT. Infinite determinantal measures introduced in this note are
inductive limits of determinantal measures on an exhausting family of
subsets of the phase space. Alternatively, an infinite determinantal mea-
sure can be described as a product of a determinantal point process and
a convergent, but not integrable, multiplicative functional.

Theorem 4.1, the main result announced in this note, gives an ex-
plicit description for the ergodic decomposition of infinite Pickrell mea-
sures on the spaces of infinite complex matrices in terms of infinite deter-
minantal measures obtained by finite-rank perturbations of Bessel point
processes.

1. INTRODUCTION

1.1. Outline of the main results. In this section, our aim is to construct
sigma-finite analogues of determinantal measures on spaces of configura-
tions. In Theorem 4.1 of Section 4, infinite determinantal measures will
be seen to arise in the ergodic decomposition of infinite unitarily-invariant
measures on spaces of infinite complex matrices.

Informally, a configuration on the phase space E is an unordered col-
lection of points (called particles) of E, possibly with multiplicities; the
main assumption is that a bounded subset of E contain only finitely many
particles of a given configuration.

To a function g on E assign its multiplicative functional Ψg on the space
of configurations: the functional Ψg is obtained by multiplying the values
of g over all particles of a configuration (see (5)). A probability measure on
the space of configurations on E is uniquely characterized by prescribing
the expectations of multiplicative functionals; for determinantal probability
measures these expectations are given by special Fredholm determinants,
see e.g. [30]; the definition is also recalled in (8) below.

Given a subset E ′ ⊂ E, consider the subset Conf(E,E ′) of those config-
urations whose all particles lie in E ′; in Proposition 2.3 below, we shall see
that under some additional assumptions the restriction of a determinantal
point process onto Conf(E,E ′) is again determinantal.

Our main example, the measure B(s) of (25), is defined on the space
of configurations on (0,+∞). Almost every configuration is infinite and
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bounded according to B(s); the particles accumulate at zero. If one takes
R > 0 and requires all particles to lie in (0, R), then the induced measure
of B(s) on the resulting subset of configurations is finite, and, after nor-
malization, determinantal. As R goes to infinity, the measure of the subset
Conf((0,+∞); (0, R)) grows, and the measure of the space of all configu-
rations is infinite.

Our general construction will similarly exhaust E by subsets En in such
a way that the weight of Conf(E;En) is positive and finite, and the nor-
malized restriction of our infinite determinantal measure onto the subset
Conf(E;En) is determinantal. A simple example is given by “infinite or-
thogonal polynomial ensembles”, see (3) below. The measure B(s) is a scal-
ing limit of such ensembles. We proceed to precise formulations.

1.2. Construction of infinite determinantal measures. LetE be a locally
compact complete metric space, and let Conf(E) be the space of configura-
tions on E endowed with the natural Borel structure (see, e.g., [11], [30]).

Given a Borel subset E ′ ⊂ E, we let Conf(E,E ′) be the subspace of
configurations all whose particles lie in E ′.

Given a measure B on a set X and a measurable subset Y ⊂ X such that
0 < B(Y ) < +∞, we let B |Y stand for the restriction of the measure B
onto the subset Y .

An infinite determinantal measure is a σ-finite Borel measure B on Conf(E)
admitting a filtration of the space E by Borel subsets En, n ∈ N:

E1 ⊂ E2 ⊂ . . . ⊂ En ⊂ . . . ,
∞⋃
n=1

En = E

such that for any n ∈ N we have
(1) 0 < B (Conf(E,En)) < +∞;
(2) the normalized restriction

B
∣∣
Conf(E,En)

B (Conf(E,En))

is a determinantal measure;

(3) B
(

Conf(E)\
∞⋃
n=1

(Conf(E,En)

)
= 0 .

Let µ be a σ-finite Borel measure on E. By the Macchı̀-Soshnikov Theo-
rem, under some additional assumptions, a determinantal measure can be
assigned to an operator of orthogonal projection, or, in other words, to
a closed subspace of L2(E, µ). In a similar way, an infinite determinan-
tal measure will be assigned to a subspace H of locally square-integrable
functions. For example, for infinite analogues of orthogonal polynomial
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ensembles, H is the subspace of weighted polynomials, see Subsection 1.3
below.

LetL2,loc(E, µ) be the space of measurable functions onE, locally square
integrable with respect to µ, let I1(E, µ) be the space of trace-class opera-
tors in L2(E, µ) and let I1,loc(E, µ) be the space of operators on L2(E, µ)
that are locally of trace class (precise definitions are recalled in Section 2).

Let H ⊂ L2,loc(E, µ) be a linear subspace. If E ′ ⊂ E is a Borel subset
such that χE′H is a closed subspace of L2(E, µ), then we denote by ΠE′ the
operator of orthogonal projection onto the subspace χE′H ⊂ L2(E, µ). We
now fix a Borel subset E0 ⊂ E; informally, E0 is the set where the particles
accumulate. We impose the following assumption on E0 and H .

Assumption 1. (1) For any bounded Borel setB ⊂ E, the space χE0∪BH
is a closed subspace of L2(E, µ);

(2) For any bounded Borel set B ⊂ E \ E0, we have

(1) ΠE0∪B ∈ I1,loc(E, µ), χBΠE0∪BχB ∈ I1(E, µ);

(3) If ϕ ∈ H satisfies χE0ϕ = 0, then ϕ = 0.

Theorem 1.1. Let E be a locally compact complete metric space, and let
µ be a σ-finite Borel measure on E. If a subspace H ⊂ L2,loc(E, µ) and a
Borel subset E0 ⊂ E satisfy Assumption 1, then there exists a σ-finite Borel
measure B on Conf(E) such that

(1) B-almost every configuration has at most finitely many particles
outside of E0;

(2) for any bounded Borel (possibly empty) subset B ⊂ E \E0 we have
0 < B(Conf(E;E0 ∪B)) < +∞ and

B|Conf(E;E0∪B)

B(Conf(E;E0 ∪B))
= PΠE0∪B .

The requirements (1) and (2) determine the measure B uniquely up to mul-
tiplication by a positive constant.

We denote B(H,E0) the one-dimensional cone of nonzero infinite deter-
minantal measures induced byH and E0, and, slightly abusing notation, we
write B = B(H,E0) for a representative of the cone.

Remark. If B is a bounded set, then, by definition, we have

B(H,E0) = B(H,E0 ∪B).

Remark. If E ′ ⊂ E is a Borel subset such that χE0∪E′ is a closed sub-
space in L2(E, µ) and the operator ΠE0∪E′ of orthogonal projection onto
the subspace χE0∪E′H satisfies

(2) ΠE0∪E′ ∈ I1,loc(E, µ), χE′ΠE0∪E′
χE′ ∈ I1(E, µ),
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then, exhausting E ′ by bounded sets, from Theorem 1.1 one easily obtains
0 < B(Conf(E;E0 ∪ E ′)) < +∞ and

B|Conf(E;E0∪E′)

B(Conf(E;E0 ∪ E ′))
= PΠE0∪E′ .

1.3. Infinite orthogonal polynomial ensembles. Take an interval [a, b) in
R, let Leb = dx on [a, b) be the Lebesgue measure on [a, b), let ρ be a
positive continuous function on [a, b), and assume

∫ b
a
ρ(x)dx = +∞. Take

N ∈ N and endow the set [a, b]N with the measure

(3)
∏

16i,j6N

(xi − xj)2

N∏
i=1

ρ(xi)dxi,

an infinite analogue of an orthogonal polynomial ensemble.
For any b1 ∈ [a, b), the induced measure

(4)
∏

16i<j6N

(xi − xj)2

N∏
i=1

ρ(xi)χ[a,b1](xi)dxi

is finite and, after normalization, can be represented in determinantal form

1

N !
detKρ,b1

N (xi, xj)
N∏
i=1

ρ(xi)χ[a,b1](xi)dxi,

where Kρ,b1
N is the N -th Christoffel-Darboux kernel formed by orthonormal

polynomials corresponding to the “induced” weight ρ(x)χ[a,b1](x).
The infinite measure (3) is thus an infinite determinantal measure corre-

sponding to the subspace H ⊂ L2,loc([a, b),Leb) spanned by the functions
xk
√
ρ(x), k = 0, . . . , N − 1, and the subset E0 = [a, b1) for an arbitrary

b1 ∈ (a, b). In the problem of ergodic decomposition of infinite Pickrell
measures we shall be especially interested in studying scaling limits of such
“infinite orthogonal polynomial ensembles”.

1.4. Organization of the paper. In the next subsection it is shown that, un-
der certain additional assumptions, an infinite determinantal measure times
a multiplicative functional yields after normalization a determinantal point
process; for determinantal probability measures this has been established in
[8]. We then proceed to our main example of infinite determinantal mea-
sures, namely, those obtained as finite-rank perturbations of determinantal
point processes. The ergodic decomposition measures of infinite Pickrell
measures will be seen to be of this type. In the following subsection it
is established that induced processes of an infinite determinantal measure
obtained by finite rank perturbation, converge to the unperturbed process.
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In Section 2 we recall the definition of determinantal point processes,
study the properties of multiplicative functionals of these processes, thus
extending the results of [8], and give a sketch of the proof of Theorem 1.1.

In Section 3 we recall the construction, due to Pickrell [21], [22], [23]
in the finite case (see also Neretin [16]) and to Borodin and Olshanski [4]
in the infinite case, of Pickrell measures on the space of infinite matrices.
We then recall the Olshanski-Vershik approach (see [33], [20]) to the Pick-
rell classification of finite ergodic unitarily-invariant measures on spaces of
infinite matrices as well as the result of [7] that implies that the ergodic
components of infinite Pickrell measures are almost surely finite; only the
decomposing measure is infinite.

In Section 4 we start by considering finite Pickrell measures, for which
the ergodic decomposition is given, up to a change of variable, by the Bessel
point process of Tracy and Widom [32]. The main result of the paper, The-
orem 4.1 , then says that the ergodic decomposition of infinite Pickrell mea-
sures is induced by infinite determinantal measures obtained as an explicitly
given finite-rank perturbation of the Bessel point processes occurring in the
ergodic decomposition of finite Pickrell measures. The scaling limit argu-
ment sketched at the end of the section uses precisely the representation,
developed in Section 1, of infinite determinantal measures as products of
finite determinantal measures and multiplicative functionals.

1.5. Multiplicative functionals. Let g be a non-negative measurable func-
tion on E, and introduce the multiplicative functional Ψg : Conf(E) → R
by the formula

(5) Ψg(X) =
∏
x∈X

g(x).

If the infinite product
∏
x∈X

g(x) absolutely converges to 0 or to∞, then we

set, respectively, Ψg(X) = 0 or Ψg(X) = ∞. If the product in the right-
hand side fails to converge absolutely, then the multiplicative functional is
not defined.

We start with an auxiliary proposition.

Proposition 1.2. Let a subspaceH ⊂ L2,loc(E, µ) and a Borel subset E0 ⊂
E satisfy Assumption 1. Let g be a positive bounded measurable function
on E such that

(1) for any bounded subset B ⊂ E there exists ε0 = ε0(B) > 0 such
that g(x) > ε0 for all x ∈ E0 ∪B;

(2) we have
√
gH ⊂ L2(E, µ).

Then
√
gH is a closed subspace in L2(E, µ).
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Under the assumptions of Proposition 1.2, let Πg be the operator of or-
thogonal projection onto the closed subspace

√
gH .

Our next aim is to give sufficient conditions for integrability of multi-
plicative functionals with respect to infinite determinantal measures. We
restrict ourselves to the case when the function g only takes values in (0, 1].

Proposition 1.3. Let a subspaceH ⊂ L2,loc(E, µ) and a Borel subset E0 ⊂
E satisfy Assumption 1, and let g : E → (0, 1] be a measurable function
such that:

(1) for any bounded subset B ⊂ E there exists ε0 = ε0(B) > 0 such
that g(x) > ε0 for all x ∈ E0 ∪B;

(2)
√
gH ⊂ L2(E, µ);

(3)
√

1− gχE0Π
gχE0

√
1− g ∈ I1(E, µ);

(4) Πg ∈ I1,loc(E, µ);
(5) χE\E0Π

gχE\E0 ∈ I1(E, µ).
Then the multiplicative functional Ψg is B(H,E0)-almost surely positive,
and we have

(1)
Ψg ∈ L1(Conf(E),B);

(2)
ΨgB∫

Conf(E)

Ψg dB
= PΠg .

Multiplying both sides of the second conclusion of the lemma by 1/Ψg =
Ψ1/g, we obtain

B = C ·Ψ1/g · PΠg ,

where C is a positive constant. Our infinite determinantal measure is thus
represented as a product of a determinantal probability measure and a con-
vergent non-integrable multiplicative functional.

1.6. Infinite determinantal measures obtained as finite-rank pertur-
bations of determinantal probability measures. We now consider infi-
nite determinantal measures induced by subspaces H obtained by adding a
finite-dimensional subspace V to a closed subspace L ⊂ L2(E, µ).

Let, therefore, Q ∈ I1,loc(E, µ) be the operator of orthogonal projection
onto a closed subspace L ⊂ L2(E, µ), let V be a finite-dimensional sub-
space of L2,loc(E, µ), and set H = L + V . Let E0 ⊂ E be a Borel subset.
We shall need the following assumption on L, V and E0.

Assumption 2. (1) χE\E0QχE\E0 ∈ I1(E, µ);
(2) χE0V ⊂ L2(E, µ);
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(3) if ϕ ∈ V satisfies χE0ϕ ∈ χE0L, then ϕ = 0;
(4) if ϕ ∈ L satisfies χE0ϕ = 0, then ϕ = 0.

Proposition 1.4. If L, V and E0 satisfy Assumption 2 then the subspace
H = L+ V and E0 satisfy Assumption 1.

In particular, for any bounded Borel subset B, the subspace χE0∪BL is
closed, as one sees by taking E ′ = E0 ∪B in the following clear

Proposition 1.5. Let Q ∈ I1,loc(E, µ) be the operator of orthogonal pro-
jection onto a closed subspace L ∈ L2(E, µ). Let E ′ ⊂ E be a Borel
subset such that χE′QχE′ ∈ I1(E, µ) and that for any function ϕ ∈ L, the
equality χE′ϕ = 0 implies ϕ = 0. Then the subspace χE′L is closed in
L2(E, µ).

The subspace H and the Borel subset E0 therefore define an infinite de-
terminantal measure B = B(H,E0). We now adapt the formulation of
Proposition 1.3 to this particular case.

Proposition 1.6. Let L, V , and E0 satisfy Assumption 2, let B be the cor-
responding infinite determinantal measure, and let g : E → (0, 1] be a pos-
itive measurable function. If

√
1− gQ

√
1− g ∈ I1(E, µ), then the multi-

plicative functional Ψg is B-almost surely well-defined and positive.
If, additionally, we assume
(1)
√
gV ⊂ L2(E, µ);

(2) for any bounded subset B ⊂ E there exists ε0 = ε0(B) > 0 such
that g(x) > ε0 for all x ∈ E0 ∪B,

then we have
(1)

Ψg ∈ L1(Conf(E),B);

(2)
ΨgB∫

Conf(E)

Ψg dB
= PΠg ,

where, as before, Πg is the operator of orthogonal projection onto the closed
subspace

√
gH .

Remark. The subspace
√
gH is closed by Proposition 1.2.

1.7. Convergence of approximating kernels. Our next aim is to show
that, under certain additional assumptions, if a sequence gn of measurable
functions converges to 1, then the operators Πgn considered in Proposition
1.6 converge to Q in I1,loc(E, µ).
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Given two closed subspaces H1, H2 in L2(E, µ), let α(H1, H2) be the
angle between H1 and H2, defined as the infimum of angles between all
nonzero vectors in H1 and H2; recall that if one of the subspaces has finite
dimension, then the infimum is achieved.

Proposition 1.7. Let L, V , and E0 satisfy Assumption 2, and assume addi-
tionally that we have V ∩ L2(E, µ) = 0. Let gn : E → (0, 1] be a sequence
of positive measurable functions such that

(1) for all n ∈ N we have
√

1− gnQ
√

1− gn ∈ I1(E, µ);
(2) for all n ∈ N we have

√
gnV ⊂ L2(E, µ);

(3) there exists α0 > 0 such that for all n we have

α(
√
gnH,

√
gnV ) ≥ α0;

(4) for any bounded B ⊂ E we have

inf
n∈N,x∈E0∪B

gn(x) > 0;

lim
n→∞

sup
x∈E0∪B

|gn(x)− 1| = 0.

Then, as n→∞, we have

Πgn → Q in I1,loc(E, µ).

Using the second remark after Theorem 1.1, one can extend Proposition
1.7 also to nonnegative functions that admit zero values. Here we restrict
ourselves to characteristic functions of the form χE0∪B with B bounded, in
which case we have the following

Corollary 1.8. Let Bn be an increasing sequence of bounded Borel sets
exhausting E \ E0. If there exists α0 > 0 such that for all n we have

α(χE0∪BnH,χE0∪BnV ) ≥ α0,

then
ΠE0∪Bn → Q in I1,loc(E, µ).

Informally, Corollary 1.8 means that, as n grows, the induced processes
of our determinantal measure on subsets Conf(E;E0 ∪Bn) converge to the
“unperturbed” determinantal point process PQ.

2. MULTIPLICATIVE FUNCTIONALS OF DETERMINANTAL POINT
PROCESSES

2.1. Locally integrable functions and locally trace class operators. Re-
call that L2,loc(E, µ) is the space of all measurable functions f : E → C
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such that for any bounded subset B ⊂ E we have

(6)
∫
B

|f |2dµ < +∞.

Choosing an exhausting family Bn of bounded sets (for instance, balls
of radius tending to infinity) and using (6) with B = Bn, we endow the
space L2,loc(E, µ) with a countable family of seminorms which turns it into
a complete separable metric space; the topology thus defined does not, of
course, depend on the specific choice of the exhausting family.

Let I1(E, µ) be the ideal of trace class operators K̃ : L2(E, µ)→ L2(E, µ)

(see volume 1 of [26] for the precise definition); the symbol ||K̃||I1 will
stand for the I1-norm of the operator K̃. Let I2(E, µ) be the ideal of
Hilbert-Schmidt operators K̃ : L2(E, µ) → L2(E, µ); the symbol ||K̃||I2

will stand for the I2-norm of the operator K̃.
Let I1,loc(E, µ) be the space of operatorsK : L2(E, µ)→ L2(E, µ) such

that for any bounded Borel subset B ⊂ E we have

χBKχB ∈ I1(E, µ).

Again, we endow the space I1,loc(E, µ) with a countable family of semi-
norms

(7) ||χBKχB||I1

where, as before, B runs through an exhausting family Bn of bounded sets.

2.2. Determinantal Point Processes. A Borel probability measure P on
Conf(E) is called determinantal if there exists an operatorK ∈ I1,loc(E, µ)
such that for any bounded measurable function g, for which g − 1 is sup-
ported in a bounded set B, we have

(8) EPΨg = det

(
1 + (g − 1)KχB

)
.

The Fredholm determinant in (8) is well-defined since K ∈ I1,loc(E, µ).
The equation (8) determines the measure P uniquely. If, for a bounded Borel
setB ⊂ E, we let #B : Conf(E)→ N∪{0} be the function that to a config-
uration assigns the number of its particles belonging toB, then, for any pair-
wise disjoint bounded Borel sets B1, . . . , Bl ⊂ E and any z1, . . . , zl ∈ C

from (8) we have EPz
#B1
1 · · · z#Bl

l = det

(
1 +

l∑
j=1

(zj − 1)χBjKχtiBi

)
.

For further results and background on determinantal point processes, see
e.g. [2], [9], [12], [13], [14], [27], [28], [29], [30].

In what follows we suppose that K belongs to I1,loc(E, µ), and denote
the corresponding determinantal measure by PK . Note that PK is uniquely
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defined by K, but different operators may yield the same measure. By the
Macchı̀—Soshnikov theorem [15], [30], any Hermitian positive contraction
that belongs to the class I1,loc(E, µ) defines a determinantal point process.

2.3. Multiplicative functionals. At the centre of the construction of in-
finite determinantal measures lies the result of [8] that can informally be
summarized as follows: a determinantal measure times a multiplicative
functional is again a determinantal measure. In other words, if PK is a de-
terminantal measure on Conf(E) induced by the operator K on L2(E, µ),
then, under certain additional assumptions, it is shown in [8] that the mea-
sure ΨgPK after normalization yields a determinantal measure.

It is required in [8] that the operator (g − 1)K be of trace class; this
assumption is too restrictive for our purposes, and in Propositions 2.1 and
2.5 we shall now formulate two more convenient versions of Proposition 1
in [8].

As before, let g be a non-negative measurable function on E. If the oper-
ator 1 + (g − 1)K is invertible, then we set

B(g,K) = gK(1+(g − 1)K)−1, B̃(g,K) =
√
gK(1+(g − 1)K)−1√g.

By definition, B(g,K), B̃(g,K) ∈ I1,loc(E, µ) since K ∈ I1,loc(E, µ),
and, if K is self-adjoint, then so is B̃(g,K).

In the case when K is self-adjoint, the following proposition generalizes
Proposition 1 in [8].

Proposition 2.1. Let K ∈ I1,loc(E, µ) be a self-adjoint positive contrac-
tion, and let PK be the corresponding determinantal measure on Conf(E).
Let g be a nonnegative bounded measurable function on E such that

(9)
√
g − 1K

√
g − 1 ∈ I1(E, µ)

and that the operator 1 + (g − 1)K is invertible. Then

(1) we have Ψg ∈ L1(Conf(E),PK) and∫
Ψg dPK = det

(
1 +

√
g − 1K

√
g − 1

)
> 0;

(2) the operators B(g,K), B̃(g,K) induce on Conf(E) a determinan-
tal measure PB(g,K) = PB̃(g,K) satisfying

(10) PB(g,K) =
ΨgPK∫

Conf(E)

Ψg dPK
.
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Remark. Since (9) holds andK is self-adjoint, the operator 1+(g − 1)K
is invertible if and only if the operator 1 +

√
g − 1K

√
g − 1 is invertible.

If Q is a projection operator, then the operator B̃(g,Q) admits the fol-
lowing description.

Proposition 2.2. Let L ⊂ L2(E, µ) be a closed subspace, and let Q be the
operator of orthogonal projection onto L. Let g be a bounded measurable
function such that the operator 1+(g−1)Q is invertible. Then the operator
B̃(g,Q) is the operator of orthogonal projection onto the closure of the
subspace

√
gL.

We now consider the particular case when g is a characteristic function of
a Borel subset. In much the same way as before, if E ′ ⊂ E is a Borel subset
such that the subspace χE′L is closed (recall that a sufficient condition for
that is provided in Proposition 1.5), then we set QE′ to be the operator of
orthogonal projection onto the closed subspace χE′L.

Propositions 2.5, 2.1 now yield the following

Corollary 2.3. Let Q ∈ I1,loc(E, µ) be the operator of orthogonal projec-
tion onto a closed subspace L ∈ L2(E, µ). Let E ′ ⊂ E be a Borel subset
such that χE′QχE′ ∈ I1(E, µ). Then

PQ(Conf(E,E ′)) = det(1− χE\E′QχE\E′).

Assume, additionally, that for any function ϕ ∈ L, the equality χE′ϕ = 0
implies ϕ = 0. Then the subspace χE′L is closed, and we have

PQ(Conf(E,E ′)) > 0, QE′ ∈ I1,loc(E, µ),

and
PQ|Conf(E,E′)

PQ(Conf(E,E ′))
= PQE′ .

The induced measure of a determinantal measure onto the subset of con-
figurations all whose particles lie in E ′ is thus again a determinantal mea-
sure. In the case of a discrete phase space, related induced processes were
considered by Lyons [12] and by Borodin and Rains [5].

Corollary 2.3 implies Theorem 1.1.

2.4. The algebra Iξ. To prove Proposition 2.1, we use a variant of the
Hilbert-Carleman regularization of Fredholm determinants, namely, we con-
sider a slightly more general algebra of operatorsK for which the trace trK
and the Fredholm determinant det(1+K) can be defined and shown to have
the usual properties. The algebra Iξ(E, µ) is a modification of the algebra
L1|2(H) introduced by Borodin, Okounkov and Olshanski [3] and used also
by Olshanski in [17]. We proceed to precise formulations.
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Take a countable partition ξ of our space E into disjoint bounded mea-
surable sets En, n ∈ N. Introduce the sets

(11) {ξ > n} =
∞⋃

k=n+1

Ek; {ξ < n} =
n−1⋃
k=1

Ek.

Informally, ξ is considered as a random variable taking integer values.
The subspace

Iξ(E, µ) ⊂ I1,loc(E, µ)

is now defined as follows: an operatorK ∈ I1,loc(E, µ) belongs to Iξ(E, µ)
if

(1) K ∈ I2(E, µ);

(2)
∞∑
n=1

||χEnKχEn||I1 < +∞.

The space Iξ(E, µ) is normed by the formula

||K||Iξ = ||K||I2 +
∞∑
n=1

||χEnKχEn||I1 .

By definition, the space Iξ(E, µ) is an algebra. For K ∈ Iξ(E, µ), the
Fredholm determinant det(1 +K) is defined by the formula

(12) det(1 +K) = det ((1 +K) exp(−K)) exp

(
∞∑
n=1

tr(χEnKχEn)

)
.

The right-hand side of (12) is well-defined since (1+K) exp(−K) ∈ I1

for any K ∈ I2.
For K1, K2 ∈ Iξ, we clearly have

det((1 +K1)(1 +K2)) = det(1 +K1) det(1 +K2).

From the definitions we now immediately obtain

Proposition 2.4. If (g − 1)K ∈ Iξ(E, µ), then Ψg ∈ L1(Conf(E),PK)
and

EPKΨg = det(1 + (g − 1)K).

The following Proposition is a generalization of Proposition 1 in [8].

Proposition 2.5. Assume that an operator K ∈ I1,loc(E, µ) induces a de-
terminantal measure PK on Conf(E). Let ξ be a countable measurable
partition of E and let g be a nonnegative bounded measurable function
on E such that (g − 1)K ∈ Iξ(E, µ) and that the operator 1 + (g − 1)K
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is invertible. Then the operators B(g,K), B̃(g,K) induce on Conf(E) a
determinantal measure PB(g,K) = PB̃(g,K) satisfying

(13) PB(g,K) =
ΨgPK∫

Conf(E)

ΨgdPK
.

Indeed, take a bounded measurable function f on E such that

(f − 1)K ∈ Iξ(E, µ).

We then immediately have

EPKΨfΨg

EPKΨg

= det(1 + (f − 1)B(g,K)) = det(1 + (f − 1)B̃(g,K)),

and the proposition follows.
Observe now that to a nonnegative function g such that (9) holds, one

can easily assign a countable partition ξ such that (g − 1)K ∈ Iξ(E, µ).
Proposition 2.1 is therefore clear from Proposition 2.5.

3. UNITARILY-INVARIANT MEASURES ON SPACES OF INFINITE
MATRICES

3.1. Pickrell Measures. Let Mat(n,C) be the space of n×nmatrices with
complex entries:

Mat(n,C) = {z = (zij), i = 1, . . . , n; j = 1, . . . , n}

Let Leb = dz be the Lebesgue measure on Mat(n,C).
Following Pickrell [21], take s ∈ R and introduce a measure µ̃(s)

n on
Mat(n,C) by the formula

µ̃(s)
n = det(1 + z∗z)−2n−sdz.

The measure µ̃(s)
n is finite if and only if s > −1.

For n1 < n, let

πnn1
: Mat(n,C)→ Mat(n1,C)

be the natural projection map that to a matrix z = (zij), i, j = 1, . . . , n,
assigns its upper left corner, the matrix πnn1

(z) = (zij), i, j = 1, . . . , n1.

The measures µ̃(s)
n have the property of consistency with respect to the

projections πnn1
. More precisely, following Borodin and Olshanski [4],

p.116, observe that even if the measure µ̃(s)
n is infinite, the fibres of the

projection πnn−1 have finite conditional measure as long as n + s > 0. The
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push-forward (πnn−1)∗µ̃
(s)
n is consequently well-defined, and for any s ∈ R

and n > −s we have

(14) (πnn−1)∗µ̃
(s)
n =

π2n−1(Γ(n+ s))2

Γ(2n+ s) · Γ(2n− 1 + s)
µ̃

(s)
n−1.

Now let Mat(N,C) be the space of infinite matrices whose rows and
columns are indexed by natural numbers and whose entries are complex:

Mat(N,C) = {z = (zij), i, j ∈ N, zij ∈ C}.
Let π∞n : Mat(N,C) → Mat(n,C) be the natural projection map that to
an infinite matrix z ∈ Mat(N,C) assigns its upper left n× n-“corner”, the
matrix (zij), i, j = 1, . . . , n.

Take s ∈ R and n0 ∈ N, n0 > −s. The relation (14) and the Kolmogorov
Existence Theorem [10] imply (for a detailed presentation, see p. 116 in
Borodin and Olshanski [4]) that for any λ > 0 there exists a unique measure
µ(s,λ) on Mat(N,C) such that for any n > n0 we have

(15) (π∞n )∗µ
(s,λ) = λ

(
n∏

l=n0

π−2nΓ(2l + s)Γ(2l − 1 + s)

(Γ(l + s))2

)
µ̃(s).

If s > −1, the measures µ(s,λ) are finite, and we let µ(s) be the probability
measure in the family µ(s,λ).

In this case, (14) implies the relation

(π∞n )∗µ
(s) = π−n

2
n∏
l=1

Γ(2l + s)Γ(2l − 1 + s)

(Γ(l + s))2
µ̃(s)
n .

If s 6 −1, the measures µ(s,λ) are all infinite. In this case, slightly abus-
ing notation, we shall omit the super-script λ and write µ(s) for a measure
defined up to a multiplicative constant.

Proposition 3.1. For any s1, s2 ∈ R, s1 6= s2, the Pickrell measures µ(s1)

and µ(s2) are mutually singular.

Proposition 3.1 is obtained from Kakutani’s Theorem in the spirit of [4],
see also [16].

Let U(∞) be the infinite unitary group: an infinite matrix u = (uij)i,j∈N
belongs to U(∞) if there exists a natural number n0 such that the matrix

(uij), i, j ∈ [1, n0]

is unitary, while uii = 1 if i > n0 and uij = 0 if i 6= j, max(i, j) > n0.
The group U(∞) × U(∞) acts on Mat(N,C) by multiplication on both

sides:
T(u1,u2)z = u1zu

−1
2 .
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The Pickrell measures µ(s) are by definition U(∞) × U(∞)-invariant.
For the rôle of Pickrell and related mesures in the representation theory of
U(∞), see [18], [19], [20].

Theorem 1 and Corollary 1 in [6] imply that the measures µ(s) admit
an ergodic decomposition. Furthermore, Theorem 1 in [7] implies that for
any s ∈ R the ergodic components of the measure µ(s) are almost surely
finite. The main result of this note is an explicit description of the ergodic
decomposition of the measures µ(s) for s 6= −1 − 2k, k ∈ N; in particular,
for s < −1 we shall see that the ergodic decomposition is given by an
explicitly computed infinite determinantal measure.

3.2. Classification of ergodic measures. First, we recall the classification
of ergodic probability U(∞) × U(∞)-invariant measures on Mat(N,C).
This classification has been obtained by Pickrell [21], [22]; Vershik [33]
and Olshanski and Vershik [20] proposed a different approach to this clas-
sification in the case of unitarily-invariant measures on the space of infinite
Hermitian matrices, and Rabaoui [24], [25] adapted the Olshanski-Vershik
approach to the initial problem of Pickrell. In this note, the Olshanski-
Vershik approach is followed as well.

Take z ∈ Mat(N,C), denote z(n) = π∞n z, and let

(16) λ
(n)
1 > . . . > λ(n)

n > 0

be the eigenvalues of the matrix(
z(n)
)∗
z(n),

counted with multiplicities, arranged in non-increasing order. To stress de-
pendence on z, we write λ(n)

i = λ
(n)
i (z).

Theorem. (1) Let η be an ergodic BorelU(∞)×U(∞)-invariant prob-
ability measure on Mat(N,C). Then there exist non-negative real
numbers

γ > 0, x1 > x2 > . . . > xn > . . . > 0 ,

satisfying γ >
∞∑
i=1

xi, such that for η-almost every z ∈ Mat(N,C)

and any i ∈ N we have:

(17) xi = lim
n→∞

λ
(n)
i (z)

n2
, γ = lim

n→∞

tr
(
z(n)
)∗
z(n)

n2
.
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(2) Conversely, given non-negative real numbers γ > 0, x1 > x2 >
. . . > xn > . . . > 0 such that

γ >
∞∑
i=1

xi ,

there exists a unique U(∞)×U(∞)-invariant ergodic Borel proba-
bility measure η on Mat(N,C) such that the relations (17) hold for
η-almost all z ∈ Mat(N,C).

Introduce the Pickrell set ΩP ⊂ R+ × RN
+ by the formula

ΩP =

{
ω = (γ, x) : x = (xn), n ∈ N, xn > xn+1 > 0, γ >

∞∑
i=1

xi

}
.

The set ΩP is, by definition, a closed subset of R+ × RN
+ endowed with the

Tychonoff topology.
By Proposition 3 in [6], the subset of ergodic U(∞) × U(∞)-invariant

measures is a Borel subset of the space of all Borel probability measures on
Mat(N,C) endowed with the natural Borel structure (see, e.g., [1]). Fur-
thermore, if one denotes ηω the Borel ergodic probability measure corre-
sponding to a point ω ∈ ΩP , ω = (γ, x), then the correspondence

ω −→ ηω

is a Borel isomorphism of the Pickrell set ΩP and the set of U(∞)×U(∞)-
invariant ergodic probability measures on Mat(N,C).

The Ergodic Decomposition Theorem (Theorem 1 and Corollary 1 of [6])
implies that each Pickrell measure µ(s), s ∈ R, induces a unique decompos-
ing measure µ(s) on ΩP such that we have

(18) µ(s) =

∫
ΩP

ηω dµ
(s)(ω) .

The integral is understood in the usual weak sense, see [6].
For s > −1, the measure µ(s) is a probability measure on ΩP , while for

s 6 −1 the measure µ(s) is infinite.
Set

Ω0
P = {(γ, {xn}) ∈ ΩP : xn > 0 for all n, γ =

∞∑
n=1

xn}.

The subset Ω0
P is of course not closed in ΩP .

Introduce a map

conf : ΩP → Conf((0,+∞))
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that to a point ω ∈ ΩP , ω = (γ, {xn}) assigns the configuration

conf(ω) = (x1, . . . , xn, . . .) ∈ Conf((0,+∞)).

The map ω → conf(ω) is bijective in restriction to the subset Ω0
P .

Remark. In the definition of the map conf, the “asymptotic eigenvalues”
xn are counted with multiplicities, while, if xn0 = 0 for some n0, then xn0

and all subsequent terms are discarded, and the resulting configuration is
finite. We shall see, however, that the complement ΩP\Ω0

P is µ(s)-negligible
for all s 6= −1− 2k, k ∈ N, and, consequently, that, µ(s)-almost surely, all
configurations are infinite. It will also develop that, µ(s)-almost surely, all
multiplicities are equal to one.

3.3. The Bessel point process and finite Pickrell measures. Consider the
half-line (0,+∞) endowed with the standard Lebesgue measure Leb. Take
s > −1 and consider the standard Bessel kernel

(19) Js(x, y) =

√
xJs+1(

√
x)Js(

√
y)−√yJs+1(

√
y)Js(

√
x)

2(x− y)

(see, e.g., page 295 in Tracy and Widom [32]). The kernel Js induces on
L2((0,+∞),Leb) the operator of orthogonal projection onto the subspace
of functions whose Hankel transform is supported in [0, 1] (see [32]). Set-
ting x1 = 4/x, x2 = 4/y yields a kernel K(s) given by the formula

(20)

K(s)(x1, x2) =
Js

(
2√
x1

)
1√
x2
Js+1

(
2√
x2

)
− Js

(
2√
x2

)
1√
x1
Js+1

(
2√
x1

)
x1 − x2

,

x1 > 0, x2 > 0 .

(recall here that a change of variables u1 = ρ(v1), u2 = ρ(v2) transforms a
kernel K(u1, u2) to a kernel of the form K(ρ(v1), ρ(v2))(

√
ρ′(v1)ρ′(v2))).

The kernel K(s) induces on the space L2((0,+∞),Leb) a locally trace
class operator of orthogonal projection, for which, slightly abusing notation,
we keep the symbol K(s); by the Macchı̀-Soshnikov Theorem, the opera-
tor K(s) induces a determinantal measure PK(s) on Conf((0,+∞)). The
determinantal measure PK(s) is precisely the decomposing measure for the
Pickrell measure µ(s), as is shown by the following

Proposition 3.2. Let s > −1. Then µ(s)(Ω0
P ) = 1 and the µ(s)-almost sure

bijection ω → conf(ω) identifies the measure µ(s) with the determinantal
measure PK(s) .

Sketch of proof of Proposition 3.2. Take s > −1. Let P (s)
n (u) be the stan-

dard Jacobi orthogonal polynomials on the interval [−1, 1] corresponding to



18 ALEXANDER I. BUFETOV

the weight (1− u)s (recall here that Jacobi polynomials P (s1,s2)
n are usually

defined as polynomials on the interval [−1, 1] orthogonal with the weight
(1−u)s1(1+u)s2 and satisfying P (s1,s2)

n = Γ(n+s1+1)/Γ(n+1)Γ(s1+1) ,
see, e.g. (4.1.1) in Szegö [31]; it would thus have been more precise to write
P

(s,0)
n (u), but, since we will never need the second parameter s2, for brevity

we omit the second superscript) .
Following Pickrell, to a matrix z ∈ Mat(n,C) assign the collection

(λ1(z), . . . , λn(z)) of the eigenvalues of the matrix z∗z arranged in non-
increasing order ( cf. (16)). The radial part r(n,s) of the Pickrell measure
µ

(s)
n is now defined as the push-forward of the measure µ(s)

n under the map

z → (λ1(z), . . . , λn(z)) .

The radial part of the Pickrell measure has determinantal form:

dr(n,s)(λ) =
1

n!
detK(s)

n (λi, λj)
n∏
i=1

dλi, λi > 0 .

where

(21) K(s)
n (λ1, λ2) =

n(n+ s)

(2n+ s)(1 + λ1)s/2(1 + λ2)s/2
×

×
P

(s)
n

(
λ1−1
λ1+1

)
P

(s)
n−1

(
λ2−1
λ2+1

)
− P (s)

n

(
λ2−1
λ2+1

)
P

(s)
n−1

(
λ1−1
λ1+1

)
λ1 − λ2

.

The change of variables ui =
λi − 1

λi + 1
, i = 1, . . . , n, reduces K(s)

n to the

Christoffel-Darboux kernel for the Jacobi orthogonal ensemble with weight
(1− u)s.

Introducing the scaling λi = n2xi, taking n → ∞ and using the classi-
cal Heine-Mehler asymptotics for Jacobi orthogonal polynomials (see, e.g.,
Szegö [31]), one finds

lim
n→∞

n2K(s)
n

(
n2x1, n

2x2

)
= K(s)(x1, x2) ,

convergence being uniform on compact subsets of (0,+∞). To prove that
µ(s)(Ω0

P ) = 1, the method of Section 7 in Borodin and Olshanski [4] is
adapted to our situation.

3.4. A recurrence relation for Bessel point proceses. The following ob-
servation motivates the construction of the next section. Given a finite fam-
ily of functions f1, . . . , fN on the real line, let span(f1, . . . , fN) stand for
the vector space these functions span. For an arbitrary function ρ of the real
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variable u and any N ∈ N we clearly have

(22) span
(
ρ, uρ, . . . , uNρ

)
= Rρ⊕

⊕ span
(
(1− u)ρ, u(1− u)ρ, , . . . , uN−1(1− u)ρ

)
.

Assume additionally that the N -th orthogonal polynomial ensemble with
weight ρ2 is well-defined. In this case the N − 1-th orthogonal polynomial
ensemble with weight ρ2(1− u)2 is also well-defined, and the equality (22)
states that the space of the first N + 1 normalized orthogonal polynomi-
als with weight ρ2 is a rank one perturbation of the space of the first N
normalized orthogonal polynomials with weight (1− u)2ρ2.

Take s ∈ R and set ρ(u) = (1 − u)s/2. Take N ∈ N and rewrite (23) in
this particular case:

(23) span
(
(1− u)s/2, . . . , (1− u)s/2uN

)
= R(1− u)s/2⊕

⊕ span
(
(1− u)(s+2)/2, . . . , (1− u)(s+2)/2uN−1

)
.

If s > −1, then (23) states that the space of the first N + 1 normalized
Jacobi polynomials with weight (1 − u)s is a rank one perturbation of the
space of the first N normalized Jacobi polynomials with weight (1−u)s+2.

A similar statement holds true for the Bessel kernel: using the recurrence
relation Js+1(x) = 2s

x
Js(x) − Js−1(x) for Bessel functions, one easily ob-

tains the recurrence relation

(24) Js(x, y) = Js+2(x, y) +
s+ 1
√
xy

Js+1(
√
x)Js+1(

√
y)

for the Bessel kernels: the Bessel kernel with parameter s is thus a rank one
perturbation of the Bessel kernel with parameter s+ 2.

For ergodic decomposition measures of infinite Pickrell measures we
shall now give a similar description in terms of infinite determinantal mea-
sures obtained as finite-rank perturbations of Bessel point processes.

4. ERGODIC DECOMPOSITION OF INFINITE PICKRELL MEASURES

Now take s < −1, s 6= −1− 2k, k ∈ N. Let ns be such that

s

2
+ ns ∈

(
−1

2
,
1

2

)
.

Introduce a finite-dimensional subspace V (s) ⊂ L2,loc((0,+∞),Leb) by
the formula

V (s) = span
(
x−s/2−1, . . . , x−s/2−ns

)
.

For s′ > −1, let L(s′) ⊂ L2((0,+∞),Leb) be the range of the operator
Ks′ , and for s < −1, s 6= −1 − 2k, k ∈ N, introduce a subspace H(s) of
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L2,loc((0,+∞),Leb) by the formula

H(s) = L(s+2ns) + V (s).

Using Proposition 1.4, one easily checks that if R > 0 is big enough, then
the subspace H(s) ⊂ L2((0,+∞),Leb) and the subset E0 = (0, R) satisfy
Assumption 1. Let

(25) B(s) = B(H(s), (0, R))

be the corresponding infinite determinantal measure (which, by definition,
does not depend on the specific choice of a big enough R).

The ergodic decomposition of infinite Pickrell measures is now given by
the following

Theorem 4.1. Let s < −1, s 6= −1 − 2k, k ∈ N, and let µ(s) be the
decomposing measure, defined by (18), of the Pickrell measure µ(s). Then

(1) µ(s)(ΩP\Ω0
P ) = 0;

(2) the µ(s)-almost sure bijection ω → conf(ω) identifies µ(s) with the
infinite determinantal measure B(s).

Take R > 0 and set

Ω0
P (R) = {ω ∈ Ω0

P : x1 ≤ R}.

Set L(s)
R = χ(0,R)H

(s); the subspace L(s)
R is closed if R > 0 is big enough,

and we let Q(s)
R be the corresponding operator of orthogonal projection.

By Proposition 1.7, we have Q(s)
R → K(s+2ns) in I1,loc((0,+∞),Leb) as

R→∞. Theorem 4.1 together with Theorem 1.1 implies

Corollary 4.2. If R is big enough, then 0 < µ(s)(Ω0
P (R)) < +∞ and the

µ(s)-almost sure bijection ω → conf(ω) identifies the normalized restriction
of the measure µ(s) to the subset Ω0

P (R) with the determinantal measure
P
Q

(s)
R

.

We now give an explicit representation of the measure µ(s) as a product
of a determinantal measure and a multiplicative functional. Take α > 0 and
let L(s,α) = exp−αxH(s). By definition, L(s,α) ⊂ L2 ((0,+∞),Leb). Let
Q(s,α) be the operator of orthogonal projection onto the subspace L(s,α). By
definition, Q(s,α) ∈ I1,loc ((0,+∞),Leb), and, by the Macchı̀-Soshnikov
Theorem, the operator Q(s,α) induces a determinantal measure PQ(s,α) on
Conf

(
(0,+∞)

)
.

Given a configuration X ∈ Conf
(
(0,+∞)

)
, let S(X) =

∑
x∈X

x be the

function that to a configuration assigns the (possibly infinite) sum of all
its particles. By construction, the measure PQ(s,α) is supported on the set
{X : S(X) < +∞}. Theorem 4.1 and Propositions 1.3, 1.6 now imply
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Corollary 4.3. For any α > 0, the µ(s)-almost sure bijection ω → conf(ω)
identifies the measure µ(s) wtih a measure of the formCeαS(X)PQ(s,α) , where
C is a positive constant.

The proof of Theorem 4.1 starts, again, with the computation of the radial
part of the infinite Pickrell measure; changing variables by the formula

ui =
λi − 1

λi + 1
, i = 1, . . . , n,

one arrives at an “infinite orthogonal polynomial ensemble”(cf. (3)) of the
form

(26)
∏
i<j

(ui − uj)2
∏
i

(1− ui)s.

By definition, the measure (26) is an infinite determinantal measure ob-
tained by perturbing the closed subspace

span
(
(1− u)(s+2ns)/2, . . . , (1− u)(s+2ns)/2uN−ns−1

)
⊂ L2([−1, 1],Leb)

by the finite-dimensional subspace

span
(
(1− u)s/2, . . . , (1− u)(s+2ns−2)/2

)
⊂ L2,loc([−1, 1],Leb).

The next step is to take the scaling limit of these infinite determinantal mea-
sures. This is achieved, with the use of Propositions 1.3 and 1.6, by taking
the product with a suitably chosen multiplicative functional and effecting
the scaling limit transition for the corresponding determinantal probability
measures. The detailed proof of Theorem 4.1 will be published in the sequel
to this note.
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