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Outline

1 What is a scale (of functions)?

2 Classical examples, including Hardy’s class EL.

3 An application (for uniform distribution).

4 A description of METHOD to generate large scales of
functions. Examples.

5 More applications, results and questions
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Hardy’a class EL
(of exponential-logarithmic functions)

G. H. Hardy in his book “Orders of Infinity“ introduced a
class EL of real functions (exponential-logarithmic functions)
defined in a neighborhood of +∞ by means of certain

formula involving

1 the variable x ,

2 the real constants,

3 algebraic (field) operations,

4 the functional symbols exp(· · · ) and log(· · · ).
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EXAMPLE and REMARKABLE FACT

Example:

f (x) = π + exp

(
7 +

5− log3(x + log(x))

x − log(x2 − 5))

)
∈ EL.

EL-functions are germs at infinity. (Interested in the behavior
at +∞.)

REMARKABLE FACT

Theorem (G. H. Hardy)

Hardy class EL (of continuous germs at ∞) is linearly ordered by
the relation of eventual dominance (at +∞).

In other words, EL is a scale (see the next slide).
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Definition of scales (of functions)

We denote by B the set of real continuous germs at +∞.

B forms a ring under the pointwise algebraic operations.

The set B is partialy ordered by the relation � of eventual

dominance at ∞: f � g means f (x) > g(x) for all large x .

Definition

A subset S ⊂ B is called a scale if it is linearly ordered by the
relation �:

f , g ∈ S ⇒ (either f � g , or f � g , or f = g) .

By G. Hardy’s theorem (previous slide), EL is a scale.
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Scales. Related terminology

Denote

1 B+ = {f ∈ B | f � 0} – positive functions (germs)

2 B− = {f ∈ B | f � 0} – negative functions

3 B∼ = B \
(
B+ ∪ B− ∪ {0}

)
– oscillating functions

Thus B = B+ ∪ B− ∪ B∼ ∪ {0} is a partition of B.

Definition

f , g ∈ B are called comparable (notation f �=� g)

if f − g /∈ B∼ (i. e. if either f � g , or f = g , or f � g).

Thus, S ⊂ B is a scale if f , g ∈ S =⇒ f �=� g

(any two functions are comparable).
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Examples of scales. Questions.

EXAMPLES (of scales).

N ⊂ Z ⊂ R ⊂ R[x ] ⊂ R(x) ⊂ R(x , ex) ⊂ EL ⊂ . . .

More: Real closures of Q(x), R(x), the ring R[[x ]] of
analytic functions at ∞ with the real coefficients etc.

QUESTION. How to construct large scales of functions?
In particular, extensions of e. g. EL.
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More Questions.

QUESTIONS. How much the class EL can be extended
without losing the comparability property?

What if we add the integrals?

The Euler’s Γ-function?

The Riemann ζ -function?

Solutions of various (differential, difference, functional)
equations?
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New method to construct scales

We describe a METHOD to construct scales of functions.

It is based on certain procedure and starts by fixing certain
property (properties) P a scale may satisfy.
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Properties of a scale.

A scale may satisfy certain properties P:

(+,−,×) - being closed under listed arithmetical operations,

D - being closed under D (the differentiation),

R or F - to form a ring or field under pointwise
operations, R = (+,−,×).

H = (F ,D) - being a Hardy field.

∇1 (or ∇) - being closed under integer (or real) translations.
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Special property: Hardy field. P=H.

Definition

A scale is called a P-scale if it satisfies property P.

Definition

A scale is called an H-scale, or Hardy field, if it satisfies
property H = (F ,D), i. e. if it forms a differential field.

For example, R(x , ex), R[[x ]], . . .. Non-trivial example:
Hardy’s class EL.

The property H is very important – mostly for historical reasons.

Other properties (weaker, or stronger, or incomparable).
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Excellent and Good functions.

Let P be a reasonable property of a scale. By Zorn’s lemma,

Every P-scale is contained in a maximal P-scale.

Introduce the following classes of functions:

E (P) – the class of P-excellent functions defined as:

the intersection of all maximal P-scales;

G (P) – the class of P-good functions defined as:

the union of all P-scales.

E ′(P) = {f ∈ B | f �=� g , for all g ∈ G (P)}.

(P-comparable functions, see next page).
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P-comparable, excellent and good function.

Again:

E ′(P) = {f ∈ B | f �=� g , for all g ∈ G (P)} =

= {f ∈ B | f − g /∈ B∼, for all g ∈ G (P)}

Thus E ′(P) – the class of P-comparable functions –
contains continuous germs (the functions in B) which are
comparable with all P-good functions (functions in G (P)).

The following inclusions are almost immediate.

1 E (P) ⊂ G (P) (excellent functions are good)

2 E (P) ⊂ E ′(P), (P-excellent functions are P-comparable):(
g ∈ G (P), f ∈ E (P)

)
=⇒ f�=�g .
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Surprising phenomenon.

Some simple properties P lead to large scales E (P) of
excellent functions.

Even some very simple properties like P = D, or P = (D,+),
or P = (∇,+).

My thesis (1981) was about the class E (H), i. e. P = H.

Thus E = E (H) is the intersection of all maximal Hardy fields.

How large is it? A priori it contains Q – the rational constants.

It turns out that the class is much larger than that.
(See next page).
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The class E=E(H) is large!

1 EL ⊂ E . (E contains Hardy’s class EL).

2 E is closed under the integration (see next slide)

3 More generally, E contains many solutions of differential
equations. Details.

4 E is closed under the composition.
(If it is defined. See the slide after the next).

More precisely: E ◦ E+ ⊂ E where

E+ = {f ∈ E | lim
x→∞

f (x) = +∞}.

Thus E+ forms a semigroup under the composition operation.
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The class E=E(H) is close under integration
∫

It is enough to show that every maximal H-scale K is closed
under integration

∫
. Attempt of the proof:

Assume to the contrary that f ′ = g ∈ K for some f /∈ K .

We claim that then f �=� k , ∀k ∈ K . (f is comparable
with every k ∈ K ).

If not, then f − k ∈ B∼ (is oscillating) and hence also

(f − k)′ = g − k ′ ∈ K ∩ B∼,

a contradiction because K ∩ B∼ = ∅.

Thus K ∪ {f } is a scale while K was assumed to be maximal.
(This is not a full proof of the claim in the title of this frame.)



Scales of
Functions

Michael Bosh.

Hardy’s Class.

Scales of fs

New method

Class E = E(H)

E is large

E is not large

UD mod 1

Other
applications

More props P

P-equations

My $ 100 QUESTION (34 years old)

QUESTION. Is E+ closed under the compositional inversion?

We claim that if f ∈ E+ then f −1 ∈ G ∩ E ′ and it must be
DA (Differentialy Algebraic).

In many special cases we can prove that f −1 ∈ E .

(Khovanski’s class of one-dimensional functions.)
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The class E=E(H) is not so large.

1 All functions in E must satisfy a non-trivial ADE
(algebraic differential equation).

2 In particular, the Euler’s Γ-function lies in G \ E
(M. Rosenlicht and MB).

3 Functions in E are eventually real analytic.

4 The class E does not contain transexponential or trans-
logarithmic functions (approaching infinity faster than all
the iterates of ex or slower than all the iterates of log x).

5 With appropriate choices of properties P, the classes E (P)
becomes much larger.
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Which functions are good (lie in G (P))?

QUESTION. Which functions are good (for P = H)?

ANSWER. These functions f ∈ B whose differential
polynomial p(f , f ′, f ′′, . . .) never oscillate.

Remark: Good functions don’t need to be C∞.
Explanation.

Illuminating Example
exp5(x) + sin x /∈ G because exp5(x) ∈ E .

FACT. There are good transexponential and translogarithmic
functions (1986 MB).



Scales of
Functions

Michael Bosh.

Hardy’s Class.

Scales of fs

New method

Class E = E(H)

E is large

E is not large

UD mod 1

Other
applications

More props P

P-equations

APPLICATION: UD MOD 1.

Theorem (MB, 1994)

Let f ∈ G (H) (be good) and assume that f (x) is subpo-
lynomial (does not grow faster than polynomials):

−xn � f (x)� xn, for some n ∈ N.
Then:

1 (f (n))∞1 is dense (mod 1) if and only if
lim
x→∞

|f (x)− p(x)| =∞, for every p ∈ Q[x ].

2 (f (n))∞1 is u.d. (mod 1) if and only if

lim
x→∞

|f (x)−p(x)|
log x =∞, for every p ∈ Q[x ].

Also, there is a precise conditions for well distribution etc.
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Several remarks.

1 The result generalizes for “good“ sequences of regular
growth other than produced by Hardy fields (e.g.,
produced by a large class of recurrent relations).

2 The density result is in fact a u.d. result if appropriately
interpreted (some Banach limit).

3 Multidimensional generalization.

4 Application for convergence in L2 of ergodic averages
along subsequences associated with Hardy fields.
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Other applications.

1 For sequences good for pointwise ergodic theorem (along those

sequences), [MW, MB] and [M.Wierdl, A.Quas, G.Kolesnik, MB].

2 A version of Szemeredi Thm. [M. Wierdl, N. Frantzikinakis]

3 Poincare recurrence along such sequences [MB, 1994].

4 Waring’s problem (T. Chah, A.Kumchev and M. Wierdl 2010).

5 Nice averaging (summation) methods and Banach limits
associated with Hardy fields
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Examples: Properties P and classes E (P)

1 P = + or P = −. Then E = {0}, and G is the set of
non-oscillating functions.

2 P = D = d
dx . Then E =

{
c1e

x + c2e
−x + p(x)

}
where

p(x) ∈ R[x ] are polynomials and ci ∈ R are constants.

Prove in detail that: ex ∈ E but e2x /∈ E .

3 P = (D,×R,+). Then E =
{∑

pi (x) · exp(cix)
}

,

where ci ∈ R and pi (x) ∈ R[x ].
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P-equations

For a large class of properties P, one can show that
P-excellent functions f ∈ E (P) must satisfy
a non-trivial P-equation – an equation in terms of the
operations in the description of the property P.

Thus for P = D, the only possible P-equations are

f (m) = f (n),

with some m, n ≥ 0, m 6= n.

For P = H, these will be ADEs (algebraic differential
equations). This is a way to see that Euler’s Γ(x) is not
excellent (although it is good).
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The case P = (D,+).

Then E =
{∑

pi (x) · exp(cix)
}

, where pi ∈ R[x ] and

ci ∈ A where A is a certain subset of algebraic numbers.

In particular,
√

2 ∈ A while 3
√

2 /∈ A.

(Prove that exp(cx) /∈ E for transcendental c).

Analysis by P-equations.
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The case P = (∇,F).

Then E = E (∇,F) contains Γ(x), ex , ee
x

but not ee
ex

or functions growing faster.

Functions in E must satisfy P-equations: in this case
those are algebraic difference equations.

In particular, ln(x) /∈ E because ln(x) = log(x) does not
satisfy P-equations. Proof: analytic extension.

For α ∈ R, we have xα ∈ E ⇐⇒ α ∈ Q.

Not known whether functions in E = E (∇,F) must be
differentiable. Comment.
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The case P = (D,∇,F).

Then E = E (D,∇,F) contains both E = E (∇,F) and
E = E (D,F).

P-equations: in this case those are
algebraic difference-differential equations.

There are transexponential examples of P-good functions
satisfying P-equations. Not known whether E (P) contains
transexponential functions.
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Discrete Orders of Infinity

1 Scales of sequences. Similar constructions depending on
properties P.

2 Case P = (F ,∇1).
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Invariant Banach limits (ultrafilters)

Denote by B∞ ⊂ B bounded continuous germs.

Denote B0 = {f ∈ B | lim
x→∞

f (x) = 0}.

Denote B ′ = B∞/B0.

Denote by M the semigroup of summation methods. Those
are the maps φ : B ′ → B ′ such that

(1) φ(f )� 0, if f � 0 (i.e., φ is positive)

(2) φ(r) = r , for r ∈ R ⊂ B ′.
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Invariant Banach limits (continued)

A summation method φ ∈M is called a mean if φ(B ′) = R.

If lim
x→∞

g(x) = +∞, define Tg ∈M by Tg (f ) = f (g(x)).

Denote by G+(H) = {g ∈ G (H) | lim
x→∞

g(x) = +∞}

the set of functions in Hardy fields approaching +∞.

Theorem

There exists a mean φ such that, for every g ∈ G+(H)
which is neither translogarithmic nor transexponential,

we have φ = φ ◦Tg , i.e. φ(f (x)) = φ(f (g(x))), ∀ f ∈ B∞.
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Superrandom and Extrarandom sequences

Definition

A bounded sequence c = (ck) in C is called extrarandom if
for every minimal uniquely ergodic transformation T : X → X
of a compact metric space X and every continuous function
g : X → C we have

lim
N→∞

1

N

N∑
n=1

cn g(T k(x)) = 0, for all x ∈ X . (c)

A bounded sequence is called super-random if for every
deterministic system T : X → X

(a system with topological entropy 0)

and every continuous function g : X → C the relation (c)
holds.
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Super-random and Extra-random sequences II

In other words:
the extra-random sequences should not correlate with

the values of continuous functions over the orbits of
uniquely ergodic systems, while

the super-random sequences should not correlate with the
values of continuous functions over the orbits of deterministic
systems.

Let (Xk(w))∞k=0 be an i. i. d. sequence of random variables each

taking the values in the set {−1, 1} with equal probability 1/2.

Then the sequence ck = Xk(w) is almost sure superrandom
but not extrarandom. (Positive entropy systems are never
disjoint in Furstenberg’s sense; and, on the other hand, there
are minimal uniquely ergodic systems of positive entropy).
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Super-random and Extra-random sequences IIb

Let (Xk(w))∞k=0 be an i. i. d. sequence of random variables
each taking the values in the set {−1, 1} with equal
probability 1/2. Then the sequence ck = Xk(w) is almost
sure superrandom but not extrarandom. (Positive entropy
systems are never disjoint in Furstenberg’s sense); and, on the
other hand, there are minimal uniquely ergodic systems of
positive entropy).

Thus superrandom sequences do not need to be extrarandom.
We pose the following question (next page).
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Superrandom and Extrarandom sequences III

Thus superrandom sequences do not need to be extrarandom.
We pose the following question.

Question A. Is every extrarandom sequence superrandom?

The question is motivated by my recent discovery of the
non-trivial (and some colleagues find it surprising) fact of
existence of extrarandom sequences.

Theorem

For any non-integral α > 0, the sequence (e2πi n
α

)∞n=1 is

extrarandom. The sequence (e2πi (n
2+
√
n)) is extrarandom

while, for any real polynomial P(x), the sequences (e2πi P(n))
and (e2πi (P(n)+log n)) are not.
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Superrandom and Extrarandom sequences 4

In fact, we have a complete characterization of subpolynomial*
functions g lying in Hardy fields for which (e2πi g(n))∞n=1 is
extrarandom.

subpolynomial*=growing not faster than polynomials

In our terminology, P. Sarnak’s celebrated conjecture (see [?])
claims that the sequence µ = (µ(n))∞n=1 (of Möbius function
values) is superrandom.

Question B. Is µ extrarandom?
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Related theorem

Theorem

Let X be a compact metric space and let T : X → X be a
minimal uniquely ergodic transformation, let f : X → R be a
continuous function.

Then, for every non-integer α > 0 and every x ∈ X,
the sequence

f (T n(x)) + nα

is u. d. (mod 1).

Remark. The sequence u(n) = nα in the above theorem can
be replaced by any real sequence v(n) such that

1 exp(2πi v(n)) is extrarandom;

2 v(n) is u. d. (mod 1)
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