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@ Joint work with David Roberts and Danny Stevenson
@ I'll put the talk on my webpage

@ There should be a paper on the arXiv ... soon.
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Why bibundles?

@ If G is a Lie group a G-bibundle is a principal (right) G-bundle
P ¥ M which has an additional free left G action commuting
with the right action and having the same orbits.



Introduction
[ 1e}

Why bibundles?

@ If G is a Lie group a G-bibundle is a principal (right) G-bundle
P ¥ M which has an additional free left G action commuting
with the right action and having the same orbits.

@ These are needed in the definition of gerbes for a
(non-abelian) group G where you would like to be able to form
a product of two principal G-bundles.

@ This is not generally possible for principal G-bundles unless G
is abelian.



Introduction
[ 1e}

Why bibundles?

@ If G is a Lie group a G-bibundle is a principal (right) G-bundle
P ¥ M which has an additional free left G action commuting
with the right action and having the same orbits.

@ These are needed in the definition of gerbes for a
(non-abelian) group G where you would like to be able to form
a product of two principal G-bundles.

@ This is not generally possible for principal G-bundles unless G
is abelian.

@ However if P ¥ M and Q ' M are bibundles you can form a
productP Q ¥ M by forming fibrewise

P Qm Pm Qm =G

where G acts by p;q g pg;g g .
@ P Qs also a bibundle.
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@ Bibundles are not a new idea. They certainly goes back to
work of Breen on bitorsors in 1990.

@ Also discussed by Aschieri, Cantini, and Jurco in 2005.

@ However when you look for examples there are not as many of
them as there are principal bundles.

@ Our aim is to address this existence question.
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@ Bibundles are not a new idea. They certainly goes back to
work of Breen on bitorsors in 1990.

@ Also discussed by Aschieri, Cantini, and Jurco in 2005.

@ However when you look for examples there are not as many of
them as there are principal bundles.

@ Our aim is to address this existence question.

@ It turns out that we need to use crossed modules instead of
just Lie groups G.

@ While my coworkers are keen crossed module and 2-group
people | resisted this at first.

@ Let me take you through the reasons for adding this extra
complexity.
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G-bispaces

@ It is simplest to work at first with a typical fibre. i.e a bibundle
over a point. This is a G-bispace that is a set X having
commuting, left and right, free and transitive G-actions.

Examples 1

@ Let G be abelian and X a right G-space. Define
g?x?h xhgt!.

@ This only works when G is abelian. Otherwise left and right
actions don’t commute.

@ We regard this bispaces as uninteresting examples.

Examples 2
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Examples 1

@ Let G be abelian and X a right G-space. Define
g?x?h xhgt!.

@ This only works when G is abelian. Otherwise left and right
actions don’t commute.

@ We regard this bispaces as uninteresting examples.

Examples 2

@ Take X G with the usual left and right G action. Call this the
trivial bispace T.
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G-bispaces

@ It is simplest to work at first with a typical fibre. i.e a bibundle
over a point. This is a G-bispace that is a set X having
commuting, left and right, free and transitive G-actions.

Examples 1

@ Let G be abelian and X a right G-space. Define
g?x?h xhgt!.

@ This only works when G is abelian. Otherwise left and right
actions don’t commute.

@ We regard this bispaces as uninteresting examples.

Examples 2

@ Take X G with the usual left and right G action. Call this the
trivial bispace T.

@ Fix 2 Aut G and define X with the action
g?x?h L g xh. call this bispace T

\
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@ The left and right G-actions are related by the structure map
: X ¥ Aut G

defined by xg X g X.
@ The structure map is equivariant in the sense that
xXg x Adg.
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@ The left and right G-actions are related by the structure map
: X ¥ Aut G

defined by xg X g X.
@ The structure map is equivariant in the sense that
xXg x Adg.

The construction of the structure map defines an equivalence

between
© G-bispaces X.
Q Pairs X; consisting of a right G-space X and an equivariant map

X T Aut G .
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The Type of a G-bispace

@ There is a natural notion of a morphism of G-bispaces X and
Y. Thisisamap f: X ¥ Y commuting with the G-actions.

@ From the equivariance of the structure map it has image in an
orbit of Ad G on the right of Aut G and thus defines an
elementof Out G Aut G =Ad G . We call this the type of
X and denote it Type X .
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The Type of a G-bispace

@ There is a natural notion of a morphism of G-bispaces X and
Y. Thisisamap f: X ¥ Y commuting with the G-actions.

@ From the equivariance of the structure map it has image in an
orbit of Ad G on the right of Aut G and thus defines an
elementof Out G Aut G =Ad G . We call this the type of
X and denote it Type X .

Example 4 (T )

The structure map is defined by x ? h X h ?x and we have
g?x?h L' g xh. It follows that xh L' x h xor
xhx ! x h and hence
X Ad x and Type T
where is the image under Aut G ¥ Out G of
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Denote by Bispg the set of all G-bispaces. We have

Two G-bispaces X and Y are isomorphic if and only if

Type X Type Y
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Denote by Bispg the set of all G-bispaces. We have

Two G-bispaces X and Y are isomorphic if and only if

Type X Type Y

As every element of Out G arises as the type of some T we
have

The isomorphism classes of G-bispaces are in bijective
correspondence with Out G via the type map

Type: Bispg ¥ Out G
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Properties of the type map

@ If X and Y are G-bispaces we have seen how to define a new
G-bispace X Y.

@ We can also define a dual X to be the same set but a new
actiong?x?h h xg .
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Properties of the type map

@ If X and Y are G-bispaces we have seen how to define a new
G-bispace X Y.

@ We can also define a dual X to be the same set but a new
actiong?x?h h xg .

The map Type: Bispg ¥ Out G satisfies
@ Type X Y Type X Type Y

@ Type X Type X L.
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Properties of the type map

@ If X and Y are G-bispaces we have seen how to define a new
G-bispace X Y.

@ We can also define a dual X to be the same set but a new
actiong?x?h h xg .

The map Type: Bispg ¥ Out G satisfies
@ Type X Y Type X Type Y

@ Type X Type X L.

@ We say that the type map is multiplicative.
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Changing structure group of a G-bispace

@ If X is aright G-space and f: G ¥ K a homomorphism there
is a natural right K-space Xk defined by Xk X K =G
where the G actionis X;k g xg;fF g 'k andthe
K-action on equivalence classes is x;k k¥  x;kk .

@ Thereisa map X ¥ Xk satisfying the obvious equivariance
condition relative to f: G ¥ K.
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@ The way to make it work is to choose (if you can) a
homomorphism f: Aut G ¥ Aut K such that
f Ade Adk FT.

@ Now use the equivalence of bispaces and right spaces with
structure map from Lemma 3. Given X a right G-space with
structure map ¢ then X is a right K-space with structure
map k Xk f x Ad k.
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Changing structure group of a G-bispace

@ If X is aright G-space and f: G ¥ K a homomorphism there
is a natural right K-space Xk defined by Xk X K =G
where the G actionis X;k g xg;fF g 'k andthe
K-action on equivalence classes is x;k k¥  x;kk .

@ Thereisa map X ¥ Xk satisfying the obvious equivariance
condition relative to f: G ¥ K.

@ What about G-bispaces? It usually doesn’t work.

@ The way to make it work is to choose (if you can) a
homomorphism f: Aut G ¥ Aut K such that
f Ade Adk FT.

@ Now use the equivalence of bispaces and right spaces with
structure map from Lemma 3. Given X a right G-space with
structure map ¢ then X is a right K-space with structure
map k Xk f x Ad k.

@ This is telling us we should be using crossed modules.
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A crossed module is a generalisation of the pair G, Aut G . More
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Crossed-modules

A crossed module is a generalisation of the pair G, Aut G . More
precisely:

A crossed module is a pair of groups H;G with homomorphisms

G—t>H—>=Aut G

such that
@t h g ht g h ! and;
Q t Adg.

Note that

@ (1))G, kert Z G thecentreof G, and hence ker t is
abelian,

e (2DHtG H is normal.
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Examples of crossed modules

Example 9

The pair Aut G ;G is a crossed module

c¥Au G T AutG
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Examples of crossed modules

Example 9

The pair Aut G ;G is a crossed module

c¥Au G T AutG

| A

Example 10

For any group G there is a crossed module

193G Aut 1 1

Example 11

| \

There is a crossed module
AT1Y Aut A

if and only if A is abelian.

A\
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If G is a normal subgroup of H then the adjoint action of H on H
fixes G and this defines a homomorphism :H ¥ Aut G . The
result is a crossed module

GIHDY Aut G
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Example 12

If G is a normal subgroup of H then the adjoint action of H on H
fixes G and this defines a homomorphism :H ¥ Aut G . The
result is a crossed module

GIHDY Aut G

| A

Example 13

In particular if PK is the group of smooth based paths
0;1 ¥ Kthen K the group ofloops( 0 1 l)isa
normal subgroup so that we have a crossed module

KIPKE Aut K
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Properties of crossed modules

There is an obvious definition of a morphism of crossed modules:
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Properties of crossed modules

There is an obvious definition of a morphism of crossed modules:

A morphism of crossed modules H;G ¥ H% G’ consists of a
pair of homomorphisms u: H I H and v: G ¥ G° such that the
diagram

G*V>GO

tl i

S 40
H—/>H
commutes and the equivariance condition

v hg uh vg

is satisfied.
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Football Theorem

Theorem 15 (Football Theorem)
Winning is not transitive.
DJ

Proof.
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Football Theorem

Theorem 15 (Football Theorem)
Winning is not transitive.

Proof.
@ Ghana defeated Serbia
@ Serbia defeated Germany
@ Germany defeated Australia
@ Ghana draws with Australia
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H; G -bispaces

We have

Let H;G be acrossed module. An H;G -bispace is a pair X;
consisting of a right G-space X and an equivariant map : X I H.
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consisting of a right G-space X and an equivariant map : X I H.

@ We call the structure map again.
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@ There is a dual and a product which are a little trickier to
define. Again the type map is multiplicative.
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H; G -bispaces

We have

Let H;G be acrossed module. An H;G -bispace is a pair X;
consisting of a right G-space X and an equivariant map : X I H.

@ We call the structure map again.

@ Equivariance means  xg X t g and hence defines the
type of X which is now an element in H=t G . This is a group
because t G is normal.

@ There is a dual and a product which are a little trickier to
define. Again the type map is multiplicative.

@ Again we have:
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The isomorphism classes of H;G -bispaces are in bijective
correspondence with H=t G via the type map

Type: Bisp g ¥ H=t G
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H: G -bibundles

It is now simple to generalise to bibundles.

Let H;G be acrossed module. An H;G -bibundle is a (right)
principal G-bundle with an equivariant map :P ¥ H.
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H: G -bibundles

It is now simple to generalise to bibundles.

Let H;G be acrossed module. An H;G -bibundle is a (right)
principal G-bundle with an equivariant map :P ¥ H.

@ Each fibre of P ® M isan H;G -bispace.
@ They may not be isomorphic as H;G -bispaces!
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-bibundles

It is now simple to generalise to bibundles.

Let

H;G be a crossed module. An H;G -bibundle is a (right)

principal G-bundle with an equivariant map :P ¥ H.

Each fibre of P ® M isan H;G -bispace.
They may not be isomorphic as H; G -bispaces!

The structure map descends to give a commuting diagram:
p -1 H
# #

M -1 H=tG

andwecall :M ¥ H=t G the type or type map of P ¥ M.
The value m tells you the isomorphism class of the fibre
of P ¥ M at m.

Notice that two H;G -bibundles which have di Cerent type
maps cannot be isomorphic.



H;G -bibundles
0®00000

Examples

Example 19

A G-bundle is the same thing as an Aut G ;G -bibundle. The
type map takes values in Out G .
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Examples

Example 19

A G-bundle is the same thing as an Aut G ;G -bibundle. The
type map takes values in Out G .

Example 20

| A\

If A is abelian then an A-bundle is the same thing as a

1; A -bundle where we just define the structure map :P ¥ 1in
the unique way.




H;G -bibundles
0®00000

Examples

Example 19

A G-bundle is the same thing as an Aut G ;G -bibundle. The
type map takes values in Out G .

Example 20

| A

If A is abelian then an A-bundle is the same thing as a

1; A -bundle where we just define the structure map :P ¥ 1in
the unique way.

Example 21

| \

If G is normal in H then H ¥ H=G is a G-bundle and the identity
map H ¥ H makes itan H;G -bibundle.

\
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If :M T Aut G we define T by making the fibre at m the
Aut G ;G -bispace T m . Thetype mapis m m
theimageof m 2 Aut G inOut G .
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Example 22

If :M T Aut G we define T by making the fibre at m the
Aut G ;G -bispace T m . The type mapis m m
theimageof m 2 Aut G inOut G .

Example 23

The trivial H;G -bibundle over M isP G M with the structure
map being the projection to G composed with t: G ¥ H.

| A

A\
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How much of the bibundle does the type map

determine?

@ Because t G isnormal in H we have thatH ¥ H=t G isa
H;t G G=G; bibundle.
@ If we quotient P by G; we obtain a G=G; t G -bundle. The
structure map descends to : P=G; ¥ H and also defines an
H:;t G -bibundle.
@ Thesetwo H;t G -bibundles are isomorphic because of

P=G, -1 H
# #

M - H=t G
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How much of the bibundle does the type map

determine?

@ Because t G isnormal in H we have thatH ¥ H=t G isa
H;t G G=G; bibundle.
@ If we quotient P by G; we obtain a G=G; t G -bundle. The
structure map descends to : P=G; ¥ H and also defines an
H:;t G -bibundle.
@ Thesetwo H;t G -bibundles are isomorphic because of

P=G, -1 H
# #

M - H=t G

IfGy 1thenP ¥ M is the pull-back of H ¥ H=t G by the type
map.
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Products and duals and the type map

@ We can define the product and dual of two H;G -bibundles
fibrewise.

@ If Bibun 4, M is the setofall H;G -bibundles on M we let
Type: Bibun g M ¥ Map M;H=t G

be the map sendingP ¥ M toitstypemap :M ¥ H=t G .
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Products and duals and the type map

@ We can define the product and dual of two H;G -bibundles
fibrewise.

@ If Bibun 4, M is the setofall H;G -bibundles on M we let
Type: Bibun g M ¥ Map M;H=t G

be the map sendingP ¥ M toitstypemap :M ¥ H=t G .

Q@ TypeP Q Type P Type Q
@ Type P Type P 1.




H;G -bibundles
00000e0

Change of structure crossed module




H;G -bibundles
00000e0

Change of structure crossed module

oIf H;G ' H%G" isamorphism of crossed modules
applying the bispace construction pointwise gives a map

Bibun ;g M ¥ Bibun po,g0 M

which preserves products and duals.



H;G -bibundles
00000e0

Change of structure crossed module
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which preserves products and duals.
@ In particular as G; is abelian we have the morphism of crossed
modules 1;G; ¥ H;G defined by the obvious inclusions.
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oIf H;G ' H%G" isamorphism of crossed modules
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which preserves products and duals.

@ In particular as G; is abelian we have the morphism of crossed
modules 1;G; ¥ H;G defined by the obvious inclusions.

@ Combining with the type map gives a sequence (of pointed
sets):

Bung, M Bibun 1., M ¥ Bibun ye M T‘ipe Map M;H=t G
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Change of structure crossed module

oIf H;G ' H%G" isamorphism of crossed modules
applying the bispace construction pointwise gives a map

Bibun ;g M ¥ Bibun po,g0 M

which preserves products and duals.

@ In particular as G; is abelian we have the morphism of crossed
modules 1;G; ¥ H;G defined by the obvious inclusions.

@ Combining with the type map gives a sequence (of pointed
sets):

Bung, M Bibun 1., M ¥ Bibun ye M T‘ipe Map M;H=t G

IfP ¥ Misan H;G -bibundle then Type P 1 if and only if
there is a Gi-bundle R ¥ M such that R P.
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@ Consider the case of G-bundles for G simple, simply
connected and compact. Then we have

Buny ¢ M 1 Bibung M Tipe Map M;Out G

@ In this case Out G is the group of automorphisms of the
Dynkin diagram: a finite group. It follows that
:M 1 Out G liftsto :M ¥ Aut G .
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@ Consider the case of G-bundles for G simple, simply
connected and compact. Then we have

Buny ¢ M 1 Bibung M Tjipe Map M;Out G

@ In this case Out G is the group of automorphisms of the
Dynkin diagram: a finite group. It follows that
:M 1 Out G liftsto :M ¥ Aut G .

Any G-bibundle for G compact, simple, simply connected is of the
formR T for RazZ G -bundle.
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@ Consider the case of G-bundles for G simple, simply
connected and compact. Then we have

Buny ¢ M 1 Bibung M Tipe Map M;Out G

@ In this case Out G is the group of automorphisms of the
Dynkin diagram: a finite group. It follows that
:M 1 Out G liftsto :M ¥ Aut G .

Any G-bibundle for G compact, simple, simply connected is of the
formR T for RazZ G -bundle.

To get ‘interesting’ bibundles, i.e. those which aren’t really
abelian bundles in disguise, we need to use groups which have
large groups of automorphisms; such as the loop group.
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Classifying theory for G-bundles

@ Recall that there is a universal G-bundle EG ¥ BG, unique up
to homotopy equivalence, with the property that for any
G-bundle P there is a classifying map f: M T BG such that
P~*f EG.

@ The classifying map is unique up to homotopy.

@ We want a similar result for H;G -bibundles.
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@ Recall that there is a universal G-bundle EG ¥ BG, unique up
to homotopy equivalence, with the property that for any
G-bundle P there is a classifying map f: M T BG such that
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@ The classifying map is unique up to homotopy.
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@ Notice first thatif P ¥ M is a bibundle and f: N ¥ M then
f P I N is abibundle:
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Y

fP
#

1=h
< #
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Classifying theory for G-bundles

Recall that there is a universal G-bundle EG ¥ BG, unique up
to homotopy equivalence, with the property that for any
G-bundle P there is a classifying map f: M T BG such that
P~*f EG.

The classifying map is unique up to homotopy.

We want a similar result for H;G -bibundles.

Notice first that if P ¥ M is a bibundle and f: N ¥ M then
f P I N is abibundle:

fp I p H
# # #
I m v H=to

@ The structure map of ¥ P is f and the type map is f.
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P cH ¥ Mwhere Gactsby p;h g pg;ht g

@ In fact, given a G-bundle P ¥ M the possible H;G -bibundle
structures on it are the sectionsof P g H ¥ M.
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The bundle of bibundle structures

@ The structure map : P ¥ H is equivalent to a section of
P cH ¥ Mwhere Gactsby p;h g pg;ht g

@ In fact, given a G-bundle P ¥ M the possible H;G -bibundle
structures on it are the sectionsof P g H ¥ M.

@ One way to see thisisto notethatP H ' P gHisa
G-bundle and the projection P H ¥ H is a structure map
makingP H ¥ P gHintoa H;G -bibundle.

@ Any section ofP g H pullsbackP H and this is naturally
identified with P ¥ M and induces the bibundle structure
defined by

o
-
o
I
I

<
1=
o
®
I
I
T
-~
®
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The universal bibundle

@ Apply the construction above to EG ¥ BG and denote
E H;G EG HandB H;G EG sH.

@ This gives the universal bibundle

E H;G 1 H
# #

BH;G I H=tG

where is the projection from E H;G EG H ontoH.
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@ IfP ¥ Misan H;G -bibundle then it has a classifying map as
a G-bundle which is a pull-back diagram

p I Ec
# #
Mm I BG
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@ IfP ¥ Misan H;G -bibundle then it has a classifying map as

a G-bundle which is a pull-back diagram

p I Ec
# #
Mm I BG

@ The pair F f :P "EG H E H;G isG-equivariant
and descendstoamap F: M ¥ B H;G giving us

P ¥ EHG 1 H
# 4 4
M T BHG I H=tG
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@ IfP ¥ Misan H;G -bibundle then it has a classifying map as

a G-bundle which is a pull-back diagram

p I Ec
# #
Mm I BG

@ The pair F f :P "EG H E H;G isG-equivariant
and descendstoamap F: M ¥ B H;G giving us

P ¥ EHG 1 H
# # #
M ¥ BHG 1 H=tG

In the above situation the type map of P ¥ M satisfies

F. Conversely take any F: M 1 B H;G then
F EH;G ! Misan H;G -bibundle with type map F.
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@ We say that F:F%:M ¥ B H;G are -homotopic if
F F? and we can homotopy one to the other with a
homotopy H¢ such that H¢ is constant.

@ Denote by M;B H;G the resulting -homotopy classes.
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@ We say that F:F%:M ¥ B H;G are -homotopic if
F F? and we can homotopy one to the other with a
homotopy H¢ such that H¢ is constant.

@ Denote by M;B H;G the resulting -homotopy classes.

The classifying map of P ¥ M is unique up to -homotopy.
Pull-back defines a bijection

M;B H;G ¥ IBibun ¢ M

where IBibun 4. M denotes the set of all isomorphism
classes of H;G -bibundles.
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@ We say that F:F%:M ¥ B H;G are -homotopic if
F F? and we can homotopy one to the other with a
homotopy H¢ such that H¢ is constant.

@ Denote by M;B H;G the resulting -homotopy classes.

The classifying map of P ¥ M is unique up to -homotopy.
Pull-back defines a bijection

M;B H;G I IBibun y.¢ M
where IBibun 4. M denotes the set of all isomorphism

classes of H;G -bibundles.

@ The product and dual of bibundles makes IBibun . M into
a group.

@ It is possible to make B H; G into a group so that the
bijection above is an isomorphism of groups.
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