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Let me first tell you some things about what to expect from the coming
lectures:

1. These are lectures in mathematics.

2. Most of the material will be pure mathematics. Applications to the
real world objects, type theories, will appear only at the end when a
sufficiently rich mathematical language has been developed.

3. Most of the mathematics that I will talk about can be found in my
papers posted on the arXiv.
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At the center of my approach to the mathematical theory of type theories
is a class of mathematical objects that are called C-systems. They were
originally defined by John Cartmell in his 1978 Ph.D. thesis under the
name contextual categories.

A C-system equipped with additional operations corresponding to the
inference rules of a type theory is called a model or a C-system model
of this system of rules or of this type theory.

There are other classes of objects on which one can define operations
corresponding to inference rules of type theories most importantly cat-
egories with families or CwFs. They lead to other classes of models.



Introduction 4

In order to provide a mathematical representation (semantics) for a type
theory one constructs two C-systems.

• One C-system, that we will call the term C-system of a type theory,
is constructed from the formulas of type theory.

To explain how to do it in sufficient generality and at the same time
with mathematical rigor is the first and main goal of these lectures.

• The second C-system is constructed from the category of abstract
mathematical objects.

To explain how to do this construction is the second goal of the
lectures.
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Both C-systems are then equipped with additional operations corre-
sponding to the inference rules of the type theory making them into
models of type theory. The model whose underlying C-system is the
term C-system is called the term model.

In my papers I have described how to construct abstract models of two
systems of inference rules - the rules for dependent products and the
rules for Martin-Lof identity types. How to construct models for the
rules for dependent sums will be described in a forthcoming paper.

How to construct models of these systems of rules on the term C-systems
is, at the moment, one of the missing pieces of the general theory but
this particular piece should be easy to fill in.
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A homomorphism from the term model to another, usually abstract,
model of a type theory is called a representation of this type theory.

More generally, any functor from the category underlying the term C-
system of the type theory to another category may be called a represen-
tation of the type theory in that category.

Since objects and morphisms of term models are built from formulas of
the type theory and objects and morphisms of abstract C-systems are
built from mathematical objects such as sets or homotopy types and
the corresponding functions, such representations provide mathematical
meaning to formulas of type theory.
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A crucial component of this approach is the expected result that for a
particular class of the inference rules the term model is an initial object
in the category of models. This is known as the Initiality Conjecture.

In the case of the pure Calculus of Constructions with a decorated appli-
cation operation this conjecture was proved in 1988 by Thomas Streicher
in his Ph.D. thesis.

The problem of finding an appropriate formulation of the general version
of this conjecture and of proving this general version is the key problem
of this theory. If we have time I will try to demonstrate its complexity
and to suggest a partial answer to the first question that arise there -
how to give a mathematical definition of a general system of inference
rules.
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For systems of inference rules for which the initiality conjecture holds
there is a unique homomorphism from the term model to any other
model.

Only if we know that the initiality conjecture holds for a
given system of inference rules can we claim that a model
defines a representation.
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A similar problem also arises in the predicate logic but there, since one
considers only one fixed system of syntax and inference rules, it can and
had been solved once without the development of a general theory.

The term models and representations for a class of type theories can
be obtained by considering slices of the term model of the type theory
called Logical Framework (LF), but unfortunately it is unclear how to
extend this approach to type theories that have more substitutional
(definitional) equalities than LF itself.
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Finally let me make a remark about another class of type theories.

For the type theories that I have been talking about the class of valid
sentences is defined as the class of derivable sentences.

There are other type theories where the relationship between valid sen-
tences and the inference rules is less direct. Much of the theory that I
will be speaking about applies to these type theories as well. However,
the initiality conjecture is unlikely to hold for them and therefore not
every model of the rules defines a representation.

What are the additional requirements that models have to satisfy to de-
fine representations for these type theories is, to me at least, a completely
open question.
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At this let me end the introduction and start the mathematical part of
the lectures.
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Since we want the constructions that I will be talking about to be used for
certification of type theories and eventually of proof assistants for consis-
tency and for their applicability as tools in developing pure mathematics
these constructions themselves need to be done in a formal system that
has a high level of trust in the mathematical community.

Today such a system is the Zermelo-Fraenkel set theory and theories
that are close to it.

Therefore all of the mathematics that I will be explaining will be done
with an eye to future formalization in the ZF or ZF with a Grothendieck
universe.
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While we will work in the ZF we will work constructively.

What it means to me is that everything in these lectures and in my
recent papers can be formalized both in the ZF and in the UniMath
without using any additional axioms.

In particular it means that we will not use the axiom of the excluded
middle or the axiom of choice.
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We fix a universe U . In the ZF a universe is simply a set that satisfies
some conditions. We do not make precise here what conditions are
required from U . It will be always sufficient to require that U satisfies
the conditions that define a Grothendieck universe but for most of our
work much weaker conditions, weak enough to be able to construct such
a universe inside ZF, suffice.
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By a category C we mean a pair of sets Mor(C) and Ob(C) with four
maps

∂0, ∂1 : Mor(C)→ Ob(C)

Id : Ob(C)→Mor(C)

and
◦ : Mor(C)∂1 ×∂0 Mor(C)→Mor(C)

which satisfy the well known conditions of unity and associativity.

Important note: we write composition of morphisms in the diagram-
matic order, that is we write f ◦g or fg for f : X → Y and g : Y → Z.
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Definition 1 A C0-system is a pre-category CC with additional
structure of the form

1. a function l : Ob(CC)→ N,

2. a map ft : Ob(CC) → Ob(CC) such that if l(X) > 0 then
l(ft(X)) = l(X)− 1 and if l(X) = 0 then ft(X) = X,

3. for each X ∈ Ob(CC) a morphism pX : X → ft(X),

4. for each X ∈ Ob(CC) such that l(X) > 0 and each morphism
f : Y → ft(X) an object f ∗X and a morphism

q(f,X) : f ∗X → X

such that the following additional conditions are satisfied:
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1. for X ∈ Ob(CC) such that l(X) > 0 and f : Y → ft(X) one
has l(f ∗(X)) > 0 and ft(f ∗X) = Y and the square

f ∗X
q(f,X)−−−→ X

pf∗X↓ ↓pX
Y

f−→ ft(X)

(1)

commutes,

2. for X ∈ Ob(CC) such that l(X) > 0 one has id∗ft(X)(X) = X

and q(idft(X), X) = idX,

3. for X ∈ Ob(CC) such that l(X) > 0, g : Z → Y and f : Y →
ft(X) one has (gf )∗(X) = g∗(f ∗(X)) and

q(gf,X) = q(g, f ∗X)q(f,X),

4. l−1(0) is a one element set and its element ptCC is a final object
of CC.
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For f : Y → X in CC we let ft(f ) : Y → ft(X) denote the composi-
tion f ◦ pX .

Definition 2 A C-system is a C0-system together with an operation
f 7→ sf defined for all f : Y → X such that l(X) > 0 and such that

1. sf : Y → (ft(f ))∗(X),

2. sf ◦ p(ft(f))∗(X) = IdY ,

3. f = sf ◦ q(ft(f ), X),

4. if X = g∗(U) where g : ft(X)→ ft(U) then sf = sf◦q(g,U).
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Proposition 3 Let CC be a C0-system. Then the following are
equivalent:

1. the canonical squares (1) of CC are pull-back squares,

2. there is given a structure of a C-system on CC.

The proof can be found in the paper ”Subsystems and regular quotients
of C-systems”.
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Note: we fix a distinguished one element set in U and call it unit. It’s
only element is called tt. This strange naming is taken from the naming
used in the proof assistant Coq.

The choice of a one element set allows us to speak about things such as
the one point category.
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Examples

1. The trivial C-systems are the C-systems with only one object ptCC

and only the identity morphism from ptCC to ptCC. Note that as we are
working in ZF there are very many such C-systems - the set of trivial C-
systems in the universe U is in a bijective correspondence with the set of
pairs of one element sets in U and therefore in a bijective correspondence
with U × U . All trivial C-systems do not form a collection that can be
defined as a set in the ZF.

Our choice of a one element set allows us to speak about the trivial
C-system and we call it by the same name as the one element set.
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2. The almost trivial C-system. It is the C-system whose underlying
category is the category Ntriv with the set of objects being the set N of
natural numbers and the set of morphisms being the set N×N so that
there is exactly one morphism between any two objects.

The length function is the identity. All other structures are uniquely
determined by the axioms.
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3. Important: Consider the category stn(2)triv with two objects 0
and 1 and the set of morphisms {0, 1} × {0, 1} so that there is exactly
one morphism between any two objects. Then there is no C-system
structure on this category.

Indeed, the axiom that l−1(0) = {pt} implies that for the other object
X we have l(X) > 0. Then p∗X(X) is defined and l(p∗X(X)) = l(X) + 1
and therefore p∗X(X) 6= pt and p∗X(X) 6= X . However, there is no third
object in the category.

On the other hand it is easy to construct an equivalence between the
category Ntriv and the category stn(2)triv. This shows that the C-system
structure on categories can not be transported along the equivalences of
categories.


