MPIM topology seminar
Fees 8, 2021

3- and 4-mamfolds
via
Knots and lines

Slogan: "Knots and links give a concrete approach to studying 3-and 4-manifolds"

Plan:

- Dehn smgeny descriptions of 3-marufolds
-existence \& uniqueness
- 3-manifolds bonnd 4-manfolds [Rokhlin 1951]
- Kirby diagrams for 4-manifolds - examples
- Sample problens and corjectuves
- atomic surgery problems
- homology cobordism group \& miangulations

Dehn smgery on links

Examples:

Lens spaces

$$
H_{*}(P) \cong H_{*}\left(S^{3}\right)
$$

Poincare' homology sphere

Sefert fibered spaces
Def: $M^{3}=\amalg S^{1}$ disjoint union of circles equiv. $M=S^{\prime}$-bundle oven an or bifold.

S^{\prime}-bundle over S^{2} with euler $\#=C$
[Lickorish-Wallace 1960] Every closed, orientable M^{3} is the result of Dehn smenery on some link $L \leqq S^{3}$

Sketch of proof:
[Moise 1952] Every TOP 3-mfld admits a mique triangulation.

3 -simplices
M a 3 -mfed w. triangulation K.
Then $\nu\left(K_{(1)}\right)$ is a handlebody tubular ubd

So is $\nu\left(K^{*}(1)\right)$
dual driangulation

So, every closed, orientable M^{3} admits a Heegaard splitting i.e. $\quad M=H g \underset{\varphi: \Sigma_{g} ⿹ \cong}{\cup} H g$

Note $S^{3}=\operatorname{Hg} \underset{\psi: \sum_{g} S}{\cup} H g$ standard.

Every $\varphi: \sum_{g} S \cong$ is a composition of Dehn twists τ_{i}, up to isotopy

$\varphi^{-1} \psi$ extends to $\mathrm{Hg} \backslash$ disjoint solid tor

closed,
oriented
Conclusion: Every 3 -mild is the result of ± 1-framed Dehn smegery on some link $L \subseteq S^{3}$

[handle slides

+ blow up Id own]

3-mamifolds bound 4-mamifolds [Rokhlin 1951]
\rightarrow simply comn.
Geometic proof: Integnal suggery $\Longleftrightarrow 2$ handle addition $D^{2} \times D^{2}$

Conclusion: Every $M^{3}=\partial\left(\right.$ simply connected $\left.W^{4}\right)$

Questions:
Q1:n $\left(M^{3}\right):=\min \{n \mid M$ is the nesult of Del singer $\}$ on an n-comp link $\subseteq S^{3}$

$$
n\left(T^{3}\right)=3
$$

Flower bounds from $\operatorname{rk}\left(H /(M)\right.$), weight ($\pi_{1}(M)$)
Best that we can do: $\exists M, \operatorname{rk}(H(M))=1$, or $0, \pi, \omega t=1$. $n(M)=2$.
\# normal gens
Conjecture: (Wiegold) Every finite pres. perfect app has weight are
Q2: $\Omega^{3}=0$
Given M^{3}, what kinds of 4 -molds W have $\partial W=M$?

- restrict H_{*} ?
- require low bs?
- spherical?
(Smooth) 4-mamifolds
W^{n} smooth \Longrightarrow admits a Morse function \Longrightarrow admits a handle index $R \leadsto n$-dim decomposition critical prs index r handle

$$
D^{k} \times D^{n-k}
$$

attached along $\partial D^{k} \times D^{n-k}$

Without loss of generality, assume \exists single O - hand le \exists single n-handle

Dimension 4
O-handle: $=D^{0} \times D^{4}=D^{4}$
Further handles are attached on $\partial^{4}=S^{3}$
2 handles attached along $\partial D^{2} \times D^{2}=S^{1} \times D^{2}$
\uparrow
a Hacked ally (framed) knots.
[Landenbach-Poenarn 1972] Even g homed of $\# S^{\prime} \times S^{2}$ extends over $4 S^{1} \times D^{3}$
\rightarrow in a closed 4-manifold, unique way to attach the 3 h \& $4 h$

In accosed 4-myed, only need to explain where the th and \& he are attached.

What are we looking at?

$=S^{3}$
$=D^{2}$-bundle over
S^{2} with euler $\#=1$

u^{4-h} along s^{3}

$2 h$
(Bu)

Intersection form for closed 4 -ufleds
$Q_{w}: H_{2}\left(w^{4} ; \pi\right) \times H_{2}(w ; \pi) \longrightarrow \pi / \pi$

$$
\begin{aligned}
& \pi / 2) \times H_{2}(w ; / \Delta) \longrightarrow\left\langle x^{*} \cup y^{*},[w]\right\rangle \\
& (x, y) \longmapsto
\end{aligned}
$$

represent H_{2} classes by enface, make manoverse, then count intersection points (including sign)
egg.

$\frac{\partial E 8=\text { Poincare' }}{2}$

isotopy

isotopy

Sample problems

- Atomic surgery problems.
surgery works in $\operatorname{dim} 4$ in TOP category
ifs
every element in a certain family of links is freely slice

$L \subseteq S^{3}$ freely slice if band dis joint disco in B^{4}

$$
\stackrel{+}{\pi_{1}(\text { comp }) \cong F_{n}} .
$$

Th (Ring (Hop))
$L \subseteq S^{3}$ slice $\Longleftrightarrow S_{0}^{3}(L)$ bounds a 4 -meld

Zero surgery on each comp of L

- Triangulation conjecture: Is every M^{n} honeo to a simplicial A: No ($n=4$ Freedman, $n \geqslant 5$ complex? 1982 Manolescu 2013)

$$
\Theta_{n}^{\eta L}:=\left(\left\{y^{n} \text { oriented } \mid H_{*}(y) \cong H *\left(S^{n}\right)\right\}_{/}^{\eta} / \underset{\substack{\text {-hom } \\ \text { Cob }}}{ }, \#\right)
$$

[Kervaive 1969] $\Theta_{n}^{7 /}=0 \quad \forall n \neq 3$
Define $\mu: \theta_{3}^{\pi / L} \rightarrow \pi / 2 \quad$ Rokhlin invariant
$Y \longmapsto \frac{\sigma(W)}{8}$, W compact, spin, smooth, $\partial W=Y$.
e.g. $P=\partial E 8 \Rightarrow \mu(P)=1 \quad \Rightarrow \theta_{3}^{\pi / L} \neq 0$
[Galewski-Stern, Matumoto 1980] Eveng M^{n} can be triangulated iff
$\exists H^{3} \in \Theta_{3}^{\pi}$ with $\mu(H)=1$ and $H \# H=\partial($ acyclic PL 4-mfld)

Questions?

