MPIM topology seminar Fels 8, 2021

3- and 4-manifolds via knots and links

Dehn sngeng on links

Lens spaces

 $H_{*}(P) \cong H_{*}(S^{3})$

Poincave homology sphere

[Lickonish-Wallace 1960] Every closed, orientable
$$M^3$$
 is the result of Dehn sugery on some link $L \subseteq S^3$

Sketch of proof: [Moise 1952] Every TOP 3-mfld admits a migne mangulation. Ma3-mfld w. mangulation K. Then v(K(1)) is a handlebody 6 Ha So is $v(k^{*}(y))$ dual mangulation 3-simplices

So, every closed, orientable
$$M^3$$
 admits a Heegaard splitting
i.e. $M = Hg \cup Hg$
 $y: \mathbb{Z}_g S \cong$

Note
$$S^3 = H_g \cup H_g$$
 standard.
 $Y: Z_g S$

Conclusion: Every 3-mfld is the result of
$$\pm 1$$
-framed Dehn
Smapping on some link $L \subseteq S^3$

Questions:
Questions:
Qd:n(M³) := min gn | M is the result of Delin surgery]
m an n-comp link Es³
n(T³) = 3
Elower bounds from rk(H(M)), weight(
$$\pi_r(M)$$
)
Best that we can do: $\exists M$, rk(H(U)) = 1, or O , π_r wt = 1.
N(M) = 2.
Conjecture: (Wiegold) Every finite pres. pufelt gp has weight
Q2: $\Omega^3 = O$
Given M^3 , what kinds of 4-mflds W have $\exists W=M$?
• require low b2?
• apphenical?

Dimension 4
O-handle := D° × D⁴ = D⁴
Further handles are attached on
$$\partial D^4 = S^3$$

2 handles attached along $\partial D^2 × D^2 = S' × D^2$
attached along (framed)
knots.
[Landenbach-Poenorn 1972] Every horner of # S'×S² extends over
4S'×D³
in a closed 4-manifold, Image way b attach the 3-h & 4-h
Inaclosed 4-myld, only need to explain where the
I-h and 8-h are attached

What are we looking at?

Intersection form for closed 4-mplds $Q_{W}: H_{2}(W^{4}; \pi) \times H_{2}(W; \pi) - (\chi, \chi) - (\chi) - ($

represent H₂ classes by enfaces, make manorerse, then count intersection points (including sign)

JE8 = Poincave

Sample problems

· Atomic sngery problem. Engenz works in dim 4 in TOP category every element in a certain family of links is freely slice L C S² freely slice e.g. bound disjoint disco in B4 $\pi_1(\operatorname{comp})\cong F_n$. Wh (Bing (Hopf))

• Triangulation conjecture : Is every
$$M^n$$
 homeo to a simplicial
 $A: No (n=4 \text{ Freedman}, n7,5 \text{ complex}?)$
 $\Theta_n^{TL} := \left(\sum_{j=1}^{n} \sum_{j=1}^{n} PL \\ | H*(Y) \cong H*(S^n) \right)^j / TL-hom, \# \right)$
 $[Kenvaire 1969] \Theta_n^{TL} = O \forall n \neq 3$
 $Define \mu: \Theta_3^{TL} \longrightarrow TL/2 \text{ Robellin invariant}}$
 $\forall \mu \longrightarrow \overline{\sigma(W)}, W \text{ compact}, \text{ spin, smooth}, \partial W=Y.$
 $e.g. P = \partial E8 \implies \mu(P) = 1 \implies \Theta_3^{TL} \neq 0$
 $[Galawski-Stern, Matumoto 1980] Every M^n can be briangulated
 $IH^3 \in \Theta_3^{TL}$ with $\mu(H) = 1$ and $H \# H = \partial(acyclic PL 4-mfld)$$

Questions?