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Materialism vs. structuralism

Early 20th century: set theory as mathematical foundations

Everything is a set.

Elements aren’t an actual notion.

Different ways to encode natural numbers:

Von Neumann: 0 := ∅, 1 := 0 ∪ {0} = {∅}, 2 := 1 ∪ {1} = {∅, {{∅}}}, . . .
Zermelo: 0′ := ∅, 1′ := {0′} = {∅}, 2′ := {1′} := {{∅}}, . . .
Some statements about single natural numbers are now dependent on the coding:

0 ∈ 2, but 0′ /∈ 2′

What does a statement like “n ∈ m” even mean?

Syntactically, we can even make statements such as:

Q ∈ C, 0 ∈ π,
1

2
∈ 2

4
, R ∈ exp(2)

Not how we think about the ∈-relation!
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Equality vs. isomorphism

In modern-day mathematics, we often treat isomorphic structures as equal.

Problem: If A ∼= B and x ∈ A, then in general x /∈ B!

Examples: 2N ∼= 2N + 1 as sets, Z/2Z ∼= {id, (01)} as groups, (−1, 1) ∼= (−π, π) as
topological spaces, . . .

Solution: Make the isomorphism explicit. Given ϕ : A ∼= B, if x ∈ A we do have ϕ(x) ∈ B.

But this is a rather manual process: syntactically, x ∈ B makes sense (well-formed), even
if A 6⊆ B.
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More structuralist foundations?

Question: Alternative foundations that have more structuralist flavor?
Some desiderata:

abstract away from encodings (N vs. N′)
disallow “nonsense expressions” like 0 ∈ 1, N ∈ π, . . .
capture isomorphism more natively

Answer: Yes, for instance use type theory instead of set theory.

In particular, the variant due to Per Martin-Löf, Martin-Löf type theory (MLTT).

Extension of MLTT: “Isomorphism as equality” made precise by Vladimir Voevodsky’s
Univalence Axiom ; Homotopy Type Theory/Univalent Foundations (HoTT/UF)

In this talk: Basic vocabulary of MLTT & taste of synthetic homotopy theory in HoTT
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Homotopical foundations? Sets vs. homotopy types

Let’s follow Yuri Manin1 in imagining what homotopical foundations could look like:
Instead of sets, clouds of discrete elements, we envisage some sorts of vague
spaces, which can be very severely deformed, mapped one to another, and all the
while the specific space is not impor- tant, but only the space up to deformation.

Replace sets by homotopy types!

All maps are continuous.

1M. Gelfand, Notices Am. Math. Soc. 56, Non.10, 1268–1274 (2009; Zbl 1178.01044). Emphases and
interpretations due to the speaker.
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Homotopical foundations? Everything is continuous

Earlier, all these spaces were thought of as Cantor sets with topology, their maps
were Cantor maps, some of them were homotopies that should have been factored
out, and so on.

Set theory is fundamentally discrete (e.g. def. of a topological space).

Homotopical foundations should be fundamentally continuous.

Then, have to break continuity this to achieve discreteness:
I am pretty strongly convinced that there is an ongoing reversal in the collective con-
sciousness of mathematicians: the right hemispherical and homotopical picture of the
world becomes the basic intuition, and if you want to get a discrete set, then you pass
to the set of connected components of a space defined only up to homotopy.
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Dependent type theory (DTT)

DTT consists of derivations of judgments involving:

types A, terms a : A, contexts Γ ≡ [x1 : A1, . . . , xn : An]

Intuitions: types: objects, terms: elements, contexts: lists of variables
Valid derivations are produced from a bunch of given rules (next slide).

Dependent types/type families Γ ` A:

“A is a (dep.) type in context Γ”

This means: for any ~x in Γ, we have that
A(~x) is a type.
Examples:

· ` Bool
· ` N and · ` R
n : N ` Rn

p : Prime, n : N ` Fpn

x : M ` TxM

Dependent terms Γ ` f : A:

“f is a (dep.) term in A (over ctxt. Γ)”

This means: for any ~x in Γ, we have a
term f(~x) : A(~x).
Examples:

· ` ⊥ : Bool and · ` > : Bool
n : N ` succ(n) : N
n : N ` ~0n : Rn

p : Prime, n : N ` 1pn : Fpn

x : M ` ~0x : TxM
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Type formers: new types from old ones

Product types

Given types A and B are types, there ex. a
type A×B (formation).

Γ ` A Γ ` B
Γ ` A×B

(×-Form)

Given terms a : A and b : B, there ex. a term
〈a, b〉 : A×B (introduction).

Γ ` a : A Γ ` b : B

Γ ` 〈a, b〉 : A×B
(×-Intro)

Given a term p : A×B, there ex. terms
pr1(p) : A and pr2(p) : B (elimination).

Γ ` p : A×B
Γ ` pr1(p) : A

(×-Elim1)
Γ ` p : A×B
Γ ` pr2(p) : B

(×-Elim2)

Computation: pr1(〈a, b〉) ≡ a, pr2(〈a, b〉) ≡ b

Function types

Given types A and B, there ex. a type
A→ B.
Γ ` A Γ ` B

Γ ` A→ B
(→-Form)

Given for all a : A a term f(a) : B, there ex. a
term λa.f(a) : A→ B (i.e. “a 7→ f(a)”).

Γ, a : A ` f(a) : B

Γ ` λa.f(a) : A→ B
(→-Intro)

Given terms f : A→ B and a : A, there ex. a
term f(a) : B.

Γ ` f : A→ B Γ ` a : A

Γ ` f(a) : B
(→-Elim)

(λa.f(a))(x) ≡ f(x) and λa.f(a) ≡ f
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Dependent type formers

Terms of product type: pairs 〈a, b〉 : A×B
with a : A and b : B.

Dependent generalization: A type and
a : A ` B(a) dep. type ; dep. pair or
dep. sum type

∑
a:A

B(a) whose elements are

pairs 〈a, b〉 with a : A and b : B(a).

Terms of function type: functions f : A→ B
taking a : A to f(a) : B.

Dependent generalization: A type and
a : A ` B(a) dep. type ; dep. function or
dep. product type

∏
a:A

B(a) whose elements

are functions (sections) f taking a : A to
f(a) : B(a)

A

∑
a:A

B(a)

•
x

f :
∏
a:A

B(a)

B(x)

f(x)
•
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Natural numbers

The structure of natural numbers is freely generated 0 and succ.
Proof by induction: Want to prove a property for all k. Then it suffices to assume that
k = 0 or k = n+ 1 (given that it holds for n).
More generally: Given any set A, to define a function f : N→ A, it suffices to define f(0)
and f(n+ 1) (given that f(n) has been already defined).
To define N in type theory, formulate the induction principle type-theoretically:

· ` N
(Nat-Form)

· ` 0 : N
(Nat-Intro0)

n : N ` succ(n) : N
(Nat-Introsucc)

Γ, n : N ` P (n) Γ ` p0 : P (0) Γ ` ps :
∏
n:N

P (n)→ P (succ(n))

Γ ` indN(p0, ps) :
∏
n:N

P (n)
(Nat-Elim)

& computation rules: indN(p0, ps)(0) ≡ p0 : P (0) and
indN(p0, ps)(succ(n)) ≡ ps(n, indN(p0, ps, n)) : P (succ(n))
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The Curry–Howard interpretation

Type theory Logic Set theory
A proposition A set A

x : A evidence/witness for A element x ∈ A
0,1 ⊥, > ∅, {∅}

A+B A ∨B disjoint union A+B
A×B A ∧B set A×B of ordered pairs
A→ B A⇒ B set A→ B of functions

x : A ` B(x) property/predicate B(x) family of sets (Bx)x∈A
x : A ` b : B(x) conditional proof choice of elements/section x 7→ 〈x, b(x)〉∑

x:A

B(x) ∃x.B(x) disjoint sum
∐
x:A

B(x)∏
x:A

B(x) ∀x.B(x) product
∏
x:A

B(x)
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Equality vs. equality

Recall: We wanted a nice (meaning intrinsic) way to treat isomorphism.

So far, our type theory comes with two basic judgments of equality: term equality
x ≡ y : A and type equality A ≡ B.

This is called definitional or judgmental equality.

These are produced by rewrite rules, i.e. syntactic conversions, given by the postulated
computation rules (e.g. pr1(〈a, b〉) ≡ a).

Problem: We cannot expect this to adequately model an interesting notion of
isomorphism.

In particular, having too many definitional equalities destroys the computational behavior
of the theory. ; Can’t use as programming language!

Solution: Introduce another notion of equality!
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Identity type: Formation and introduction

Per Martin–Löf’s identity types from the 1970s. ; propositional equality

Idea: Let x, y : A. Then there is a type (x =A y) of identifications or proofs that x is equal
to y (formation).

In a topological picture, we could imagine p : (x =A y) to be a path from x to y (more on
this later).

For any x : A there should be a term reflx : (x =A x) (introduction).

Γ ` A
Γ ` x, y : A ` (x =A y)

Id-Form
Γ ` A

Γ, x : A ` reflx : (x =A x)
Id-Intro
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Identity type: Elimination and computation

Q: How do we eliminate out of (x =A y)?

A: Another induction principle!

Idea: Identity types are freely generated by the reflexivity terms.

Identity or path induction: Given a type B depending on x, y : A and p : x =A y, to give
a term in B(x, y, p) we can assume y ≡ x and p ≡ reflx:

Γ ` A Γ, x : A, y : A, p : x =A y ` B(x, y, p)

Γ ` ind=A
:
∏
a:A

B(a, a, refla)→
∏
x,y:A

∏
p:(x=Ay)

B(x, y, p)
Id-Elim

with computation rule: ind=A
(q, a, a, refla) ≡ q
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Identity type: Equality as structure

Using path induction, we can show that the identity really behaves like equality should.

We have postulated a reflexivity function refl :
∏
x:A

(x =A x).

Goal: Want to define symmetry/inversion inv :
∏
x,y:A

(x =A y)→ (y =A x) and

transitivity/composition comp :
∏

x,y,z:A

(x =A y)→ (y =A z)→ (x =A z).
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Identity type: Inversion

Theorem (Inversion for the identity type)

Let A be a type. There is a function inv :
∏
x,y:A

(x =A y)→ (y =A x).

Proof.

We want to produce a function depending on x, y : A and p : (x =A y), landing in
B(x, y, p) :≡ (y =A x). By path induction, it suffices to assume x ≡ y and p ≡ reflx. We have
the function f :≡ λx.reflx :

∏
x:A

(x =A x). Thus, we take

inv :≡ ind=A
(f) :

∏
x,y:A

∏
p:(x=Ay)

(y =A x).
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Types as groupoids

Define composition comp :
∏

x,y,z:A

(x =A y)→ (y =A z)→ (x =A z) similarly by path

induction.

Let us abbreviate p−1 :≡ invx,y(p) and p ∗ q :≡ compx,y,z(p, q).

One can also show some expected laws, namely associativity, neutrality, and
inversion, e.g.

(p ∗ q) ∗ r =(x=Az) p ∗ (q ∗ r), refly ∗ p =(x=Ay) p, p−1 ∗ p =(x=Ax) idx, . . .

These are known as the groupoid laws.

They arise as higher identities/homotopies ϕ : p =(x=Ay) q for p, q : (x =A y):

x y

p

q

ϕ
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Types as weak∞-groupoids

Thus, via the dependent identity type, any type A can be endowed with the structure of a
groupoid. ; Martin Hofmann and Thomas Streicher’s groupoid model with non-trivial
identity types (1994).

But any identity type (x =A y) is in particular a type and hence carries itself a groupoid
structure.

Moreover, all these ensuing groupoid laws hold only in the propositional sense, i.e. not
definitionally but only up to higher paths, in arbitrarily high dimensions.

; types as weak∞-groupoids (conj. Hofmann–Streicher, made more precise
semantically in 2006 by Voevodsky and Streicher)

More on this in Léonard’s talk next Monday, March 21!
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The Curry–Howard–Voevodsky interpretation2

Type theory Logic Set theory Homotopy theory
A proposition set space/homotopy type

x : A witness/realizer element point
0,1 ⊥, > ∅, {∅} ∅, ∗

A+B A ∨B disjoint union coproduct space
A×B A ∧B set of ordered pairs product space
A→ B A⇒ B set of functions function space

x : A ` B(x) predicate B(x) family of sets fibration
x : A ` b : B(x) conditional proof choice of elements section

Σx:AB(x) ∃x.B(x) disjoint sum total space
Πx:AB(x) ∀x.B(x) product space of sections
p : (x =A y) x = y x = y path x y in A

2Table based on: Emily Riehl The synthetic theory of ∞-categories vs the synthetic theory of ∞-categories,
Presentation at Vladimir Voevodsky Memorial Conference, IAS, Princeton, NJ, USA, 2018.
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Dependent types as fibrations

Identity proofs p : (x =A y) are a kind of “path”.
Indeed, dependent types behave well w.r.t. paths in the base.
Namely, every dependent type supports a notion of path transport.

For a : A ` B, we can define a function trA :
∏
x,y:A

∏
p:(x=Ay)

B(x)→ B(y).

Again by path induction, with trB(x, x, reflx) :≡ idB(x).
Indeed, this is connected with a synthetic notion of path lifting:∑

a:A

B(a) d trB(d)

A x y
p

lift(p,d)
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Homotopical interpretations of MLTT?

Types as weak∞-groupoids (precursor: Hofmann–Streicher; established by Voevodsky,
Kapulkin–Lumsdaine during 2006–2012)

Can model MLTT in “abstract homotopy theories”, with identity types as path space
fibrations (Awodey–Warren 2006)

Syntactic structure groupoid and factorization structures from id types (van den Berg,
Garner, Gambino, Lumsdaine mid-2000s)

Voevodsky ’06: Univalence Axiom (UA) giving rise to homotopy type theory (HoTT) as
an extension of MLTT

Univalence identifies equality of types with equivalence

What does this mean, more precisely?



Outline Introduction Basics of type theory Identity types Homotopy type theory Synthetic homotopy theory Summary References

Weak equivalences

What is an appropriate notion for equivalence between types? It is a kind of notion of
isomorphism.

Let f : A→ B be a function between types. We say that f is a weak equivalence (after
Voevodsky) if the following type is inhabited:

isWeq(f) :≡
( ∑
g:B→A

∏
x:A

(g ◦ f)(x) = x
)
×
( ∑
h:B→A

∏
y:B

(f ◦ h)(y) = y
)

A priori, it looks as if being a weak equivalence is structure rather than a property. But one
can show that it actually is just a property (more later).

We can define the type of equivalences from A to B as

(A ' B) :≡
∑

f :A→B

isWeq(f).
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Universe and univalence

How else could two types be equal?

We postulate the existence of a (“large”) type U of all (“small”) types, i.e.: If A is a (“small”)
type, then A : U .

This will be convenient because it allows us to identify (U -small) dependent types
a : A ` B(a) with families B : A→ U .

Since U is a (large) type, there exists the identity type (A =U B) for A,B : U .

There is a map idToWeqA,B : (A =U B)→ (A ' B) defined by path induction (mapping
reflA : (A =U A) to idA : (A ' A)).

Voevodsky’s Univalence Axiom states that idToWeq is an equivalence, thus “equivalence
is equivalent to equality”:

(A =U B) ' (A ' B)
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Consequences of univalence

Why is univalence useful or desirable?

Function extensionality: For x : A ` B(x) : U and f, g :
∏
x:A

B(x), we have

(f = g) '
∏
x:A

(f(x) =B g(x)).

Fibrations are families: For a type A : U , we have
∑
E:U

(E → A) ' (A→ U).

Univalent foundations: Isomorphism-invariant foundations of mathematics (unlike set
theory which is sensitive to encoding)

Structure identity principles: Find out more in Paige’s talk in two weeks, Monday, March
28!
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Homotopy fibers and type families

Let f : A→ B be a map between types. Voevodsky defines the homotopy fiber at y : B
as the type

fib(f, y) :≡
∑
x:A

f(x) =B y.

Using univalence, one can show that every map f : A→ B is equivalent to the 1st
coordinate projection pr1 :

(∑
b:B

fib(f, b)
)
→ A (fibrant replacement).

Converting between a map into B and a family over B is given by considering the family
of fibers or, resp., the associated projection:

(∑
E:U

E → B
)

(B → U)

λE,f.λb.fib(f,b)

λP.πP

'

where πP :≡ pr1 :
(∑
b:B

P (b)
)
→ B. This, again, uses univalence.
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Homotopy levels

Voevodsky defines the following hierarchy of homotopy levels:
A type A is contractible or a (−2)-type if we have an inhabitant

isContr(A) :≡
∑
x:A

∏
y:A

(x =A y).

A type A is a proposition or a (−1)-type if we have an inhabitant

isProp(A) :≡
∏
x,y:A

isContr(x =A y).

A type A is a set or a 0-type if we have an inhabitant

isSet(A) :≡
∏
x,y:A

isProp(x =A y).

In general: For n ≥ 1, a type A is an n-type if we have an inhabitant

is-n-type(A) :≡
∏
x,y:A

is-(n− 1)-type(x =A y).
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Propositions and weak equivalences

Propositions are important because their inhabitants are determined uniquely up to
homotopy.

; mere properties (up to homotopy) rather than structure.

Examples: is-n-type(A), isWeq(f), . . .

Voevodsky initially defined a weak equivalence f : A→ B such that all its fibers are
contractible: ∏

b:B

isContr(fib(b, f))

This type is again a proposition, and it is equivalent to our previous definition
(bi-invertibility).
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The circle S1 in HoTT: Idea

The circle S1 will be defined as the “free type” equipped with a base point b : S1 and a
loop ` : b = b, satisfying an appropriate induction principle.

Intuition: Let P : S1 → U be a family. Then, given an element y : P (b) and a path
p : y =` y over `, this induces a section f :

∏
x:S1

P (x) (plus computational properties).
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Synthetic homotopy groups

Proposed alternative, more structuralist foundations...

...that even have homotopical meaning.

Basic entities are homotopy types rather than bare sets.

Define objects by “universal properties” via typing rules ; independence from coding.

More conceptual proofs, e.g. in homotopy theory.

More general statements: models are “abstract homotopy theories” (Awodey–Warren ’06,
Shulman ’19, . . . )

Plus: can be verified on a computer.
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Thank you!


	Outline
	Introduction
	Basics of type theory
	Identity types
	Homotopy type theory
	Synthetic homotopy theory
	Summary
	References

