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The story so far...
We have considered the toric code on the Z2-lattice and
constructed:

• A pure frustration-free ground state ω0

• Automorphisms ρk describing single anyons (electric,
magnetic and electromagnetic)

• This gives four equivalence classes of irreducible
representations

Questions
• How do we know how to choose which representations?

• Does this set of representations have more structure?



The superselection criterion



Superselection rules
Consider representation π : A → B(H)with ψ1, ψ2 ∈ H unit
vectors. Let ψθ = ψ1+eiθψ2√

2
and define the state

ωθ(A) := ⟨ψθ, π(A)ψθ⟩.
The (state) vectors ψ1, ψ2 satisfy a superselection rule1 if the
expectation values are independent of the relative phase! (This
can only happen if π is not irreducible!)

Definition
Two states ω1, ω2 are called not superposable if in any
representation π that contains vectors ψ1, ψ2 implementing the
states, we have that

ωαψ1+βψ2(A) = |α|2ωψ1(A) + |β|2ωψ2(A) = |α|2ω1(A) + |β|2ω2(A)

for all α, β ∈ Cwith |α|2 + |β|2 = 1.
1Wick, Wightman andWigner, Physical Review, 88:101–105, 1952



Superposable irreducible
representations

Theorem
Let ω1, ω2 be pure states of A. Then they are superposable iff
their GNS representations πω1 and πω2 are unitarily equivalent.

• Equivalent representations have the same (normal) states
• Can think of different equivalence classes as describing
different ‘charges’

• Total charge cannot be changed with (quasi-)local operators!
• The vectors in the representation can describe many
excitations (but all have the same ’total charge’)

Problem
There are many ‘unphysical’ irreps of A!



GNS representations for anyon
states
Recall that (π0,Ω,H0) is the GNS representation of the
frustration free ground states. Since the maps ρkx are
automorphisms of A, π0 ◦ ρkx is again a representation. Moreover,
Ω is cyclic for this representation. We have

⟨Ω, π0 ◦ ρkx(a)Ω⟩ = ω0(ρ
k
x(a)).

Now let ρx and ρ′x be two such automorphisms defined in terms
of semi-infinite ribbons ξ and ξ′ with the same endpoint. Then
ω0 ◦ ρx = ω0 ◦ ρ′x, so by uniqueness of the GNS representation
there must be a unitary V ∈ B(H0) such that

V π0 ◦ ρx(a) = π0 ◦ ρ′x(a)V.

These are called charge transporters.



The superselection criterion

Definition (Superselection criterion)
Let π0 be an irreducible “reference” representation of A. Then π
satisfies the superseleciton criterion if

π ↾ A(Λc) ∼= π0 ↾ A(Λc)

for all cones Λ.

• Interpretation is that of localisable and transportable
representations.

• An equivalence class is called a (superselection) sector

• A general C∗-algebra has many inequivalent
representations, but for a given π0, not many sectors!

• Choice of cone depends on class of models to study.



Sectors of the toric code

Theorem
There are (at least) four irreducible sectors for the toric code.

Proof.
Fix a cone Λ. Choose a semi-infinite path ξk for each k = X,Y, Z
inside the cone. Then π0 ◦ ρkξk(a) = π0(a) for all a ∈ A(Λc). Let Λ′

be a different cone, and choose paths ξ′k ⊂ Λ′ as above. Then by
independence of the state ω0 ◦ ρkξk on the path (plus moving a
charge over a finite distance), it follows that π0 ◦ ρkξk

∼= π0 ◦ ρkξ′k .
Moreover, from the previous results the four representations
π0 ◦ ρkξk are all inequivalent, and hence in distinct sectors.

Remark
It turns out these are all irreducible sectors, but we will come
back to this later.



What’s next
We considered the toric code on the Z2 lattice:
• Constructed four types of automorphisms ρkx (k = 0, X, Y, Z)

• The representations satisfy the superselection criterion:

π0 ◦ ρkx ↾ A(Λc) ∼= π0 ↾ A(Λc)

for all cones Λ

• Representations have the interpretation of describing an
anyon

• Anyons are localizable and transportable

We can define extra structure on this set of representations,
such as fusion and braiding!



Monoidal/tensor categories

Definition
Amonoidal category is a category C with a bifunctor
⊗ : C × C → C together with a distinguished object 1C ∈ C and the
following families of natural isomorphisms:
1. Associators αa,b,c : (a⊗ b)⊗ c

≃−→ a⊗ (b⊗ c)

2. Unitors λa : 1C ⊗ a
≃−→ a and ρa : a⊗ 1C

≃−→ a

for all a, b, c ∈ C . These should satisfy the pentagon and triangle
axioms.

Definition
If the associators and unitors are the identity, we say that C is a
strict monoidal category.



Pentagon axiom

((a⊗ b)⊗ c)⊗ d (a⊗ b)⊗ (c⊗ d)

(a⊗ (b⊗ c))⊗ d a⊗ (b⊗ (c⊗ d))

a⊗ ((b⊗ c)⊗ d)

αa⊗b,c,d

αa,b,c⊗idd

αa,b⊗c,d

αa,b,c⊗d

ida ⊗αb,c,d



Triangle axiom

(a⊗ 1C)⊗ b a⊗ (1C ⊗ b)

a⊗ b

ρa⊗idb ida ⊗λb

αa,1C ,c



A warm-up

Example
Let A be a unital C∗-algebra. Then we can define the category
End(A) of unital *-endomorphisms of A, with the following
morphisms:

HomEnd(A)(ρ, σ) := {T ∈ A : Tρ(a) = σ(a)T ∀a ∈ A},

with composition the composition of morphisms.
This has a⊗-product, defined objects as ρ⊗ σ := ρ ◦ σ. If
S ∈ Hom(ρ1, ρ2) and T ∈ Hom(σ1, σ2), define

S ⊗ T := Sρ1(T ) ∈ Hom(ρ1 ⊗ σ1, ρ2 ⊗ σ2).

This makes End(A) into a strict monoidal category. (Exercise!)



Charge transporters



The category ∆DHR

Motivated by the example End(A), we define:

Definition (DHR category, first attempt)
Given a representation π0, the category∆DHR has as objects
endomorphisms ρ of Awhich are
• localised, i.e. there is some cone Λ such that ρ(a) = a for all
a ∈ A(Λc);

• transportable, i.e. for any other cone Λ′, there is a ρ′ localised
in Λ′ and a unitary v ∈ B(H0) such that

vπ0(ρ(a)) = π0(ρ
′(a))v.

Themorphisms are the intertwiners, i.e.

(ρ, σ) := {s ∈ B(H0) : sπ0 ◦ ρ(a) = π0 ◦ σ(a)s ∀a ∈ A}.

Note: we have v ∈ (ρ, ρ′) for the charge transporters.



Some remarks on ∆DHR

• The automorphisms ρkx defined earlier are in∆DHR

• Conversely, if ρ ∈ ∆DHR, π0 ◦ ρ satisfies the superselection
criterion

• The category depends on the choice of π0 via the
transportability condition!

• This is not a subcategory of End(A) since the morphisms
(charge transporters) in∆DHR need not be in π0(A)

• In particular, monoidal product will be more complicated



Charge transporters
We can explicitly construct charge transporters v:
• Consider semi-finite ribbons ξ, ξ′ ⊂ Λwith the same
endpoint x and look at the corresponding automorphisms ρ
and ρ′

• Write ξn (ξ′n) for the first n edges on the path.

• For each n, choose path ξ̂n connecting ends of ξn and ξ′n …

• …such that dist(ξ̂n, x) → ∞

• Define vn := Fξn . Then limn→∞ vnρ(a)− ρ′(a)vn = 0 for all
a ∈ A.

• Interpretation: vn moves back the excitation along ξ, then go
back along ξ′ via ξ̂n



Charge transporters



Charge transporters



Interlude: von Neumann algebras

Definition
LetH be a Hilbert space andM ⊂ B(H) be a unital ∗-subalgebra.
ThenM is called a von Neumann algebra ifM = M′′.

Theorem (Bicommutant theorem)
The following are equivalent:
1. M is a von Neumann algebra

2. M is closed in the weak operator topology:
xλ → xwot⇔ ⟨ϕ, (xλ − x)ψ⟩ → 0 for all ϕ, ψ ∈ H.

3. M is closed in the strong operator topology:
xλ → x sot⇔∥(xλ − x)ψ∥ → 0 for all ψ ∈ H.



Charge transporters

Warning
The sequence vn does not converge (in norm) to an element in A
in general.

However, π0(vn) does converge (to a unitary) in the strong
operator topology.

Proof (sketch).
It is enough to show that vnaΩ is a Cauchy sequence for a ∈ Aloc.
Note that for n large enough, supp a ∩ supp(vn)will be constant.
For such n, decompose vn as product of three path operators,
such that the middle part has empty intersection with the
support of a. Using that FξΩ only depends on the endpoints of ξ,
it follows that for each a ∈ Aloc, for n > k with k large enough,

vnaΩ = FξkFξ̃nFξ
′
k
aΩ = FξkFξ′kaFξ̃nΩ



Charge transporters
Let Λ be a cone containing the localisation regions of ρ and ρ′:
• It follows that v ∈ π0(A(Λ))

′′ …

• …and in fact vπ0(ρ(a)) = π0(ρ
′(a))v, i.e. v ∈ (ρ, ρ′)

Definition
Let Λ be a cone. Then we define the cone von Neumann algebra
RΛ := π0(A(Λ))

′′.



Haag duality

Definition (Haag duality)
We say a representation π0 of A satisfies Haag duality for cones
if π0(A(Λ))′′ = π0(A(Λ

c))′. Or in other words,RΛ = R′
Λc .

Theorem (Fiedler-PN)
Haag duality for cones holds in all abelian quantum double
models.

Remark: the direction π0(A(Λ))′′ ⊂ π0(A(Λ
c))′ always holds by

locality.

Remark
In the example of the toric code, we can construct everything
explicitly and Haag duality is only necessary to show
completeness.



Application I: localisation of
intertwiners

Lemma
Let Λ1 and Λ2 be two cones both contained in a larger cone Λ,
and suppose that ρi is localised in Λi. That is, ρi(a) = π0(a) for all
a ∈ A(Λci ). If v ∈ (ρ1, ρ2), then v ∈ π0(A(Λ))

′′.

Proof.
Consider a ∈ A(Λc). Then we have

vπ0(a) = vρ1(a) = ρ2(a)v = π0(a)v,

where we used that the ρi are localised in Λ twice. But this
implies v ∈ π0(A(Λ

c))′ = π0(A(Λ))
′′ by Haag duality.



Application II: localised repns

Lemma
Suppose that π satisfies the superselection criterion. Then for
any cone Λ, there is an equivalent representation
ρΛ : A → B(H0) such that ρΛ(a) = π0(a) for all a ∈ A(Λc).
Moreover, if a ∈ A(Λ), then ρΛ(a) ∈ π0(A(Λ))

′′.

Proof.
By the superselection criterion, there is a unitary v : H → H0

such that vπ(a)v∗ = π0(a) for all a ∈ A(Λc). Define
ρΛ(a) = vπ0(a)v

∗. Then ρΛ : A → B(H0) is a representation.
Moreover, if a ∈ A(Λ) and b ∈ A(Λc), we have

π0(b)ρΛ(a) = vπ(b)v∗vπ(a)v∗ = vπ(ba)v∗ = vπ(ab)v∗ = ρΛ(a)π0(b).

The claim then follows by Haag duality.



Localised representations
By construction, for the “anyon automorphisms” we defined,
π0 ◦ ρ(A(Λ)) ⊂ π0(A(Λ)), and in fact ρ : A → A.

For an arbitrary representation π satisfying the superselection
criterion we can get a unitary equivalent representation
ρ : A → B(H0) such that ρ(a) = π0(a) for all a ∈ A(Λc), where Λ is
the localisation region of ρ. But in general ρ(A) ⊂ π0(A) is not
true, i.e. we cannot restrict to endomorphisms of A.

However, we still get good control over the localisation, namely
ρ(A(Λ)) ⊂ π0(A(Λ))

′′.
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