

Introduction to superselection sector theory II

Pieter Naaijkens

Cardiff University

QFT and Topological Phases via Homotopy Theory and Operator Algebras 30 June – 3 July, 2025

The story so far...

We have considered the toric code on the \mathbb{Z}^2 -lattice and constructed:

- A pure frustration-free ground state ω_0
- Automorphisms ρ^k describing single anyons (electric, magnetic and electromagnetic)
- This gives four equivalence classes of irreducible representations

Questions

- How do we know how to choose which representations?
- Does this set of representations have more structure?

The superselection criterion

Superselection rules

Consider representation $\pi : \mathfrak{A} \to \mathfrak{B}(\mathcal{H})$ with $\psi_1, \psi_2 \in \mathcal{H}$ unit vectors. Let $\psi_{\theta} = \frac{\psi_1 + e^{i\theta}\psi_2}{\sqrt{2}}$ and define the state $\omega_{\theta}(A) := \langle \psi_{\theta}, \pi(A)\psi_{\theta} \rangle.$

The (state) vectors ψ_1, ψ_2 satisfy a superselection rule¹ if the expectation values are independent of the relative phase! (This can only happen if π is *not* irreducible!)

Definition

Two states ω_1, ω_2 are called *not superposable* if in any representation π that contains vectors ψ_1, ψ_2 implementing the states, we have that

$$\omega_{\alpha\psi_1+\beta\psi_2}(A) = |\alpha|^2 \omega_{\psi_1}(A) + |\beta|^2 \omega_{\psi_2}(A) = |\alpha|^2 \omega_1(A) + |\beta|^2 \omega_2(A)$$

for all $\alpha, \beta \in \mathbb{C}$ with $|\alpha|^2 + |\beta|^2 = 1$.

¹Wick, Wightman and Wigner, Physical Review, 88:101–105, 1952

Superposable irreducible representations

Theorem

Let ω_1, ω_2 be pure states of \mathfrak{A} . Then they are superposable iff their GNS representations π_{ω_1} and π_{ω_2} are unitarily equivalent.

- Equivalent representations have the same (normal) states
- Can think of different equivalence classes as describing different 'charges'
- Total charge cannot be changed with (quasi-)local operators!
- The vectors in the representation can describe many excitations (but all have the same 'total charge')

Problem

There are many 'unphysical' irreps of $\mathfrak{A}!$

GNS representations for anyon states

Recall that $(\pi_0, \Omega, \mathcal{H}_0)$ is the GNS representation of the frustration free ground states. Since the maps ρ_x^k are automorphisms of $\mathfrak{A}, \pi_0 \circ \rho_x^k$ is again a representation. Moreover, Ω is cyclic for this representation. We have

$$\langle \Omega, \pi_0 \circ \rho_x^k(a) \Omega \rangle = \omega_0(\rho_x^k(a)).$$

Now let ρ_x and ρ'_x be two such automorphisms defined in terms of semi-infinite ribbons ξ and ξ' with the same endpoint. Then $\omega_0 \circ \rho_x = \omega_0 \circ \rho'_x$, so by uniqueness of the GNS representation there must be a unitary $V \in \mathfrak{B}(\mathcal{H}_0)$ such that

$$V\pi_0 \circ \rho_x(a) = \pi_0 \circ \rho'_x(a)V.$$

These are called charge transporters.

The superselection criterion

Definition (Superselection criterion)

Let π_0 be an irreducible "reference" representation of $\mathfrak{A}.$ Then π satisfies the superseleciton criterion if

$$\pi \upharpoonright \mathfrak{A}(\Lambda^c) \cong \pi_0 \upharpoonright \mathfrak{A}(\Lambda^c)$$

for all cones Λ .

- Interpretation is that of localisable and transportable representations.
- An equivalence class is called a (superselection) sector
- A general C^* -algebra has many inequivalent representations, but for a given π_0 , not many sectors!
- Choice of cone depends on class of models to study.

Sectors of the toric code

Theorem

There are (at least) four irreducible sectors for the toric code.

Proof.

Fix a cone Λ . Choose a semi-infinite path ξ_k for each k = X, Y, Zinside the cone. Then $\pi_0 \circ \rho_{\xi_k}^k(a) = \pi_0(a)$ for all $a \in \mathfrak{A}(\Lambda^c)$. Let Λ' be a different cone, and choose paths $\xi'_k \subset \Lambda'$ as above. Then by independence of the state $\omega_0 \circ \rho_{\xi_k}^k$ on the path (plus moving a charge over a finite distance), it follows that $\pi_0 \circ \rho_{\xi_k}^k \cong \pi_0 \circ \rho_{\xi'_k}^k$. Moreover, from the previous results the four representations $\pi_0 \circ \rho_{\xi_k}^k$ are all inequivalent, and hence in distinct sectors.

Remark

It turns out these are all irreducible sectors, but we will come back to this later.

What's next

We considered the toric code on the \mathbb{Z}^2 lattice:

- Constructed four types of automorphisms ρ_x^k (k = 0, X, Y, Z)
- The representations satisfy the superselection criterion:

$$\pi_0 \circ \rho_x^k \upharpoonright \mathfrak{A}(\Lambda^c) \cong \pi_0 \upharpoonright \mathfrak{A}(\Lambda^c)$$

for all cones Λ

- Representations have the interpretation of describing an anyon
- Anyons are localizable and transportable

We can define extra structure on this set of representations, such as fusion and braiding!

Monoidal/tensor categories

Definition

A monoidal category is a category C with a bifunctor $\otimes : C \times C \rightarrow C$ together with a distinguished object $1_C \in C$ and the following families of natural isomorphisms:

1. Associators $\alpha_{a,b,c}: (a \otimes b) \otimes c \xrightarrow{\simeq} a \otimes (b \otimes c)$

2. Unitors
$$\lambda_a : 1_{\mathcal{C}} \otimes a \xrightarrow{\simeq} a$$
 and $\rho_a : a \otimes 1_{\mathcal{C}} \xrightarrow{\simeq} a$

for all $a, b, c \in \mathcal{C}$. These should satisfy the *pentagon* and *triangle* axioms.

Definition

If the associators and unitors are the identity, we say that ${\boldsymbol{\mathcal{C}}}$ is a strict monoidal category.

Triangle axiom

A warm-up

Example

Let \mathfrak{A} be a unital C^* -algebra. Then we can define the category $\operatorname{End}(\mathfrak{A})$ of unital *-endomorphisms of \mathfrak{A} , with the following morphisms:

 $\operatorname{Hom}_{\operatorname{End}(\mathfrak{A})}(\rho,\sigma):=\{T\in\mathfrak{A}: T\rho(a)=\sigma(a)T\quad \forall a\in\mathfrak{A}\},$

with composition the composition of morphisms. This has a \otimes -product, defined objects as $\rho \otimes \sigma := \rho \circ \sigma$. If $S \in \operatorname{Hom}(\rho_1, \rho_2)$ and $T \in \operatorname{Hom}(\sigma_1, \sigma_2)$, define

 $S \otimes T := S\rho_1(T) \in \operatorname{Hom}(\rho_1 \otimes \sigma_1, \rho_2 \otimes \sigma_2).$

This makes $End(\mathfrak{A})$ into a strict monoidal category. (Exercise!)

The category Δ_{DHR}

Motivated by the example $End(\mathfrak{A})$, we define:

Definition (DHR category, first attempt)

Given a representation $\pi_0,$ the category $\Delta_{\rm DHR}$ has as objects endomorphisms ρ of ${\mathfrak A}$ which are

- localised, i.e. there is some cone Λ such that $\rho(a)=a$ for all $a\in\mathfrak{A}(\Lambda^c);$
- transportable, i.e. for any other cone Λ' , there is a ρ' localised in Λ' and a unitary $v \in \mathfrak{B}(\mathcal{H}_0)$ such that

$$v\pi_0(\rho(a)) = \pi_0(\rho'(a))v.$$

The morphisms are the intertwiners, i.e.

$$(\rho,\sigma) := \{ s \in \mathfrak{B}(\mathcal{H}_0) : s\pi_0 \circ \rho(a) = \pi_0 \circ \sigma(a) s \quad \forall a \in \mathfrak{A} \}.$$

Note: we have $v \in (\rho, \rho')$ for the charge transporters.

Some remarks on Δ_{DHR}

- The automorphisms ho_x^k defined earlier are in $\Delta_{
 m DHR}$
- Conversely, if $\rho\in\Delta_{\rm DHR},\pi_0\circ\rho$ satisfies the superselection criterion
- The category depends on the choice of π_0 via the transportability condition!
- This is not a subcategory of $\operatorname{End}(\mathfrak{A})$ since the morphisms (charge transporters) in Δ_{DHR} need not be in $\pi_0(\mathfrak{A})$
- In particular, monoidal product will be more complicated

We can explicitly construct charge transporters v:

- Consider semi-finite ribbons $\xi,\xi'\subset\Lambda$ with the same endpoint x and look at the corresponding automorphisms ρ and ρ'
- Write ξ_n (ξ'_n) for the first n edges on the path.
- For each n, choose path $\widehat{\xi}_n$ connecting ends of ξ_n and ξ'_n ...
- ...such that $\operatorname{dist}(\widehat{\xi}_n, x) \to \infty$
- Define $v_n := F_{\xi_n}$. Then $\lim_{n\to\infty} v_n \rho(a) \rho'(a)v_n = 0$ for all $a \in \mathfrak{A}$.
- Interpretation: v_n moves back the excitation along $\xi,$ then go back along ξ' via $\widehat{\xi}_n$

Interlude: von Neumann algebras

Definition

Let \mathcal{H} be a Hilbert space and $\mathcal{M} \subset \mathfrak{B}(\mathcal{H})$ be a unital *-subalgebra. Then \mathcal{M} is called a von Neumann algebra if $\mathcal{M} = \mathcal{M}''$.

Theorem (Bicommutant theorem)

The following are equivalent:

- 1. \mathcal{M} is a von Neumann algebra
- 2. \mathcal{M} is closed in the weak operator topology: $x_{\lambda} \to x \text{ wot} \Leftrightarrow \langle \phi, (x_{\lambda} - x)\psi \rangle \to 0 \text{ for all } \phi, \psi \in \mathcal{H}.$
- 3. \mathcal{M} is closed in the strong operator topology: $x_{\lambda} \to x \operatorname{sot} \Leftrightarrow ||(x_{\lambda} - x)\psi|| \to 0$ for all $\psi \in \mathcal{H}$.

Warning

The sequence v_n does not converge (in norm) to an element in \mathfrak{A} in general.

However, $\pi_0(v_n)$ does converge (to a unitary) in the strong operator topology.

Proof (sketch).

It is enough to show that $v_n a\Omega$ is a Cauchy sequence for $a \in \mathfrak{A}_{loc}$. Note that for n large enough, $\operatorname{supp} a \cap \operatorname{supp}(v_n)$ will be constant. For such n, decompose v_n as product of three path operators, such that the middle part has empty intersection with the support of a. Using that $F_{\xi}\Omega$ only depends on the endpoints of ξ , it follows that for each $a \in \mathfrak{A}_{loc}$, for n > k with k large enough,

$$v_n a \Omega = F_{\xi_k} F_{\widetilde{\xi}_n} F_{\xi'_k} a \Omega = F_{\xi_k} F_{\xi'_k} a F_{\widetilde{\xi}_n} \Omega$$

Let Λ be a cone containing the localisation regions of ρ and ρ' :

- It follows that $v \in \pi_0(\mathfrak{A}(\Lambda))'' \dots$
- ...and in fact $v\pi_0(\rho(a)) = \pi_0(\rho'(a))v$, i.e. $v \in (\rho, \rho')$

Definition

Let Λ be a cone. Then we define the cone von Neumann algebra $\mathcal{R}_{\Lambda} := \pi_0(\mathfrak{A}(\Lambda))''.$

Haag duality

Definition (Haag duality)

We say a representation π_0 of \mathfrak{A} satisfies Haag duality for cones if $\pi_0(\mathfrak{A}(\Lambda))'' = \pi_0(\mathfrak{A}(\Lambda^c))'$. Or in other words, $\mathcal{R}_{\Lambda} = \mathcal{R}'_{\Lambda^c}$.

Theorem (Fiedler-PN)

Haag duality for cones holds in all abelian quantum double models.

Remark: the direction $\pi_0(\mathfrak{A}(\Lambda))'' \subset \pi_0(\mathfrak{A}(\Lambda^c))'$ always holds by locality.

Remark

In the example of the toric code, we can construct everything explicitly and Haag duality is only necessary to show completeness.

Application I: localisation of intertwiners

Lemma

Let Λ_1 and Λ_2 be two cones both contained in a larger cone Λ , and suppose that ρ_i is localised in Λ_i . That is, $\rho_i(a) = \pi_0(a)$ for all $a \in \mathfrak{A}(\Lambda_i^c)$. If $v \in (\rho_1, \rho_2)$, then $v \in \pi_0(\mathfrak{A}(\Lambda))''$.

Proof.

Consider $a \in \mathfrak{A}(\Lambda^c)$. Then we have

$$v\pi_0(a) = v\rho_1(a) = \rho_2(a)v = \pi_0(a)v,$$

where we used that the ρ_i are localised in Λ twice. But this implies $v \in \pi_0(\mathfrak{A}(\Lambda^c))' = \pi_0(\mathfrak{A}(\Lambda))''$ by Haag duality.

Application II: localised repns

Lemma

Suppose that π satisfies the superselection criterion. Then for any cone Λ , there is an equivalent representation $\rho_{\Lambda} : \mathfrak{A} \to \mathfrak{B}(\mathcal{H}_0)$ such that $\rho_{\Lambda}(a) = \pi_0(a)$ for all $a \in \mathfrak{A}(\Lambda^c)$. Moreover, if $a \in \mathfrak{A}(\Lambda)$, then $\rho_{\Lambda}(a) \in \pi_0(\mathfrak{A}(\Lambda))''$.

Proof.

By the superselection criterion, there is a unitary $v : \mathcal{H} \to \mathcal{H}_0$ such that $v\pi(a)v^* = \pi_0(a)$ for all $a \in \mathfrak{A}(\Lambda^c)$. Define $\rho_{\Lambda}(a) = v\pi_0(a)v^*$. Then $\rho_{\Lambda} : \mathfrak{A} \to \mathfrak{B}(\mathcal{H}_0)$ is a representation. Moreover, if $a \in \mathfrak{A}(\Lambda)$ and $b \in \mathfrak{A}(\Lambda^c)$, we have

$$\pi_0(b)\rho_{\Lambda}(a) = v\pi(b)v^*v\pi(a)v^* = v\pi(ba)v^* = v\pi(ab)v^* = \rho_{\Lambda}(a)\pi_0(b).$$

The claim then follows by Haag duality.

Localised representations

By construction, for the "anyon automorphisms" we defined, $\pi_0 \circ \rho(\mathfrak{A}(\Lambda)) \subset \pi_0(\mathfrak{A}(\Lambda))$, and in fact $\rho : \mathfrak{A} \to \mathfrak{A}$.

For an arbitrary representation π satisfying the superselection criterion we can get a unitary equivalent representation $\rho: \mathfrak{A} \to \mathfrak{B}(\mathcal{H}_0)$ such that $\rho(a) = \pi_0(a)$ for all $a \in \mathfrak{A}(\Lambda^c)$, where Λ is the localisation region of ρ . But in general $\rho(\mathfrak{A}) \subset \pi_0(\mathfrak{A})$ is not true, i.e. we cannot restrict to endomorphisms of \mathfrak{A} .

However, we still get good control over the localisation, namely $\rho(\mathfrak{A}(\Lambda)) \subset \pi_0(\mathfrak{A}(\Lambda))''$.