Meeting ID: 916 5855 1117

Password: as before.

Contact: Aru Ray, Tobias Barthel,Viktoriya Ozornova**Slides **are attached on the Talk's page or see our Nextcloud

An (∞,1)-category has been shown to support most theorems and constructions of category theory and, in particular, limits in an (∞,1)-category have been constructed as terminal objects in the (∞,1)-category of cones. In this talk, I will explain how to generalize this construction to (∞,2)-categories.

A good notion of limit in a 2-category is that of a 2-limit, defined as a limit enriched over categories. Unlike its 1-categorical analogue, a 2-limit cannot be characterized as a 2-terminal object in the 2-category of cones. Instead, we need to construct a "shifted2" 2-category of cones to formulate such a result. This issue extends to the ∞-setting and therefore defining limits in an (∞,2)-category is more involved than in the (∞,1)-categorical case. The results in the 2-categorical setting are joint work with tslil clingman, while those in the ∞-setting are work in progress with Nima Rasekh and Martina Rovelli.

Attachment | Size |
---|---|

Moser_intro.pdf | 14.04 MB |

© MPI f. Mathematik, Bonn | Impressum & Datenschutz |