Affiliation:
Queen's U, Canada/MPI
Date:
Thu, 2011-04-21 15:00 - 16:00
Let $G\hookrightarrow \tilde{G}$ be an embedding of semisimple complex Lie groups, let $B\hookrightarrow\tilde{B}$ be a pair of nested Borel subgroups and let $\varphi:G/B \hookrightarrow \tilde{G}/\tilde{B}$ be the associated embedding of flag manifolds. Let $\tilde{\mathcal L}$ be a $\tilde{G}$-equivariant line bundle on $\tilde{G}/\tilde{B}$ and let ${\mathcal L}$ be its restriction to $G/B$. Consider the $G$-equivariant pullback on cohomology
$$\pi : H^\cdot(\tilde{G}/\tilde{B},\tilde{\mathcal L}) \longrightarrow H^\cdot(G/B,{\mathcal L}) \;.$$