
The Katz-Klemm-Vafa formula is a conjecture expressing Gromov-Witten invariants of K3 surfaces in terms of modular forms. In genus 0 it reduces to the (proved) Yau-Zaslow formula. I will explain how a correspondence between "stable pairs" and Gromov-Witten theory for toric 3-folds (proved by Maulik-Oblomkov-Okounkov-Pandharipande), some calculations with stable pairs (due to Kawai-Yoshioka) and some deformation theory lead to a proof of the KKV formula. (This is joint work with Davesh Maulik and Rahul Pandharipande. Only they understand the actual formulae. People who like modular forms are not encouraged to come to this talk.)
Links:
[1] http://www.mpim-bonn.mpg.de/taxonomy/term/39
[2] http://www.mpim-bonn.mpg.de/node/3444