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1 Exposition of the problem

In string theory one considers maps

X : Σg → M̂ (1)

from a Riemann surface Σg to a target space M̂ . For simplicity we focus on
orientable closed Riemann surface of genus g. The standard supersymmetric
string theory, called type II string, has desirable symmetries at quantum level
if dimR(M̂) = 10. This is called the critical dimension and to describe a four
dimensional gravity theory, or more precisely a four dimensional N = 2 su-
pergravity theory, one considers M̂ = M × M4. Here M4 is a large space of
signature (3, 1), which is to be identified with our universe, while M is a three
complex dimensional Calabi-Yau manifold and its typical radii are so small
that according to Heisenbergs uncertainty principle one needs higher energy
scales then presently explored to detect it directly in experiments. Physical
amplitudes are given by variational integrals, the simplest one is the vacuum
amplitude

Z(M) =

∫

DXDχe−S(X,χ,M) , (2)

where the action S is schematically

S =

∫

σ

Gµν∂αXµ∂αXν + iBµνεαβ∂αXµ∂βXν + supersymmetric completion .

(3)
Here χ stands for fermionic partners of the bosonic coordinate X, which occur
in the supersymmetric completion.

Note that the variational integral over the worldsheet metric does not appear
since it trivializes due to the special symmetries in the critical dimension.

On the other hand the metric Gµν and the antisymmetric 2-form field Bµν on
M are not varied over, so that Z depends on them as well as on other properies
of M , which determines the nature of physics in M4. The main interest in this



talk are the invariances of Z if we modify its argument M . These are called
spacetime dualities.

Note that the first term in S is equivalent to area of the image curve and
the critical sets of S can be identified with the holomorphic maps.

Due to supersymmetric localization there exists a truncation of the theory
to these critical bosonic configurations. The truncated theory is called the
topological A-model. In the truncated theory Z collapses to ZA, which is given
by infinite sum over topological sectors labelled by g and the class of the image
curve β ∈ H2(M, Z). The variational integral collapses in each sector into a
mathematically welldefined integral over the finite dimensional moduli space of
the holomophic maps Mg(M,β). The A-model truncation is best decribed by
nilpotent BRST operators, which allow to define a cohomological theory whose
finite dimensional Hilbert spaces is spanned by states, which are in one to one
correspondence with the de Rahm cohomology groups H i,i(M), i = 0, . . . , 3.
Its correlators are the cassical intersections deformed by contributions of the
holomorphic maps.

The decisive A-model quantity is the free energy

F (λ, t) = log(ZA) =
∞
∑

g=0

λ2g−2Fg(t) (4)

with
Fg(t) = classical +

∑

β∈H2(MZ)

rg
βqβ . (5)

Here

rg
β =

∫

Mg(M,β)
cvir
b (M,β) ∈ Q (6)

are the Gromov-Witten invariants. They are defined as the integral of a vir-
tual fundamental class over the compactifications of the moduli space of the
holomorphic maps. The virtual dimension of the moduli space follows from an
index theorem

vdimCMg(M,β) =

∫

β

c1 + (dim − 3)(1 − g) . (7)

We note that Calabi-Yau threefolds are the critical cases as vdimCMg(M,β) =
0. This implies that generically a point counting problem in a moduli stack
yields rg

β 6= 0. The variable qβ = exp(tβ), where tβ = 2πi
∫

β
(b + ω) is the com-

plexified Kähler parameter. It is a complex variable build from linear deforma-
tion of the 2-form field b = δB and the real Kähler form ω = iδGi̄dzi ∧ dz̄ ̄.
Both take values in H1,1(M, R). We note that qβ → 0 in the limit of large
volume. I.e. the large volume limit suppresses the contributions of the holo-
morphic maps. The classical terms are constant map contributiions which are
of course independed of the volume. An important feature is, that the A-model,
does not depend on the pure deformations of the metric δGij and δGı̄̄, which
parametrize the complex structure deformations of M .

F (λ, t) is a generating function for Gromov-Witten invariants. The problem
that we pose here is how to calculate it and the main point of this lecture is to
explain how F (λ, t) can be reconstructed using dualities and symmetries of (2).



2 Other symplectic invariants and integrality con-

jectures

Before we focus on the main topic we notice that the mathematically well de-
fined rational Gromov-Witten invariants rg

β are conjecturally related to integral

BPS invariants ng
β, which are physically motivated to be an index on the co-

homology of the moduli space of D2 − D0 branes. The relation between the
ng

β ∈ Z and the rg
β are defined by

Z ′
A(Q, q) =

∏

β





(

∞
∏

r=1

(1 − Qrqβ)rn0
β

)

∞
∏

g=1

2g−2
∏

l=0

(1 − Qg−l−1qβ)(−1)g+r( 2g−2

l )ng
β



 ,

(8)
where Q = eiλ and the prime indicates that we are omitting the constant map
contributions.

To get an impression about the key properties of the BPS invariants we
listed the complete information up degree d = 11 in table 1 for M the quintic
hypersurface in P4. d ∈ Z represents β, in the one dimensional H2(M, Z) lattice.
One important property is that within a fixed class d there is a bound gmax

on g so that ng
d = 0 for g ≥ gmax(d). The bound gmax growth assymtotically

like gmax(d) ∝ d2. This a simple consequence of the adjunction formula, which
implies that there are no embedded curves of genus g if the degree is not high
enough. The important difference between rg

β and ng
β is that the latter is a

property of the embedded curve in m rather then a property of the map to M .
Puting it differently all information about the multi covering of the map into a
given curve class is encoded in (8).

A simple example of the index definition of ng
β can be stated for smooth

curves C, where ng
β = (−1)dimMCe(MC). Here MC is the deformation space.

For d = 5 and d = 10 and maximal genus those smooth curves are complete
intersections and a simple calculation of their moduli space yields n6

5 = 10 and
n16

10 = −50.

A further relation links the above invariants to the Donaldson-Thomas in-
variants, which are integrals over the moduli space of ideal sheafs on M . Let

ZDT (Q, q) =
∑

β,k∈Z

mk
βQkqβ (9)

define a generating series for the Donaldson-Thomas invariants mk
β ∈ Z then

the relation is given by

ZDT (−Q, q) = Z ′
A(Q, q)M(−Q)e(M) , (10)

where

M(Q) =
∏

n≥1

1

(1 − qn)n
(11)

is the McMahon function.



g d=1 d=2 d=3 d=4 d=5 d=6
0 2875 609250 317206375 242467530000 229305888887625 248249742118022000
1 0 0 609250 3721431625 12129909700200 31147299733286500
2 0 0 0 534750 75478987900 871708139638250
3 0 0 0 8625 -15663750 3156446162875
4 0 0 0 0 49250 -7529331750
5 0 0 0 0 1100 -3079125
6 0 0 0 0 10 -34500
7 0 0 0 0 0 0

g d=7 d=8 d=9
0 295091050570845659250 375632160937476603550000 503840510416985243645106250
1 71578406022880761750 154990541752961568418125 324064464310279585657008750
2 5185462556617269625 22516841063105917766750 81464921786839566502560125
3 111468926053022750 1303464598408583455000 9523213659169217568991500
4 245477430615250 25517502254834226750 507723496514433561498250
5 -1917984531500 46569889619570625 10280743594493108319750
6 1300955250 -471852100909500 30884164195870217250
7 4874000 2876330661125 -135197508177440750
8 0 -1670397000 1937652290971125
9 0 -6092500 -12735865055000

10 0 0 18763368375
11 0 0 5502750
12 0 0 60375
13 0 0 0

g d=10 d=11
0 704288164978454686113488249750 1017913203569692432490203659468875
1 662863774391414096742406576300 1336442091735463067608016312923750
2 261910639528673259095545137450 775720627148503750199049691449750
3 52939966189791662442040406825 245749672908222069999611527634750
4 5646690223118638682929856600 44847555720065830716840300475375
5 302653046360802682731297875 4695086609484491386537177620000
6 6948750094748611384962730 267789764216841760168691381625
7 40179519996158239076800 7357099242952070238708870000
8 -25301032766083303150 72742651599368002897701250
9 1155593062739271425 140965985795732693440000

10 -17976209529424700 722850712031170092000
11 150444095741780 -18998955257482171250
12 -454092663150 353650228902738500
13 50530375 -4041708780324500
14 -286650 22562306494375
15 -5700 -29938013250
16 -50 -7357125
17 0 -86250
18 0 0

Table 1: BPS invariants ng
β on the Quintic hypersurface in P4



3 The duality symmetries

3.1 Mirror symmetry

Mirror symmetry can be summarized by the statement that

ZA(M,λ, t) = ZB(W,λ, t̂),

ZA(W,λ, t) = ZB(M,λ, t̂),
(12)

here (W,M) are mirror pairs of manifolds with

H3−k,p(M) = Hk,p(W ), (13)

for k, p = 0, . . . , 3. B stands for the topological B-model. It emerges by a
different localisation of the full variational integral Z(M) to constant maps
albeit with a more complicated measure. Mirror symmetry identifies the A-
model on M with the B-model on W and vice versa. The topological states
of the B model are in correspondence with the cohomology groups dual (13)
to ones which define the states of the A-model. The B-model depends only
on the complex structure variations t̂ of the corresponding manifold. The lat-
ter are encoded in period integrals over the holomorphic (3, 0)-form. Studying
the latter at a point of maximal degeneration yields also a concrete expression
for the mirror map t̂(t) in (12). It should be noted that (12) is a specialized
version of mirror symmetry, which is designed to be mathematically control-
lable. The physical expectation is simply that string theory on M and on W
are indistiguishable.

The construction of mirror manifolds is understood conceptually in sym-
plectic geometry, by the SYZ conjecture, which states that every Calabi-Yau
manifold is a (degenerate) Lagrangian T 3 fibration over a 3-dim base and that
the mirror can be constructed by dualizing the T 3 torus fibrewise. Pragmati-
cally thousands of mirror pairs can be easily constructed within the framework
of algebraic geometry as anticanonical hypersurfaces in pairs of toric varities
defined by pairs of reflexive polyhedra as pointed out by Batyrev

3.2 Periods and monodromy

We discuss now the monodromy of one paramter family of mirror quintics W ( t̂),

W (t̂) =

{

p =

5
∑

i=1

x5
i − 5e−

t̂
5

5
∏

i=1

xi = 0 in P4

}

. (14)

It can be obtained as orbifold M/Z3
5 of the original quintic M , where the Z5’s

are generated by phase rotations on the homogeneous coordinates P4

xi → exp(2πig
(α)
i /5)xi, α = 1, 2, 3, i = 1, . . . , 5 , (15)

with g(1) = (1, 4, 0, 0, 0), g(2) = (1, 0, 4, 0, 0) and g(3) = (1, 0, 0, 4, 0). We identify

z = et̂ and notice that the complex moduli space is parametrized by z as
M = P \ {z = 0, 1,∞}.



The holomorphic (3, 0)-form is locally Ω =
z−

1
5 xi∧k 6=i,jdxk

∂jp
. There is a flat

connection on the period vector

Π =

(
∫

AI Ω = XI
∫

BI
Ω = PI = ∂F0

∂XI

)

, , I = 0, . . . , 3 (16)

expressed by the PIcard-Fuchs equation

[θ4 − 5z
4
∏

k=1

(θ + k)]Π(z) = 0, θ = z
d

dz
, (17)

which undergoes the monodromies Π 7→ MiΠ with Mz=zi
∈ SP (4, Z)

M0 =









1 0 0 0
1 1 0 0
5 −3 1 −1

−8 −5 0 1









, M1 =









1 0 −1 0
0 1 0 0
0 0 1 0
0 0 0 1









, (18)

generate the monodromy group ΓM , where the loops are schematically

H  (M,Z)3

Ω

Ω

large CS

M

conifold

Gepner point
orbifold

M

M

8

1

0

Mirror quintic family

3.3 g = 0

The first sucess of mirror symmetry is that

F0(t) = class. +
∑

d=1

n0
dLi3(q

d), (19)

where the mirror map at large complex strcuture (CS) z = 0 is

t =
X1

X0
(z) , (20)



where X0 = 1 + holom and 1
2πi

(X0 log(z) + holom.) are completly determined
from (17).

In the complex moduli space one has special geometry, with Kählerpotential
e−K = i

∫

Ω∧ Ω̄, Cijk =
∫

Ω∂i∂j∂kΩ = DiDjDKF0 and the integrability condi-
tion

Ri
kl̄m

= δi
kgl̄m + δi

mgl̄k + CkmjC̄
ij

l̄
(21)

with C̄ij

l̄
= C̄l̄k̄l̄g

m̄igk̄je2K .

3.4 g = 1

The genus one amplitude is a Ray-Singer-Torsion family index over M and
fullfills

∂i∂̄̄F1 =
1

2
C̄mn

̄ Cimn −

(

e(m)

24
− 1

)

gi̄ . (22)

It can be fixed by the boundary behaviour F1 ∼ 1
12 log(tc), where tc is the flat

coordinate near the conifold and F1 ∼ 50 t
24 near large complex strcuture.

3.5 g > 1

For higher genus the Fg fullfill the holomorphic anomaly equation

∂ı̄Fg =
1

2
C̄mn

ı̄

(

DmDnFg−1 +

g−1
∑

r=1

DmFrDnFg − r

)

(23)

It has an holomorphic function as an ambiguity. The latter can be fixed by the
fact that Fg is modular invariant and physical boundary conditions. The first
fact implies that the Fg are finetly generated by a ring which can be viewed
as the generalization of the ring of almost holomorphic modular forms from
elliptic curves to Calabi-Yau manifolds.

In local flat coordinates the leading behaviour at the boundaries is as follows

• Expansion around the conifold point z = 1:

F c
0 = −5

2 log(t̂c)t̂
2
c + 5

12 (1 − 6b1) t̂3D

+
(

5
12 (b1 − 3b2) −

89
1440 − 5

4 b2
1

)

t̂4c + O(t̂5c)

F c
1 = − log(t̂c)

12 +
(

233
120 − 113 b1

12

)

t̂c

+
(

233 b1
120 − 113 b1

2

24 − 107b2
12 − 2681

7200

)

t̂2c + O(t̂3c)

F c
2 = 1

240t̂2c
−
(

120373
72000 + 11413b2

144

)

+
(

107369
150000 − 120373 b1

36000 + 23533 b2
720 − 11413b1b2

72

)

t̂c + O(t̂2c)

F c
3 = 1

1008 t̂4c
−
(

178778753
324000000 + 2287087 b2

43200 + 1084235 b2
2

864

)

+ O(t̂c)

F c
4 = 1

1440 t̂6c
−
(

977520873701
3402000000000 + 162178069379 b2

3888000000

+ 5170381469 b2
2

2592000 + 490222589 b2
3

15552

)

+ O(t̂c) .

F conifold
g =

(−1)g−1B2g

2g(2g−2)(t̂c)2g−2
+ O(t̂0c).



I.e. at the conifold we have the gap condition that the 2g − 2 subleading
coefficients are absent.

• Expansions around the orbifold point 1
z

= 0

F o
0 = 5 s3

6 + 5 s8

1008 + 5975 s13

10378368 + 34521785 s18

266765571072 + . . .

F o
1 = − s5

9 − 163 s10

18144 − 85031 s15

46702656 − 6909032915 s20

20274183401472 + . . .

F o
2 = 155 s2

18 − 5 s7

864 + 585295 s12

14370048 + 1710167735 s17

177843714048 + . . .

F o
3 = 488305 s4

9072 − 3634345 s9

979776 − 1612981445 s14

7846046208 − 2426211933305 s19

116115777662976 + . . .

F o
4 = 48550 s

567 + 36705385 s6

163296 + 16986429665 s11

603542016 + 341329887875 s16

70614415872 + . . .

I.e. at the orbifold point we have the constion that Fg behaves regular.
The coefficients of the expansion in the flat coordinate s are the orbifold
Gromov-Witten invariants and some checks using direct computations of
the latter have been made.

It can be shown that these boundary conditions fix
[

2g−1
5

]

+ 2g − 2 constant

in the holomorphic or modular ambiguity, which is parametrized by 3g − 3
coeffcients. If one uses the fact that ng

d = 0 for g > gmax one can solve the
equation (22) up to genus 51 as can be seen from the follwing figure
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