Don Zagier's work on singular moduli

Benedict Gross

Harvard University

June, 2011

Don in 1976

The orbit space $SL_2(\mathbb{Z})\setminus \mathfrak{H}$ has the structure a Riemann surface, isomorphic to the complex plane \mathbb{C} .

We can fix an isomorphism $J: SL_2(\mathbb{Z}) \setminus \mathfrak{H} \to \mathbb{C}$ which maps the orbits [i] and $[\rho]$ to the points to 1 and 0 respectively, and has a simple pole at ∞ , using the local parameter $q = e^{2\pi i \tau}$.

There is a unique scaling so that the simple pole at ∞ has residue 1.

$$j(\tau) = 1728J(\tau) = 1/q + 744 + 196884q + 21493760q^2 + \dots$$

For this normalization $j(\rho) = 0$ and $j(i) = 1728 = 12^3$. We can still add an integer:

$$j^*(\tau) = j(\tau) - 744 = 1/q + 0 + 196884q + \dots$$

$$j^{**}(\tau) = j(\tau) - 720 = 1/q + 24 + 196884q + ... = \theta(\Lambda_{24})/\Delta$$

The difference $j(\tau) - j(\tau')$ is well-defined.

Complex multiplication

If $z \in \mathfrak{H}$ satisfies a quadratic equation over \mathbb{Q} , then

$$az^2 + bz + c = 0$$

with a > 0 and gcd(a, b, c) = 1.

 $D = b^2 - 4ac < 0$ is an invariant of the $SL_2(\mathbb{Z})$ -orbit [z].

The complex elliptic curve $E = \mathbb{C}/2\pi i(\mathbb{Z} + \mathbb{Z}z)$ has endomorphism ring isomorphic to $O_D = \mathbb{Z} + \mathbb{Z}.(D + \sqrt{D})/2$.

 $Pic(O_D)$ acts simply transitively on the h(D) orbits: $[z] \rightarrow [z_A]$.

For each orbit, j(z) is an algebraic integer of degree h(D).

These singular moduli are all conjugate: $j(z_A) = j(z)^{\sigma(A)}$ and generate the ring class field over $\mathbb{Q}(\sqrt{D})$.

D	h(D)	<i>i</i> (<i>z</i>)
_3	1	0
1		1729
-4	I	1720
7	1	3375
-67	1	-14719795200
-163	1	-262537412640768000
_15	2	$(-191025 + 85995\sqrt{5})/2$

For $N \ge 1$ there is a finite covering

$$Y_0(N)(\mathbb{C}) = \Gamma_0(N) ackslash \mathfrak{H} o \mathcal{SL}_2(\mathbb{Z}) ackslash \mathfrak{H}$$

The meromorphic functions on $Y_0(N)$ are generated by $j(\tau)$ and $j(N\tau)$. These satisfy the modular equation $\phi_N(x, y) = 0$ in $\mathbb{Q}[x, y]$, which defines the curve $Y_0(N)$ over \mathbb{Q} .

If all primes dividing *N* split in O_D , there are Heegner points $P_A = P_{A,n}$ on $Y_0(N)$ which lie above the singular moduli $j(z_A)$ and are defined over the SAME class field.

Bryan Birch introduced the classes of the divisors $d_A = (P_A) - (\infty)$ of degree zero in the Jacobian $J_0(N)$, and made some suggestive computations.

I conjectured a formula for the Néron-Tate height pairing $\langle d, d_A \rangle$ in terms of the first derivative of a Rankin L-series associated to a cusp form of weight k = 2 for $\Gamma_0(N)$ and a binary theta series θ_A associated to the class A.

A week in Maryland

To simplify the analytic computation of the derivative of the Rankin L-series, Don assumed that N = 1. In this case, the modular curve $Y_0(1)$ has genus zero and the Jacobian is trivial....

He also assumed that the weight satisfied $k \ge 4$.

We set k = 2 in the final formula for $\langle d, d_A \rangle$ just to see what would happen. As expected, all of the sums were non-convergent, except for one term:

$$\sum_{n=1}^{|D|} r_{A}(|D|-n) \sum_{d|n} \epsilon_{A}(d,n) \log(n/d^{2})$$
$$= \sum_{p \leq |D|} m_{A}(p) \log(p).$$

Néron's local decomposition of the height: $\langle d, d_A \rangle = \sum \langle d, d_A \rangle_v$ When $A \neq 1$, I guessed:

$$\langle d, d_A \rangle_v =_? \log |j(z) - j(z_A)|_v = -ord_v(j(z) - j(z_A))log(NP_v)$$

Don differentiated $q \frac{d}{dq} j(\tau) / \eta(\tau)^4 = j(\tau)^{2/3} (j(\tau) - 1728)^{1/2}$ When $A = 1 \ \langle d, d \rangle_v =_? \log |j(z)^{2/3} (j(z) - 1728)^{1/2}|_v$

Suppose that the finite sum $\sum_{p \le |D|} m_A(p) log(p)$ was the contribution to the global height pairing $\langle d, d_A \rangle$ of all the local heights at finite primes *v* of the class field.

Then all primes P_v dividing the algebraic integers j(z) or j(z) - 1728 or $j(z) - j(z_A)$ have characteristic $p \le |D|$.

D	h(D)	j(z)
-3	1	0
-4	1	$1728 = 2^6 3^3$
-7	1	$-3375 = -3^3 5^3$
-67	1	$-14719795200 = -2^{15}3^35^311^3$
-163	1	$-262537412640768000 = -2^{18}3^35^323^329^3$
-15	2	$(-191025 + 85995\sqrt{5})/2$ $N(j(z)) = -121287375 = -3^65^311^3$

D	h(D)	<i>j</i> (<i>z</i>) – 1728
3	1	-2 ⁶ 3 ³
4	1	0
-7	1	-3 ⁶ 7
-67	1	-2 ⁶ 3 ⁶ 7 ² 31 ² 67
-163	1	$-2^{6}3^{6}7^{2}11^{2}19^{2}127^{2}163$
-15	2	$N(j(z) - 1728) = 3^{6}7^{4}11^{2}$ $N(j(z) - j(z_{A})) = 3^{6}5^{3}7^{4}13^{2}$

From September to December of 1982, we worked out the proof for k = 2 and N > 1.

Based on our formulae for the factorization of

$$j(z_D) - 0 = j(z_D) - j(\rho) = j(z_D) - j(z_{-3})$$

$$j(z_D) - 1728 = j(z_D) - j(i) = j(z_D) - j(z_{-4})$$

Don asked me if there was a formula for the factorization of

$$j(z_D)-j(z_{D'}).$$

We might have factored:

 $j(z_{-67}) - j(z_{-163}) = 262537265442816000 = 2^{15} \cdot 3^7 \cdot 5^3 \cdot 7^2 \cdot 13 \cdot 139 \cdot 331$

A letter from Don

Monday, Feb. 7 (1983) · Preke server . I've been in Japan for two weeks nor and an erjoying it trenendonly, both for sighthering and mathematica However, talling you about the try can want till you get to a demany ; I'm writing now for muthematical reasons only. I'l neart not to look at m business until returning to bemany, since I have several other things to finish writing up, but this weekend I returned to it after all, and came up with something. to you may remember, I had asked you whather our reaults on N(s(z) = N(s)+- s(g)), N(s/+)- N(s/+) = N(s/+)- N(s/+)and N(5/2)-5/2)) (disc 2. = disc 2' = -p) might out generlige to realts - NISIE/- Stel) for Stel-Stel) for arbitrary CM points & and 2', with unrelated liveringinants. You pooh-poohed the idea, explaining any your method applie only to Attle) or to Hom (E,E') with E,E' having CM by the same order. Nothing docunted (astually, I was : I didn't do the calculations till now), I calculated jiz)-jizi) for z= tile, z'= trile for the proces in - 1++-0

Let *D* and *D'* be relatively prime discriminants. Then every prime *p* which divides the norm of the algebraic integer $j(z_D) - j(z_{D'})$ is less than or equal to DD'/4.

More precisely, p must divide an integer of the form $(DD' - x^2)/4$.

Don established an exact formula for the factorization of $N(j(z_D) - j(z_{D'}))$ using Hecke's Eisenstein series $E(z_1, z_2, s)$ of weight one and genus character χ for the Hilbert modular group of the real quadratic field $\mathbb{Q}(\sqrt{DD'})$.

In fact, $E(z_1, z_2, 0) = 0$. Don calculated the Fourier coefficients of the non-holomorphic form $\frac{d}{ds}E(z_1, z_2, s)|_{s=0}$ when restricted to the diagonal $z_1 = z_2$.

He challenged me to find an algebraic proof.

A prime *P* divides the algebraic integer $j(z_D) - j(z_{D'})$ if and only if the elliptic curves $E = E(z_D)$ and $E' = E(z_{D'})$ become isomorphic when reduced modulo *P*:

 $E(mod P) \cong E'(mod P) \cong F.$

The curve *E* has an endomorphism *e* with $e^2 = D$. The curve *E'* has an endomorphism *e'* with $e'^2 = D'$.

The curve F is supersingular in characteristic p, and End(F) contains the quaternion ring

$$R = \mathbb{Z} + \mathbb{Z}.e + \mathbb{Z}.e' + \mathbb{Z}.ee'$$

The ring End(*F*) has reduced discriminant *p*. The ring *R* has reduced discriminant $4(DD' - x^2)$, where 2x = ee' + e'e.

Hence *p* divides $4(DD' - x^2)$.

For a discriminant D < 0, define the Hurwitz class number

$$H(D) = \sum_{D=df^2} \sum_{Pic(O_d)} 1/u(d) = \sum_{D=df^2} h(d)/u(d).$$

For example,

$$H(-12) = h(-12) + h(-3)/3 = 1 + 1/3 = 4/3.$$

In 1975 Don showed

$$E(q) = -\frac{1}{12} + \sum_{D} H(D)q^{|D|} + y^{-1/2} \sum_{n \in \mathbb{Z}} \beta(4\pi n^2 y)q^{-n^2}$$

$$\beta(x) = \frac{1}{16\pi} \int_1^\infty u^{-3/2} e^{-xu} \, du$$

is the Fourier expansion of the (non-holomorphic) Eisenstein series of weight 3/2 for $\Gamma_0(4)$.

$$P(D) = \sum_{D=df^2} \sum_{Pic(O_d)} d_A/u(d)$$

If we also sum over the different choices of \mathfrak{n} we get a point in $J_0(N)^+(\mathbb{Q})$. How do these points vary with *D*?

$$F(q) = \sum_{D} P(D)q^{|D|}$$

is the Fourier expansion of a holomorphic form of weight 3/2 for $\Gamma_0(4N)$ with coefficients in $J_0(N)^+(\mathbb{Q})$.

For composite N, it is better to use the Fourier expansions of Jacobi forms.

In 2002, Don returned to treat the case of level N = 1. Recall that $j^*(\tau) = j(\tau) - 744 = 1/q + 0 + 196884q + ...$ Define

$$Tr(D) = \sum_{D=df^2} \sum_{Pic(O_d)} j^*(z_A)/u(d)$$

Then the series

$$f(q) = -q^{-1} + 2 + \sum_{D} Tr(D)q^{|D|}$$

is the Fourier expansion of a weakly holomorphic modular form of weight 3/2 for $\Gamma_0(4)$. In fact,

$$f(au) = -\eta(au)^2 E_4(au)/\eta(2 au)\eta(4 au)^6$$

$$\eta(au) = q^{1/24} \prod_{n \ge 1} (1 - q^n) \quad E_4(au) = 1 + 240 \sum_{n \ge 1} \sigma_3(n) q^n$$

Thanks Don, and Happy Birthday!

