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Introduction. Let (X,I") be a pair consisting of a a compact connected oriented
surface Y with non empty boundary 0% and a finite graph I' that is embedded in the
interior of 3. We assume that the surface ¥ is a regular neihborhood of the graph I" and
that the embedded graph has the téte-a-téte property, which property we will define
later in this paper. Moreover, we will construct for each pair (3, ") with the téte-a-téte
property a mapping classe Tt on (X,09%). We call the mapping classes resulting from
this construction téte-a-téte twists.

A surface of genus g and with » boundary components carries up to congruence by
homeomorphism of the surface only finite many graphs with the téte-a-téte property
and hence for fixed (g,r) there are only finite many mapping classes, which are téte-a-
tete twists.

The main theorem of this paper asserts:

Theorem. The geometric monodromy diffeomorphism of a plane curve singularity
1S a téte-a-téte twnist.

As a corollary, we obtain a very strong topological restriction for mapping classes,
that are geometric monodromies of plane curve singularities.

Section 1. Téte-a-téte twist.

Let I' be a finite connected metric graph with e(I") edges and no vertices of valency
1. We assume, that the edges are parametrized by continuous bijective maps FE, :
0,L.] — 'L, > 0,e = 1,---,e(I"), such that the distance from FE,(t) to E.(s) is
|t —s|,t,s €0, Le].

Let ¥ be a smooth, connected and oriented surface with non empty boundary 0%.
We say, that a map 7 of ' into ¥ is regular if 7 is continuous, injective, 7(I') N 9% = 0,
the compositions moFE,,e = 1, -+, e(I"), are smooth regular embeddings of intervals and
moreover, at each vertex v of I" all outgoing speed vectors of w o E,,v = E.(0) or v =
E.(L.) are distinct.

We denote by abuse of language by the pair (X,I") the pair (3, 7(T).

A safe walk along I' is a continuous injective path v : [0,2] — ¥ with following
properties:



-~(t) eT,te]0,2],

— the speed, measured with the parametrization E, at t € [0,2] equals £1 if (¢) is
in the interior of edge e,

— if the path v runs at ¢ € (0, 2) into the vertex v, the path v makes the a sharpest
possible right turn, i.e. the oriented angle at v = v(t) € ¥ in between the speed vectors
—4(t_) and (¢t ) is smallest possible.

It follows, that a save walk  is determined by its starting point v(0) and its starting
speed vector 4(0). Futhermore, if the metric graph T" C 3 is without cycles of length
less are equal 2, from each interior point of an edge start two distinct save walks.

Definition: Let (X,T') be the pair of a surface and reqular embedded metric graph.
We say that the téte-a-téte téte-a-téte property holds for the the pair if

— the graph " has no cycles of length < 2,
— the graph T is a regular retract of the surface X2,

— for each point p € T, p not being a vertex, the two distinct safe walks fy;,fyp_ :
[0,2] — ¥ with p = 1 (0) = 7, (0) satisfy to v (2) =, (2).

It follows that the underlying metric graph of a pair (X, ") with téte-a-téte property
is the union of its cycles of length 4.

We give basic examples of pairs (3, ") with téte-a-téte property:

— the surface is the cylinder [—1,1] x S! and the graph T is the cycle {0} x S!
subdivided by 4 vertices in edges of equal length. Here we think S* as a circle of length
4.

— the surface X;; is of genus 1 with 1 boundary component and the metric graph
I' C X is the biparted complet graph Kj .

— for p,g € N,p > 0,q > 0, the biparted complet graph K, , is the spine of a
surface Sy,,9 =1/2(p —1)(¢ — 1), = (p, ¢), such that the téte-a-téte property holds.
For instance, let P and () be two parallel lines in the plane and draw p points on P,
g points on ). We add pq edges and get a planar projection of the graph K, ,. The
surface Sy, is a regular thickening of that projection.

Let (3,T") a pair of a surface and graph with téte-a-téte property. Our purpose is to
construct for this pair a well defined element Tt in the relative mapping class group of
the surface ¥. For each edge e of I' we embed relatively a copy (., 01.) of the interval
[—1,1] into (X, 0%) such that alle copies are pairwise disjoint and such that each copy
I, intersects in its midpoint 0 € I, the graph I" transversally in one point which is the
midpoint of the edge e. We call I, the dual arc of the edge e. Let I'. be the union of
I'U I.. We consider I', also as a metric graph. The graph I'. has 2 terminal vertices
a,b.



Let w,, wy : [—1,2] — I'c be the only save walks along I', with w,(—1) = a, wy(—1) =
b. We displace by a small isotopy the walks w,,w;, to smooth injektive path w/, wy,
that keeps the points wy(—1), wy(—1) and w,(2), wy(2) fixed, such that w! (t) ¢ T, for
t € (—1,2). The walks w,, w, meet each other in the midpoint of the edge e. Hence by
the téte-a-téte property we have w,(2) = wy(2). Let w, the juxtaposition of the pathes
w!, and —wy,. We may assume that the path w, is smooth and intersects I' transversally.
Let I! the image of the path w.. We now claim that there exits up to isotopy a unic
relative diffeomorphism ¢r of ¥ with ¢r(l.) = I.. We define the téte-a-téte twist 1t
as the class of ¢r.

For our first basic example we obtain back the classical right Dehn twist. The
second example has as téte-a-téte twist the geometric monodromy of the plane curve
singularity z* — y?. The twist of the example (S,,, K,,) computes the geometric

monodromy of for the singularity x? + y9.
Section 2. Relative téte-a-téte retracts.

We prepare material, that will allow us to glue the previous examples. Let S
be a connected compact surface with boundary 0S. The boundary 0S = AU B is
decomposed as a partition of boundary components of the surface S. We assume

A+0,B#0.

Definition. A relative téte-a-téte graph (S, A,T") in (S, A) is an embedded metric
graph I" in S with A C T'. Moreover, the following properties hold:

— the graph T" has no cycles of length < 2,
— the graph T is a regular retract of the surface %,

— for each point p € I'\ A, p not being a vertex, the two distint safe walks fyl‘f, Yp
[0,2] — X with p = 7,7 (0) = ~, (0) satisfy to v, (2) =, (2).

— for each point p € A, p not being a vertex, the only save walk ’y;r satisfies
7,5 (2) € A

We call the subset A the boundary of the relative téte-a-téte graph (S, A,T"). This
boundary carries a self map p € A+ 77(2) € A, which we call the boundary walk w.

We now give a family of examples of relative téte-a-téte graphs.

— Consider the previous example (Sy,, K,,),9 =1/2(p —1)(¢ —1),7 = (p,q). We
blow up in the real oriented sense the p vertices of valency ¢, so we replace such a
vertex v;, 1 < i < p by a circle A; and attach the edges of K, , that are incident with
v; to the circle in the cyclic order given by the embedding of K,, in S;,. We get a
surface S, ,4, and its boundary is partitioned in A := UA; and B = 05,,. The new
graph is the union of A with the strict transform of K, ,. So the new graph is in fact
the total transform K . We think this graph as a metric graph. The metric will be
such that all edges have a positive length and that the téte-a-téte property remains for



all points of K \ A. We achieve this by giving the edges of A the length 2¢,¢ > 0,¢
small and by giving the edges of K\ A the length 1 —¢. The boundary walk is an
interval exchange map from w : A — A. We denote by the pair (Sy,4,, K}, ,) this
relative tete-a-téte graph together with its boundary walk.

Section 3. Gluing and closing of relative téte-a-téte graphs.

First we discribe the procedure of closing. We do it by an example. Consider
(86,142, K35,13). We have two A boundary components A; and Ay. In oder to close the
A components, we choose a piece-wise linear orientation reversing selfmap s; : A; — A;
of order 2. The boundary component A; will be closed if we identify the pieces using the
map s;. In order to get the téte-a-téte property we do the same with the component A,,
but we take care such that the involution sy : Ay — A, is equivariant via the boundary
walk w to the involution s;. Hence we take p € Ay — s3(p) := wo s 0w !(p) € As.
More concretely, we can choose for s; : A; — A; an involution that exchange in an
orientation reversing way the opposite edges of an hexagon. If we do so, we get a surface
Sg,1 with téte-a-téte graph. The corresponding twist is the geometric monodromy of
the singularity (23 —y?)? — 25y. If we make our choices generically, the resulting graph
will have 51 vertices, 36 edges, 6 vertices of valency 2, 45 vertices of valency 3.

Now an example of gluing. We glue in an walk equivariant way to copies of
(821, Ky 5). We get a téte-a-téte graph on the surface Ss2. The corresponding twist is
the monodromy of the singularity (z3 — y?)(z? — 3?).

This is work in progress. A futher constuction for isolated singularities f : C**1 —
C provides its Milnor fiber with a spine, that consists of lagrangian strata. Again
the monodromy is concentrated at the spine. The monodromy diffeomorphism is a
generalized téte-a-téte twist. The case of plane curves is already interesting for we are
alming progress in restricting the adjacency tables. Thanks for your interest.
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