


Throughout pW ,Sq will denote a Coxeter system:

W � xs P S | s2 � 1, pstqmst � 1y

� xs P S | s2 � 1, st . . .loomoon
mst terms

� ts . . .loomoon
mst terms

y

(where mst P t2, 3, . . . ,8u).

For example, we could take W to be a real reflection group...



...or the symmetries of this tesselation of the hyperbolic plane:
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To a Coxeter system pW , Sq one may associate a simplicial
complex |pW ,Sq| called the Coxeter complex of W .

Let n � |S | denote the rank of W . Its construction is as follows:

� colour the n faces of the standard n � 1-simplex by the set S ,

� take one such simplex for each element w P W (from now on
we will call these simplices alcoves).

� glue the alcove corresponding to w to that corresponding to
ws along the wall coloured by s.



For example, consider W � S3:

W � xs, t | s2 � t2 � pstq3y � te, s, t, st, ts, stsu.

e s t st ts sts
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W � xs, t | s2 � t2 � pstq3y � te, s, t, st, ts, stsu.

sts � tst

sts

e

t ts



The Coxeter complex of S4 �    :

(barycentric subdivision of the tetrahedron).
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By construction |pW ,Sq| has a left action of W .

W also acts on the alcoves of |pW , Sq| on the right by

∆w � s � ∆ws .

This action is not simplicial, but is “local”: cross the wall
coloured by s.



The Coxeter complex provides a convenient way of visualising
the group algebra ZW of W . Recall that the group algebra ZW
consists of finite formal linear combinations

°
λww of elements of

W . The product in W induces a multipliction in ZW .

Hence we can picture an element of ZW as the assignment of
integers to each alcove, such that only finitely many are non-zero.
If we view ZW as a right module over itself it is easy to picture
the action of the elements of S :

5
� s � 5

Similarly (“s averaging operator”)

5
� p1 � sq �

5
5
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Let ` : W Ñ N denote the length function on W :

`pwq � length of a minimal expression for w in the generators s

� number of walls crossed in a minimal path id Ñ w in |pW ,Sq|.
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The Hecke algebra H is a quantization of ZW . It is an algebra
over Zrv�1s with basis tHx | x P W u parametrised by W . If we
write Hs :� Hs � vHid then the multiplication in H is determined
by

HxHs �

#
Hxs � vHx if `pxsq ¡ `pxq,

Hxs � v�1Hx if `pxsq   `pxq.

We can visualise this as follows: (“quantized averaging operator”)

id
h

� Hs �
h

vh

id
h

� Hs �
v�1h

h
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In 1979 Kazhdan and Lusztig defined a new basis for the Hecke
algebra using the combinatorial structure of W . We denote this
new basis by tHx | x P W u. It satisfies

Hx :� Hx �
¸
yPW

`pyq `pxq

hy ,xHy

with hy ,x P vZrv s. These polynomials are the Kazhdan-Lusztig
polynomials.





The definition is inductive. The first few Kazhdan-Lusztig basis
elements are easily defined:

H id :� Hid , Hs :� Hs � vHid for s P S .

Now the work begins. Suppose that we have calculated Hy for all
y with `pyq ¤ `pxq. Choose s P S with `pxsq ¡ `pxq and write

HxHs � Hxs �
¸

`pyq `pxsq

gyHy .

The formula for the action of Hs shows that gy P Zrv s for all
y   `pxsq. If all gy P vZrv s then Hxs :� HxHs . Otherwise we set

Hxs � HxHs �
¸
y

`pyq `pxq

gy p0qHy .
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For dihedral groups (rank 2) we always have hy ,x � v `pxq�`pyq

(Kazhdan-Lusztig basis elements are smooth.)

However in higher rank the situation quickly becomes more
interesting...



















































































Kazhdan-Lusztig positivity conjecture (1979):

hx ,y P Z¥0rv s

Established for crystallographic W by Kazhdan and Lusztig in
1980, using Deligne’s proof of the Weil conjectures.

Crystallographic: mst P t2, 3, 4, 6,8u.
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Why are Kazhdan-Lusztig polynomials hard?

Polo’s Theorem (1999)

For any P P 1 � qZ¥0rqs there exists an m such that vmPpv�2q
occurs as a Kazhdan-Lusztig polynomial in some symmetric group.

Roughly: all positive polynomials are Kazhdan-Lusztig
polynomials!
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The most complicated Kazhdan-Lusztig-Vogan polynomial
computed by the Atlas of Lie groups and Representations project:

152q22�3 472q21 � 38 791q20 � 293 021q19 � 1 370 892q18�

�4 067 059q17 � 7 964 012q16 � 11 159 003q15�

�11 808 808q14 � 9 859 915q13 � 6 778 956q12�

�3 964 369q11 � 2 015 441q10 � 906 567q9�

�363 611q8 � 129 820q7 � 41 239q6�

�11 426q5 � 2 677q4 � 492q3 � 61q2 � 3q

(This polynomial is associated to the reflection group of type E8.
See www.liegroups.org.)

www.liegroups.org


Why are Kazhdan-Lusztig polynomials useful?



Infinite dimensional highest weight representations of
semi-simple Lie algebras.

Kazhdan-Lusztig character formula (conjectured in 1979):

chLpx � 0q �
¸
y¥x

p�1q`pxq�`pyqhw0y ,w0xp1qch∆py � 0q.

(A major generalisation of the Weyl character formula.)
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The Kazhdan-Lusztig character formula was proved 1981 by
Beilinson-Bernstein and Brylinski-Kashiwara using every trick in
the book: algebraic differential equations “D-modules”; the
Riemann-Hilbert correspondence (monodromy of differential
equations); the theory of perverse sheaves (algebraic topology of
singular varieties); Deligne’s theory of weights (arithmetic
geometry):

“The amazing feature of the proof is that it does not try to
solve the problem but just keeps translating it in languages of
different areas of mathematics (further and further away from the
original problem) until it runs into Deligne’s method of weight
filtrations which is capable to solve it.

So have a seat; it is going to be a long journey.”
– Joseph Bernstein.
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Kazhdan-Lusztig polynomials also play an important role in:

i) Lusztig’s description of the character table of a finite group of
Lie type.

ii) The algorithm for the determination of the unitary dual of a
semi-simple Lie group by Adams, van Leeuwen, Trapa, Vogan
(see work of Schmid and Vilonen.)

iii) Kazhdan-Lusztig polynomials might end up helping us
understand the HOMFLYPT polynomial of a link...
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Theorem (Elias-W)

The Kazhdan-Lusztig positivity conjecture holds.

Using results of Soergel we obtain an algebraic proof of the
Kazhdan-Lusztig character formula.
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The idea (going back to Soergel) is to find a vector space which
behaves like the intersection cohomology of a Schubert variety,
even if this variety does not exist. (Much like the coinvariant
algebra for a non Weyl group should be regarded as the
cohomology of a flag variety, even if no such flag variety extists.)

The key property of intersection cohomology is the
“decomposition theorem”: the intersection cohomology of a variety
is a summand of the cohomology of any resolution.
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For Schubert varieties there exist resolutions of singularities (so
called Bott-Samelson resolutions) whose cohomology admit
elementary algebraic descriptions.

For any word ps, t, . . . , uq in S the cohomology of the
corresponding Bott-Samelson variety is:

BSps, t, . . . , uq :� R bRs R bRt � � � bRu R.

Theorem (Soergel)

If W is a Weyl group then the intersection cohomology of the
Schubert variety BxB{B is the unique largest indecomposable
R-module summand of BSps, t, . . . , uq.
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For any Coxeter system one can imitate the definition of the
action of a Weyl group on LieT to define the “geometric
representation” h of W . Let R denote the regular functions on h,
a polynomial ring over R.

Let Hx denote the largest R-module direct summand of
BSps, t, . . . , uq where ps, t, . . . , uq is any reduced expression for x .
Soergel shows:

1. Hx is well-defined up to isomorphism,

2. Hx has a filtration Γ¤x indexed by W and its Bruhat order.

Examples:

1. If W is a Weyl group then Hx � IH�pBxB{B;Rq, the
intersection cohomology of a Schubert variety.

2. If W is finite, with longest element w0, then Hw0 is the
coinvariant algebra.
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Conjecture (Soergel)

The graded dimension of

Γ¤yHx{Γ yHx

is given by the Kazhdan-Lusztig polynomial hy ,x .

If W is a Weyl group, then Soergel’s conjecture follows from the
Kazhdan and Lusztig’s theorem relating intersection cohomology
and Kazhdan-Lusztig polynomials.
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Soergel’s conjecture obviously implies that Kazhdan-Lusztig
polynomials have positive coefficients.

It is a consequence of work of Soergel from 1990 (partially
completed at the MPI) that his conjecture implies the
Kazhdan-Lusztig character formula.

Since then Soergel modules and bimodules have popped up
throughout representation theory, and have even been used by
Khovanov to construct HOMFLY-PT homology.
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A key idea in our proof of Soergel’s conjecture is to show that
each Hx “looks like the cohomology of a smooth projective
variety”.

In 2006 de Cataldo and Migliorini gave Hodge theoretic proofs
of the decomposition theorem, a deep result about the topology of
algebraic maps between algebraic varieties.
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The modules BSps, t, . . . , uq are equipped with an intersection
form, using a combinatorial analogue of the fundamental class. In
a complicated induction over the length of x we show that this
intersection form restricts to a non-degenerate “intersection form”
on Hx � BSps, t, . . . , uq and that analogues of the hard Lefschetz
theorem and the Hodge-Riemann bilinear relations inductively,
following the ideas of de Cataldo and Migliorini.

As is the case for de Cataldo and Migliorini, one needs the whole
package of statements for the induction to work.
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Theorem (Elias-W)

For any ρ P V � in the interior of the fundamental alcove:

i) (Hard-Lefschetz theorem) left multiplication by ρi gives an
isomorphism

pHxq
`pxq�i Ñ pHxq

`pxq�i

1. (Hodge-Riemann bilinear relations) The restriction of the form
pα, βq :� xα, ρiβy to the kernel of ρi�1 in pHxq

`pxq�i is
definite.



These results are new even for the coinvariant algebra of a finite
non-crystallographic reflection group.

For non-crystallographic W the spaces Hx are in general not the
cohomology of any projective variety. The integral lattice in
cohomology is replaced by a lattice over some ring of integers.

Example: If mst � 5 then the role of the integral lattice is
replaced by Zrφs, where φ denotes the golden ratio!
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I will finish with two questions:

i) Is there any geometric interpretation of these spaces? (One
can ask a similar question for the intersection cohomology of
non-rational polytopes.)

ii) What does Kazhdan-Lusztig theory mean in the
non-crystallographic case?
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For more images of two-sided cells in hyperbolic groups see Paul Gunnell’s web page.



Thanks for listening!


