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SYMPLECTIC REDUCTION

(X,ω) symplectic manifold

ω is a closed nondegenerate 2-form on X;
locally X ∼= R2m with

ω =
∑

1≤j≤m
dxj ∧ dxm+j

Example: X = T ∗M cotangent bundle

K compact Lie group with Lie algebra k acting
on (X,ω)

µ : X → k∗ moment(um) map satisfies

dµx(ξ).a = ωx(ξ, ax) ∀x ∈ X, ξ ∈ TxX, a ∈ k

and µ is K-equivariant (for the coadjoint action
on k∗).

Special case: (X,ω) is Kähler and K acts
holomorphically; then the action extends to

G = KC = complexification of K

[e.g. SL(n; C) is the complexification of SU(n)].
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Let ζ ∈ k∗ be a regular value of µ : X → k∗.
Let Kζ be its stabiliser for the coadjoint action.

Then the

Marsden-Weinstein reduction at ζ
µ−1(ζ)/Kζ

is a symplectic orbifold.

Often we take ζ = 0:

X//K = µ−1(0)/K

‘symplectic quotient’

Kähler case: µ−1(0)/K = (open subset of X)/G

inherits Kähler structure.

N.B. gradµ(x).a = i ax ∀a ∈ k

X//K = µ−1(0)/K has symplectic/Kähler struc-

ture with more serious singularities when 0 is

not a regular value of µ.

3



Example:

X = (P1)4

where P1 = C ∪ {∞} = S2 ⊆ R3.

K = SU(2) acting on X via rotations of S2

G = KC = SL(2; C) Möbius transformations

z 7→
az + b

cz + d

moment map µ : X → k∗ ∼= R3 given by

µ(x1, x2, x3, x4) = x1 + x2 + x3 + x4.

µ−1(0)/K represented by ‘balanced’ configura-

tions of four points on S2.
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Hyperkähler quotients

X hyperkähler manifold, complex structures i, j, k
with i2 = j2 = k2 = −1, ij = k = −ji etc,
metric g, Kähler forms ω1, ω2, ω2

compact group K acting on X preserving i, j, k, g

Hyperkähler moment map

µ = (µ1, µ2, µ3) : X → k∗ ⊗ R∗

Often fix the complex structure i and write
µ = µR ⊕ µC : X → k∗ ⊕ k∗C with µR = µ1 and
µC = µ2 + iµ3; then µC is holomorphic wrt i.

Examples: Hn, T ∗KC
(closures of) coadjoint orbits in k∗C

(Kronheimer, Kovalev, Nakajima, Kobak–S ...)

Hyperkähler quotient

X///K = µ−1(0)/K = µ−1
C (0)//K

(Hitchin, Karlhede, Lindström, Rocek)
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Mumford’s geometric invariant theory

(GIT)

G complex reductive linear algebraic group

X complex projective variety acted on by G

We require a linearisation of the action (i.e.

an ample line bundle L on X and a lift of the

action to L; think of X ⊆ Pn and the action

given by a representation ρ : G→ GL(n+ 1)).

X ⇒ A(X) = C[x0, . . . , xn]/IX
| =

⊕∞
k=0H

0(X,L⊗k)
|

⋃
|

↓
X//G ⇐ A(X)G algebra of invariants

G reductive implies that A(X)G is a finitely

generated graded complex algebra so that

X//G = Proj(A(X)G) is a projective variety.
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The rational map X− → X//G fits in a diagram

X −− → X//G cx proj variety⋃
||

semistable Xss onto−→ X//G⋃ ⋃
open

stable Xs −→ Xs/G

where the morphism Xss → X//G is G-invariant
and surjective.

Topologically X//G = Xss/ ∼ where

x ∼ y ⇔ Gx ∩Gy ∩Xss 6= ∅.

G reductive ⇔ G is the complexification KC of
a maximal compact subgroup K (for example
SL(n) = SU(n)C), and then

x ∈ Xss ⇔ Gx ∩ µ−1(0) 6= ∅
for a suitable moment map µ for the K-action,
and

X//G = µ−1(0)/K = X//K

NB There is a slight conflict of notation here.
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What can we do if G is not reductive?

Problem: We can’t define a projective variety

X//G = Proj(A(X)G)

as A(X)G is not necessarily finitely generated,
so can we still define a sensible ‘quotient’ X//G?

Theorem (Doran–K,...): Let G be a linear al-
gebraic group over C acting linearly on X ⊆ Pn.
Then X has open subsets Xs (‘stable points’)
and Xss (‘semistable points’), a geometric
quotient Xs → Xs/G and an ‘enveloping quo-
tient’ Xss → X//G. Moreover if A(X)G is
finitely generated then X//G = Proj(A(X)G).

X −− → X//G⋃
||

semistable Xss −→ X//G⋃ ⋃
open

stable Xs −→ Xs/G

Warning: X//G is not necessarily projective
and Xss → X//G is not necessarily onto.
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Simple example: C+ acting on Pn
We can choose coordinates in which the gener-
ator of Lie(C+) has Jordan normal form with
blocks of size k1 + 1, . . . , kq + 1. The linear C+

action therefore extends to G = SL(2) with

C+ = {
(

1 a
0 1

)
: a ∈ C} 6 G

via Cn+1 ∼=
⊕q
i=1 Sym

ki(C2).

In fact in this case the invariants are finitely
generated (Weitzenbock) so we can define

Pn//C+ = Proj((C[x0, . . . , xn])C+
).

N.B. Via (g, x) 7→ (gC+, gx) we have

G×C+ Pn ∼= (G/C+)× Pn ∼= (C2 \ {0})× Pn

⊆ C2 × Pn ⊆ P2 × Pn

and so

Pn//C+ ∼= (P2 × Pn)//SL(2)
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P2 × Pn −− → P2 × Pn//G⋃
||

Pn = {[1 : 0 : 1]} × Pn −− → Pn//C+⋃
||

(Pn)ss
not nec onto−→ Pn//C+⋃ ⋃

(Pn)s −→ (Pn)s/C+

Example when (Pn)ss → Pn//C+ is not onto:

P3 = P(Sym3(C2)) = { 3 unordered points on P1}.

Then (P3)ss = (P3)s is

{ 3 unordered points on P1, at most one at ∞}

and its image in

P3//C+ = (P3)s/C+ t P3//SL(2)

is the open subset (P3)s/C+ which does not

include the ‘boundary’ points coming from

0 ∈ C2 ⊆ P2.
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SYMPLECTIC IMPLOSION (Guillemin,

Jeffrey, Sjamaar 2001)

Ingredients: (X,ω) symplectic manifold

Hamiltonian action of compact connected group

K

µ : X → k∗ moment map

T maximal torus of K, Lie algebra t ⊆ k

Weyl group W = NT/T acts on t and t∗ which

decompose into Weyl chambers.

t∗+ = positive Weyl chamber ∼= t∗/W ∼= k∗/K.

Recall Kζ = {k ∈ K|(Ad∗k)ζ = ζ}. Its com-

mutator subgroup [Kζ,Kζ] is generated by the

commutators khk−1h−1 for k, h ∈ Kζ.
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The imploded cross-section of X is

Ximpl = µ−1(t∗+)/ ∼

where x ∼ y ⇔ x = ky for some k ∈ [Kζ,Kζ]
with

ζ = µ(x) = µ(y) ∈ t∗+.

Examples: (1) K = SU(2).

t∗+ = [0,∞) = {0} t (0,∞)

Ximpl =
µ−1(0)

SU(2)
t µ−1((0,∞))

(2) K = SU(3).

Over the interior points of t∗+ no collapsing
occurs since [Kζ,Kζ] = [T, T ] is trivial.
Over nonzero boundary points of t∗+ we have
Kζ
∼= U(2) and [Kζ,Kζ]

∼= SU(2).
Over 0 ∈ t∗+ we have Kζ = SU(3) = [Kζ,Kζ].

Ximpl inherits a symplectic structure and
T -action with moment map Ximpl → t∗+ ⊆ t∗

induced by the restriction of µ.
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K acts on itself by left translation and hence

on T ∗K ∼= k∗ ×K with moment map

µ(p, q).a = p · aq ∀a ∈ k, q ∈ K, p ∈ T ∗qK = k∗.

(T ∗K)impl ‘universal imploded cross-section’

is an affine algebraic variety over C.

In general

Ximpl
∼= (X × (T ∗K)impl)//K

which is an algebraic variety if X is algebraic.

Example: K = SU(2) ∼= S3 ⊆ C2

(T ∗SU(2))impl =
µ−1(0)

SU(2)
t µ−1((0,∞))

∼= {point} t (C2 \ {0}) ∼= C2

with induced T -action multiplication by t−1.
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Link with Kähler/algebraic geometry:

G = KC complexification of K;

B Borel subgroup of G (maximal soluble subgp)

such that G = KB and K ∩B = T .

N ⊆ B maximal unipotent subgroup of G;

B = TCN with TC complex torus.

FACT: KC/N is a quasi-affine variety whose

algebra of regular functions O(KC/N) = O(KC)N

is finitely generated, so that KC/N has a canon-

ical affine completion

KC//N = Spec(O(KC)N).

Thm (GJS): KC//N has a K-invariant Kähler

structure such that it is symplectically iso to

the universal imploded cross-section (T ∗K)impl.

Cor: X projective variety acted on by KC ⇒

Ximpl
∼= (X × (KC//N))//KC

∼= X//N.
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Generalised symplectic implosion:

G = KC complexification of K;

P parabolic subgroup of G;

UP unipotent radical of P .

FACT: G/UP is a quasi-affine variety whose al-

gebra of regular functions O(G/UP ) = O(G)UP

is finitely generated, so that G/UP has a canon-

ical affine completion

G//UP = Spec(O(G)UP ).

Thm: G//UP has a K-invariant Kähler struc-

ture such that it can be described symplecti-

cally as a generalised universal imploded cross-

section (T ∗K)(P )
impl.

Cor: X proj variety acted on linearly by G ⇒
its UP -invariants are finitely generated and

X//UP
∼= (X × (G//UP ))//G ∼= X

(P )
impl.
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Towards hyperkähler implosion

Recall: X hyperkähler manifold, complex struc-
tures i, j, k, metric g, Kähler forms ω1, ω2, ω3

compact group K acting on X preserving i, j, k, g

Hyperkähler moment map

µ = (µ1, µ2, µ3) : X → k∗ ⊗ R3

Hyperkähler quotient X///K = µ−1(0)/K

Hyperkähler implosion Xhkimpl should be strat-
ified hyperkähler with an induced T -action.

Look for the universal hyperkähler implosion

(T ∗KC)hkimpl

with an induced hyperkähler action of T × K
and then define

Xhkimpl = (X × (T ∗KC)hkimpl)///K.
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Recall the symplectic case:

(1) (T ∗K)impl = (K × t∗+)/ ∼

with (k, ζ) ∼ (k′, ζ′) iff ζ = ζ′, k′k−1 ∈ [Kζ,Kζ],

so (T ∗K)impl//ζT = K-coadjoint orbit of ζ.

(2) (T ∗K)impl = KC//N

where KC
∼= T ∗K ∼= K × k∗.

The universal hyperkähler implosion (T ∗KC)hkimpl

should be the complex symplectic quotient of

T ∗KC
∼= KC × k∗C by N

KC × (kC/LieN)∗//N = (KC × n0)//N.

Exists (with finitely generated invariants)?

Hyperkähler? Geometry?
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Consider K = SU(n). Co-adjoint orbits of KC =
SL(n; C) appear in quiver varieties:

0� C� C2 � · · ·� Cn.
Let M be the flat hyperkähler manifold

n−1⊕
i=1

Hi(i+1) =
n−1⊕
i=1

Hom(Ci,Ci+1)⊕Hom(Ci+1,Ci).

Then M///U(1)× U(2)× · · · × U(n− 1) can be
identified with the nilpotent cone N in kC,
which is the closure of the generic nilpotent
coadjoint orbit in kC. If we shift the moment
map by a suitable constant we get other coad-
joint orbits in kC. So consider

Q = M///SU(1)× SU(2)× · · · × SU(n− 1).

Q is stratified hyperkähler with dimension equal
to 2(dimK + dimT ) and a residual action of

(S1)n−1 × SU(n) ∼= T ×K

which preserves the hyperkähler structure, and
an action of SU(2) which rotates the complex
structures.
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Properties of the universal hyperkähler
implosion Q = (T ∗KC)hkimpl:

1) Q is stratified hyperkähler with dimension
equal to 2(dimK + dimT ) and an action of

(S1)n−1 × SU(n) ∼= T ×K
which preserves the hyperkähler structure, and
an action of SU(2) which rotates the complex
structures.

2) The algebra of invariants O(KC × n0)N is
finitely generated and for any complex struc-
ture Q is the complex symplectic quotient

(KC × n0)//N

of T ∗KC = KC × k∗C by N .

3) Q has a resolution of singularities

Q̃ = K ×T (T × n)

where T is the hypertoric variety for T associ-
ated to the hyperplane arrangement given by
the root planes in t.
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4) Q = Kb+ where
b+ = {(η, ζ) ∈ T × n :[µTj (η), ζ] = 0, j = 1,2,3}
and T is the hypertoric variety as before.

5) Let T σ = {η ∈ T : KµT (η) = Kσ} for σ a face
of t+, and define bσ+ similarly. Then

Q =
⊔
σ
K ×Kσ bσ+ =

⊔
σ

(K ×T (T σ × nKσ))/[Kσ,Kσ].

6) Let {V$ : $ ∈ Π} be the set of fundamental
representations of K. Then Q embeds in

H0(P1, (kC ⊕ tC)⊗O(2)⊕
⊕
$,j

∧jV$ ⊗O(j))

inducing a holomorphic and generically injec-
tive map from its twistor space to the line bun-
dle (kC ⊕ tC) ⊗ O(2) ⊕

⊕
$,j ∧jV$ ⊗ O(j). The

hyperkähler structure on Q can be recovered
from this embedding.

7) The hyperkähler reduction at 0 of Q by T
is the nilpotent cone N in kC; the reduction
at a generic point of t ⊗ R3 is a semisimple
coadjoint orbit of KC.
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8) Q can be described in terms of quivers, and
also as a suitable moduli space of solutions to
Nahm’s equations.

9) If ζ = (ζ1, ζ2, ζ3) ∈ t⊗ R3 ⊆ k⊗ R3 let

Kζ = Kζ1
∩Kζ2

∩Kζ3
.

Let Nζ be the nilpotent cone in (Kζ)C.
There is a K × SU(2)-equivariant embedding

Nζ ↪→ kζ ⊗ R3

whose composition with projection kζ ⊗ R3 →
(kζ)C is the inclusion of Nζ in (kζ)C. If

t(+) = {ζ + ξ ∈ k⊗ R3|ζ ∈ t⊗ R3 and ξ ∈ Nζ}
and the hyperkähler implosion of X is

Xhkimpl = (X ×Q)///K,

then we have

Xhkimpl = µ−1(t(+))/ ∼
with x ∼ y ⇔ µ(x) = ζ + ξ and µ(y) = ζ + ξ′

where ζ ∈ t ⊗ R3 and ξ, ξ′ ∈ Nζ and x = ky for
some k ∈ [Kζ,Kζ].
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