The ternary Goldbach problem

Harald Andrés Helfgott

May 2013

Harald Andrés

 Helfgott
Introduction

The circle method
The major arcs
Minor arcs
Conclusion

The ternary Goldbach problem: what is it? What was known?

Ternary Golbach conjecture (1742), or three-prime problem:
Every odd number $n \geq 7$ is the sum of three primes.
(Binary Goldbach conjecture:
every even number $n \geq 4$ is the sum of two primes.)

Introduction

The circle method
The major arcs
Minor arcs
Conclusion

The ternary Goldbach problem: what is it? What was known?

Ternary Golbach conjecture (1742), or three-prime problem:
Every odd number $n \geq 7$ is the sum of three primes.
(Binary Goldbach conjecture:
every even number $n \geq 4$ is the sum of two primes.)
Hardy-Littlewood (1923): There is a C such that every odd number $\geq C$ is the sum of three primes, if we assume the generalized Riemann hypothesis (GRH). Vinogradov (1937): The same result, unconditionally.

The ternary Goldbach problem

Harald Andrés

Helfgott

Introduction

The circle method
The major arcs
Minor arcs
Conclusion

Bounds for more prime summands

We also know: every $n>1$ is the sum of $\leq K$ primes (Schnirelmann, 1930),

Bounds for more prime summands

We also know: every $n>1$ is the sum of $\leq K$ primes (Schnirelmann, 1930),
and after intermediate results by Klimov (1969) ($K=6 \cdot 10^{9}$), Klimov-Piltay-Sheptiskaya, Vaughan, Deshouillers (1973), Riesel-Vaughan..., every even $n \geq 2$ is the sum of ≤ 6 primes (Ramaré, 1995)
every odd $n>1$ is the sum of ≤ 5 primes (Tao, 2012).

Bounds for more prime summands

We also know: every $n>1$ is the sum of $\leq K$ primes (Schnirelmann, 1930),
and after intermediate results by Klimov (1969) ($K=6 \cdot 10^{9}$), Klimov-Piltay-Sheptiskaya, Vaughan, Deshouillers (1973), Riesel-Vaughan..., every even $n \geq 2$ is the sum of ≤ 6 primes (Ramaré, 1995)
every odd $n>1$ is the sum of ≤ 5 primes (Tao, 2012).
Ternary Goldbach holds for all n conditionally on the generalized Riemann hypothesis (GRH) (Deshouillers-Effinger-te Riele-Zinoviev, 1997)

Harald Andrés

Helfgott

Introduction

The circle method
The major arcs
Minor arcs
Conclusion

Bounds for ternary Goldbach

Every odd $n \geq C$ is the sum of three primes (Vinogradov) Bounds for C ? $C=3^{3^{15}}$ (Borodzin, 1939), $C=3.33 \cdot 10^{43000}$ (Wang-Chen, 1989), $C=2 \cdot 10^{1346}$ (Liu-Wang, 2002).

Bounds for ternary Goldbach

Every odd $n \geq C$ is the sum of three primes (Vinogradov)
Bounds for $C ? C=3^{3^{15}}$ (Borodzin, 1939), $C=3.33 \cdot 10^{43000}$ (Wang-Chen, 1989), $C=2 \cdot 10^{1346}$ (Liu-Wang, 2002).

Verification for small n : every even $n \leq 4 \cdot 10^{18}$ is the sum of two primes (Oliveira e Silva, 2012);
taken together with results by Ramaré-Saouter and Platt, this implies that every odd $5<n \leq 1.23 \cdot 10^{27}$ is the sum of three primes; alternatively, with some additional computation, it implies that every odd $5<n \leq 8.875 \cdot 10^{30}$ is the sum of three primes (Helfgott-Platt, 2013).

Bounds for ternary Goldbach

Every odd $n \geq C$ is the sum of three primes (Vinogradov)
Bounds for $C ? C=3^{3^{15}}$ (Borodzin, 1939), $C=3.33 \cdot 10^{43000}$ (Wang-Chen, 1989), $C=2 \cdot 10^{1346}$ (Liu-Wang, 2002).

Verification for small n : every even $n \leq 4 \cdot 10^{18}$ is the sum of two primes (Oliveira e Silva, 2012);
taken together with results by Ramaré-Saouter and Platt, this implies that every odd $5<n \leq 1.23 \cdot 10^{27}$ is the sum of three primes; alternatively, with some additional computation, it implies that every odd $5<n \leq 8.875 \cdot 10^{30}$ is the sum of three primes (Helfgott-Platt, 2013).

We have a problem: $8.875 \cdot 10^{30}$ is much smaller than $2 \cdot 10^{1346}$.

Bounds for ternary Goldbach

Every odd $n \geq C$ is the sum of three primes (Vinogradov)
Bounds for $C ? C=3^{3^{15}}$ (Borodzin, 1939), $C=3.33 \cdot 10^{43000}$ (Wang-Chen, 1989), $C=2 \cdot 10^{1346}$ (Liu-Wang, 2002).

Verification for small n : every even $n \leq 4 \cdot 10^{18}$ is the sum of two primes (Oliveira e Silva, 2012);
taken together with results by Ramaré-Saouter and Platt, this implies that every odd $5<n \leq 1.23 \cdot 10^{27}$ is the sum of three primes; alternatively, with some additional computation, it implies that every odd $5<n \leq 8.875 \cdot 10^{30}$ is the sum of three primes (Helfgott-Platt, 2013).

We have a problem: $8.875 \cdot 10^{30}$ is much smaller than $2 \cdot 10^{1346}$. We must diminish C from $2 \cdot 10^{1346}$ to $\sim 10^{30}$.

The ternary Goldbach problem

Harald Andrés
 Helfgott

Introduction

Exponential sums and the circle method

 The circle method (or "Hardy-Littlewood") is based on exponential sums:
Introduction

Exponential sums and the circle method

The circle method (or "Hardy-Littlewood") is based on exponential sums: in this case, on the sums

$$
S_{\eta}(\alpha, x)=\sum_{n=1}^{\infty} \Lambda(n) e(\alpha n) \eta(n / x)
$$ Helfgott

Introduction

Exponential sums and the circle method

The circle method (or "Hardy-Littlewood") is based on exponential sums: in this case, on the sums

$$
S_{\eta}(\alpha, x)=\sum_{n=1}^{\infty} \wedge(n) e(\alpha n) \eta(n / x)
$$

where $\eta(t)=e^{-t}$ (Hardy-Littlewood), $\eta(t)=1_{[0,1]}$ (Vinogradov), $\Lambda(n)=\log p$ if $n=p^{\alpha}, \Lambda(n)=0$ if n is not a prime power (von Mangoldt function)
$e(\alpha)=e^{2 \pi i \alpha}=\cos 2 \pi \alpha+i \sin 2 \pi \alpha$ (traverses a circle as α varies within \mathbb{R} / \mathbb{Z}) Helfgott

Introduction

Exponential sums and the circle method

 The circle method (or "Hardy-Littlewood") is based on exponential sums: in this case, on the sums$$
S_{\eta}(\alpha, x)=\sum_{n=1}^{\infty} \Lambda(n) e(\alpha n) \eta(n / x)
$$

where
$\eta(t)=e^{-t}$ (Hardy-Littlewood), $\eta(t)=1_{[0,1]}$ (Vinogradov), $\Lambda(n)=\log p$ if $n=p^{\alpha}, \Lambda(n)=0$ if n is not a prime power (von Mangoldt function)
$e(\alpha)=e^{2 \pi i \alpha}=\cos 2 \pi \alpha+i \sin 2 \pi \alpha$ (traverses a circle as α varies within \mathbb{R} / \mathbb{Z})
The crucial identity:

$$
\begin{aligned}
& \sum_{n_{1}+n_{2}+n_{3}=N} \Lambda\left(n_{1}\right) \wedge\left(n_{2}\right) \wedge\left(n_{3}\right) \eta\left(n_{1} / x\right) \eta\left(n_{2} / x\right) \eta\left(n_{3} / x\right) \\
= & \int_{\mathbb{R} / \mathbb{Z}}\left(S_{\eta}(\alpha, x)\right)^{3} e(-N \alpha) d \alpha
\end{aligned}
$$

We must show that this integral is >0.

The ternary Goldbach problem

Harald Andrés
 Helfgott

Introduction
The circle method
The major arcs
Minor arcs
Conclusion

Major and minor arcs

We partition \mathbb{R} / \mathbb{Z} into intervals ("arcs")
$\mathfrak{m}_{a, q} \subset(a / q-1 / q Q, a / q+1 / q Q)$ around $a / q, q \leq Q$, where $Q \leq x$. (Farey fractions)

The ternary Goldbach problem

Harald Andrés Helfgott

Introduction
The circle method
The major arcs
Minor arcs
Conclusion

Major and minor arcs

We partition \mathbb{R} / \mathbb{Z} into intervals ("arcs") $\mathfrak{m}_{a, q} \subset(a / q-1 / q Q, a / q+1 / q Q)$ around $a / q, q \leq Q$, where $Q \leq x$. (Farey fractions)

If $q \leq m(x)$, we say $\mathfrak{m}_{a, q}$ is a major arc; if $q>m(x)$, we say $\mathfrak{m}_{a, q}$ is a minor arc. Helfgott

Introduction

The circle method
The major arcs
Minor arcs
Conclusion

Major and minor arcs

We partition \mathbb{R} / \mathbb{Z} into intervals ("arcs")
$\mathfrak{m}_{a, q} \subset(a / q-1 / q Q, a / q+1 / q Q)$ around $a / q, q \leq Q$, where $Q \leq x$. (Farey fractions)

If $q \leq m(x)$, we say $\mathfrak{m}_{a, q}$ is a major arc;
if $q>m(x)$, we say $\mathfrak{m}_{a, q}$ is a minor arc.
In general, up to now, $m(x) \sim(\log x)^{k}, k>0$ constant.

The ternary Goldbach problem

Introduction

The circle method The major arcs

Major and minor arcs

We partition \mathbb{R} / \mathbb{Z} into intervals ("arcs")
$\mathfrak{m}_{a, q} \subset(a / q-1 / q Q, a / q+1 / q Q)$ around $a / q, q \leq Q$, where $Q \leq x$. (Farey fractions)

If $q \leq m(x)$, we say $\mathfrak{m}_{a, q}$ is a major arc;
if $q>m(x)$, we say $\mathfrak{m}_{a, q}$ is a minor arc.
In general, up to now, $m(x) \sim(\log x)^{k}, k>0$ constant.
Let \mathfrak{M} be the union of major arcs and \mathfrak{m} the union of minor arcs.
We want to estimate $\int_{\mathfrak{M}}\left(S_{\eta}(\alpha, x)\right)^{3} e(-N \alpha) d \alpha$ and bound $\int_{\mathfrak{m}}\left|S_{\eta}(\alpha, x)\right|^{3} d \alpha$ from above.

The ternary Goldbach problem

Harald Andrés

Helfgott

Introduction
The circle method
The major arcs
Minor arcs
Conclusion

The major arcs

To estimate $\int_{\mathfrak{M}}\left(S_{\eta}(\alpha, x)\right)^{3} e(-N \alpha)$, we need to estimate $S_{\eta}(\alpha, x)$ for α near $a / q, q$ small ($q \leq m(x)$).

The major arcs

To estimate $\int_{\mathfrak{M}}\left(S_{\eta}(\alpha, x)\right)^{3} e(-N \alpha)$, we need to estimate $S_{\eta}(\alpha, x)$ for α near a/q, q small $(q \leq m(x)$).
We do this studying $L(s, \chi)$ for Dirichlet characters mod q, i.e., characters $\chi:(\mathbb{Z} / q \mathbb{Z})^{*} \rightarrow \mathbb{C}$.

$$
L(s, \chi):=\sum_{n} \chi(n) n^{-s}
$$

for $\Re(s)>1$; this has an analytic continuation to all of \mathbb{C} (with a pole at $s=1$ if χ is trivial).
We express $S_{\eta}(\alpha, x), \alpha=a / q+\delta / x$, as a sum of

$$
S_{\eta, \chi}(\delta / x, x)=\sum_{n=1}^{\infty} \Lambda(n) \chi(n) e(\delta n / x) \eta(n / x)
$$

for χ varying among all Dirichlet characters modulo q.

The ternary Goldbach problem

Harald Andrés

Helfgott

Introduction
The circle method
The major arcs

Minor arcs

Conclusion

The explicit formula

"Explicit formula":

$$
S_{\eta, \chi}(\delta / x, x)=\left[F_{\delta}(1) x\right]-\sum_{\rho} F_{\delta}(\rho) x^{\rho}+\text { small error }
$$

Helfgott

Introduction

The circle method
The major arcs
Minor arcs
Conclusion

The explicit formula

"Explicit formula":

$$
S_{\eta, \chi}(\delta / x, x)=\left[F_{\delta}(1) x\right]-\sum_{\rho} F_{\delta}(\rho) x^{\rho}+\text { small error }
$$

(a) the term $F_{\delta}(1) x$ appears only for χ principal (\sim trivial),
(b) ρ runs over the complex numbers ρ with $L(\rho, \chi)=0$ and $0<\Re(\rho) \leq 1$ (called "non-trivial zeroes"), (c) F_{δ} is the Mellin transform of $\eta(t) \cdot \boldsymbol{e}(\delta t)$. Helfgott

Introduction

The circle method
The major arcs
Minor arcs
Conclusion

The explicit formula

"Explicit formula":

$$
S_{\eta, \chi}(\delta / x, x)=\left[F_{\delta}(1) x\right]-\sum_{\rho} F_{\delta}(\rho) x^{\rho}+\text { small error, }
$$

(a) the term $F_{\delta}(1) x$ appears only for χ principal (\sim trivial),
(b) ρ runs over the complex numbers ρ with $L(\rho, \chi)=0$ and $0<\Re(\rho) \leq 1$ (called "non-trivial zeroes"), (c) F_{δ} is the Mellin transform of $\eta(t) \cdot \boldsymbol{e}(\delta t)$.

Mellin transform of a function f :

$$
\mathcal{M} f=\int_{0}^{\infty} f(x) x^{s-1} d x
$$ Helfgott

Introduction

The circle method
The major arcs

Minor arcs

Conclusion

The explicit formula

"Explicit formula":

$$
S_{\eta, \chi}(\delta / x, x)=\left[F_{\delta}(1) x\right]-\sum_{\rho} F_{\delta}(\rho) x^{\rho}+\text { small error, }
$$

(a) the term $F_{\delta}(1) x$ appears only for χ principal (\sim trivial),
(b) ρ runs over the complex numbers ρ with $L(\rho, \chi)=0$ and $0<\Re(\rho) \leq 1$ (called "non-trivial zeroes"),
(c) F_{δ} is the Mellin transform of $\eta(t) \cdot \boldsymbol{e}(\delta t)$.

Mellin transform of a function f :

$$
\mathcal{M} f=\int_{0}^{\infty} f(x) x^{s-1} d x
$$

Analytic on a strip $x_{0}<\Re(s)<x_{1}$ in \mathbb{C}.
It is a Laplace transform (or Fourier transform!) after a change of variables.

Introduction

The circle method
The major arcs
Minor arcs
Conclusion

Where are the zeroes of $L(s, \chi)$?

Let $\rho=\sigma+$ it be any non-trivial zero of $L(s, \chi)$.
What we believe:
$\sigma=1 / 2$ (Generalized Riemann Hypothesis (HRG))

The ternary Goldbach problem

Helfgott

Introduction

The circle method
The major arcs
Minor arcs
Conclusion

Where are the zeroes of $L(s, \chi)$?

Let $\rho=\sigma+$ it be any non-trivial zero of $L(s, \chi)$.
What we believe:
$\sigma=1 / 2$ (Generalized Riemann Hypothesis (HRG))
What we know:
$\sigma \leq 1-\frac{1}{C \log q|t|}$ (classical zero-free region (de la Vallée Poussin, 1899), C explicit (McCurley 1984, Kadiri 2005)

Where are the zeroes of $L(s, \chi)$?

Let $\rho=\sigma+$ it be any non-trivial zero of $L(s, \chi)$.
What we believe:
$\sigma=1 / 2$ (Generalized Riemann Hypothesis (HRG))
What we know:
$\sigma \leq 1-\frac{1}{C \log q|t|}$ (classical zero-free region (de la Vallée
Poussin, 1899), C explicit (McCurley 1984, Kadiri 2005)
There are zero-free regions that are broader asymptotically (Vinogradov-Korobov, 1958) but narrower, i.e., worse, in practice.

Where are the zeroes of $L(s, \chi)$?

Let $\rho=\sigma+$ it be any non-trivial zero of $L(s, \chi)$.
What we believe:
$\sigma=1 / 2$ (Generalized Riemann Hypothesis (HRG))
What we know:
$\sigma \leq 1-\frac{1}{C \log q|t|}$ (classical zero-free region (de la Vallée
Poussin, 1899), C explicit (McCurley 1984, Kadiri 2005)
There are zero-free regions that are broader asymptotically (Vinogradov-Korobov, 1958) but narrower, i.e., worse, in practice.

What we can also know:

for a given χ, we can verify GRH for $L(s, \chi)$ "up to a height T_{0} ". This means: verify that every zero ρ with $|\Im(\rho)| \leq T_{0}$ satisfies $\sigma=1 / 2$.

Introduction

The circle method
The major arcs
Minor arcs
Conclusion

Verifying GRH up to a given height

For the purpose of proving strong bounds that solve ternary Goldbach, zero-free regions are far too weak. We must rely on verifying GRH for several $L(s, \chi)$, $|t| \leq T_{0}$.

Verifying GRH up to a given height

Harald Andrés Helfgott

Introduction

The circle method
The major arcs
Minor arcs
Conclusion

For the purpose of proving strong bounds that solve ternary Goldbach, zero-free regions are far too weak. We must rely on verifying GRH for several $L(s, \chi)$, $|t| \leq T_{0}$.

For χ trivial $(\chi(x)=1), L(s, \chi)=\zeta(s)$.
The Riemann hypothesis has been verified up to $|t| \leq 2.4 \cdot 10^{11}$ (Wedeniwski 2003), $|t| \leq 1.1 \cdot 10^{11}$ (Platt 2012, rigourous), $|t| \leq 2.4 \cdot 10^{12}$ (Gourdon-Demichel 2004, not duplicated to date).

Verifying GRH up to a given height

For the purpose of proving strong bounds that solve ternary Goldbach, zero-free regions are far too weak. We must rely on verifying GRH for several $L(s, \chi)$, $|t| \leq T_{0}$.
For χ trivial $(\chi(x)=1), L(s, \chi)=\zeta(s)$.
The Riemann hypothesis has been verified up to $|t| \leq 2.4 \cdot 10^{11}$ (Wedeniwski 2003), $|t| \leq 1.1 \cdot 10^{11}$ (Platt 2012, rigourous), $|t| \leq 2.4 \cdot 10^{12}$ (Gourdon-Demichel 2004, not duplicated to date).
For $\chi \bmod q, q \leq 10^{5}$, GRH has been verified up to $|t| \leq 10^{8} / q$ (Platt 2011) rigourously (interval arithmetic).

Introduction

Verifying GRH up to a given height

For the purpose of proving strong bounds that solve ternary Goldbach, zero-free regions are far too weak. We must rely on verifying GRH for several $L(s, \chi)$, $|t| \leq T_{0}$.

For χ trivial $(\chi(x)=1), L(s, \chi)=\zeta(s)$.
The Riemann hypothesis has been verified up to $|t| \leq 2.4 \cdot 10^{11}$ (Wedeniwski 2003), $|t| \leq 1.1 \cdot 10^{11}$ (Platt 2012, rigourous), $|t| \leq 2.4 \cdot 10^{12}$ (Gourdon-Demichel 2004, not duplicated to date).
For $\chi \bmod q, q \leq 10^{5}$, GRH has been verified up to $|t| \leq 10^{8} / q$ (Platt 2011) rigourously (interval arithmetic).
This has been extended up to $q \leq 2 \cdot 10^{5}, q$ odd, and $q \leq 4 \cdot 10^{5}, q$ pair $\left(|t| \leq 200+7.5 \cdot 10^{7} / q\right)$ (Platt 2013).

How to use a GRH verification

Harald Andrés
 Helfgott

Introduction
The circle method
The major arcs
Minor arcs
Conclusion

We recall we must estimate $\sum_{\rho} F_{\delta}(\rho) x^{\rho}$, where F_{δ} is the Mellin transform of $\eta(t) e(\delta t)$.

How to use a GRH verification

We recall we must estimate $\sum_{\rho} F_{\delta}(\rho) x^{\rho}$, where F_{δ} is the Mellin transform of $\eta(t) e(\delta t)$.
The number of zeroes $\rho=\sigma+$ it with $|t| \leq T$ (T arbitrary) is easy to estimate.

How to use a GRH verification

We recall we must estimate $\sum_{\rho} F_{\delta}(\rho) x^{\rho}$, where F_{δ} is the Mellin transform of $\eta(t) e(\delta t)$.

The number of zeroes $\rho=\sigma+$ it with $|t| \leq T$ (T arbitrary) is easy to estimate.
We must choose η so that
(a) $F_{\delta}(\rho)$ decays rapidly as $t \rightarrow \infty$,
(b) F_{δ} can be easily estimated for $\delta \leq c$.

How to use a GRH verification

We recall we must estimate $\sum_{\rho} F_{\delta}(\rho) x^{\rho}$, where F_{δ} is the Mellin transform of $\eta(t) e(\delta t)$.
The number of zeroes $\rho=\sigma+$ it with $|t| \leq T$ (T arbitrary) is easy to estimate.

We must choose η so that
(a) $F_{\delta}(\rho)$ decays rapidly as $t \rightarrow \infty$,
(b) F_{δ} can be easily estimated for $\delta \leq c$.

For $\eta(t)=e^{-t}$, the Mellin transform of $\eta(t) e(\delta t)$ is

$$
F_{\delta}(s)=\frac{\Gamma(s)}{(1-2 \pi i \delta)^{s}}
$$

Decreases as $e^{-\lambda|\tau|}, \lambda=\tan ^{-1} \frac{1}{2 \pi|\delta|}$, for $s=\sigma+i \tau$, $|\tau| \rightarrow \infty$. If $\delta \gg 1$, then $\lambda \sim \frac{1}{2 \pi|\delta|}$. Problem: $e^{-|\tau| / 2 \pi \delta}$ does not decay very fast for δ large!

The Gaussian smoothing

Instead, we choose $\eta(t)=e^{-t^{2} / 2}$. The Mellin transform F_{δ} is then a parabolic cylinder function. Estimates in the literature weren't fully explicit (but: see Olver). Using the saddle-point method, I have given fully explicit upper bounds.

The Gaussian smoothing

Instead, we choose $\eta(t)=e^{-t^{2} / 2}$. The Mellin transform F_{δ} is then a parabolic cylinder function. Estimates in the literature weren't fully explicit (but: see Olver). Using the saddle-point method, I have given fully explicit upper bounds.
The main term in $F_{\delta}(\sigma+i \tau)$ behaves as

$$
e^{-\frac{\pi}{4}|\tau|}
$$

for δ small, $\tau \rightarrow \pm \infty$, and as

$$
e^{-\frac{1}{2}\left(\frac{|r|}{2 \pi \delta}\right)^{2}}
$$

for δ large, $\tau \rightarrow \pm \infty$.

Introduction

The circle method
The major arcs
Minor arcs
Conclusion

Major arcs: conclusions

Thus we obtain estimates for $S_{\eta, \chi}(\delta / x, x)$, where

$$
\eta(t)=g(t) e^{-t^{2} / 2}
$$

and g is any "band-limited" function:

$$
g(t)=\int_{-R}^{R} h(r) t^{-i r} d r
$$

where $h:[-R, R] \rightarrow \mathbb{C}$.

Introduction

The circle method
The major arcs
Minor arcs
Conclusion

Major arcs: conclusions

Thus we obtain estimates for $S_{\eta, \chi}(\delta / x, x)$, where

$$
\eta(t)=g(t) e^{-t^{2} / 2}
$$

and g is any "band-limited" function:

$$
g(t)=\int_{-R}^{R} h(r) t^{-i r} d r
$$

where $h:[-R, R] \rightarrow \mathbb{C}$. However: valid only for $|\delta|$ and q bounded!

Introduction

The circle method
The major arcs
Minor arcs
Conclusion

Major arcs: conclusions

Thus we obtain estimates for $S_{\eta, \chi}(\delta / x, x)$, where

$$
\eta(t)=g(t) e^{-t^{2} / 2}
$$

and g is any "band-limited" function:

$$
g(t)=\int_{-R}^{R} h(r) t^{-i r} d r
$$

where $h:[-R, R] \rightarrow \mathbb{C}$. However: valid only for $|\delta|$ and q bounded!

All the rest of the circle must be minor arcs; $m(x)$ must be a constant M. Helfgott

Introduction

Major arcs: conclusions

Thus we obtain estimates for $S_{\eta, \chi}(\delta / x, x)$, where

$$
\eta(t)=g(t) e^{-t^{2} / 2}
$$

and g is any "band-limited" function:

$$
g(t)=\int_{-R}^{R} h(r) t^{-i r} d r
$$

where $h:[-R, R] \rightarrow \mathbb{C}$. However: valid only for $|\delta|$ and q bounded!

All the rest of the circle must be minor arcs; $m(x)$ must be a constant M. (Writer for Science: "Muenster cheese" rather than "Swiss cheese".)
Thus, minor-arc bounds will have to be very strong.

The ternary Goldbach problem

Harald Andrés

Helfgott

Introduction
The circle method
The major arcs
Minor arcs
Conclusion

Back to the circle

We use two functions η, η_{*} instead of a function η.

Introduction

The circle method
The major arcs
Minor arcs
Conclusion

Back to the circle

We use two functions η, η_{*} instead of a function η. It is trivial that

$$
\begin{equation*}
\int_{\mathfrak{m}}\left|S_{\eta}(\alpha, x)\right|^{2}\left|S_{\eta_{*}}(\alpha, x)\right| d \alpha \leq \max _{\alpha \in \mathrm{m}}\left|S_{\eta_{*}}(\alpha, x)\right| \cdot L_{2}, \tag{1}
\end{equation*}
$$

where $L_{2}=\int_{\mathfrak{m}}\left|S_{\eta}(\alpha, x)\right|_{2}^{2} d \alpha$.

Introduction

The circle method
The major arcs
Minor arcs
Conclusion

Back to the circle

We use two functions η, η_{*} instead of a function η. It is trivial that

$$
\begin{equation*}
\int_{\mathfrak{m}}\left|S_{\eta}(\alpha, x)\right|^{2}\left|S_{\eta_{*}}(\alpha, x)\right| d \alpha \leq \max _{\alpha \in \mathrm{m}}\left|S_{\eta_{*}}(\alpha, x)\right| \cdot L_{2}, \tag{1}
\end{equation*}
$$

where $L_{2}=\int_{\mathfrak{m}}\left|S_{\eta}(\alpha, x)\right|_{2}^{2} d \alpha$. Bounding L_{2} is easy ($\sim x \log x$ by Plancherel).

Introduction

The circle method
The major arcs
Minor arcs
Conclusion

Back to the circle

We use two functions η, η_{*} instead of a function η. It is trivial that

$$
\begin{equation*}
\int_{\mathfrak{m}}\left|S_{\eta}(\alpha, x)\right|^{2}\left|S_{\eta_{*}}(\alpha, x)\right| d \alpha \leq \max _{\alpha \in \mathrm{m}}\left|S_{\eta_{*}}(\alpha, x)\right| \cdot L_{2}, \tag{1}
\end{equation*}
$$

where $L_{2}=\int_{\mathfrak{m}}\left|S_{\eta}(\alpha, x)\right|_{2}^{2} d \alpha$. Bounding L_{2} is easy ($\sim x \log x$ by Plancherel).

We must bound $\left|S_{\eta_{*}}(\alpha)\right|, \alpha \sim a / q+\delta / x, q>M$.

Back to the circle

We use two functions η, η_{*} instead of a function η. It is trivial that

$$
\begin{equation*}
\int_{\mathfrak{m}}\left|S_{\eta}(\alpha, x)\right|^{2}\left|S_{\eta_{*}}(\alpha, x)\right| d \alpha \leq \max _{\alpha \in \mathfrak{m}}\left|S_{\eta_{*}}(\alpha, x)\right| \cdot L_{2}, \tag{1}
\end{equation*}
$$

where $L_{2}=\int_{\mathfrak{m}}\left|S_{\eta}(\alpha, x)\right|_{2}^{2} d \alpha$. Bounding L_{2} is easy ($\sim x \log x$ by Plancherel).
We must bound $\left|S_{\eta_{*}}(\alpha)\right|, \alpha \sim a / q+\delta / x, q>M$.
It is possible to improve (1): Heath-Brown replaces $x \log x$ by $2 e^{\gamma} x \log q$. A new approach based on Ramaré's version of the large sieve (cf. Selberg) replaces this by $2 x \log q$.
The idea is that one can give good bounds for the integral over the arcs with denominator between r_{0} and r_{1} (say).

Introduction

The circle method
The major arcs
Minor arcs
Conclusion

What weight η_{+}?

The main term for the number of (weighted) solutions to $N=p_{1}+p_{2}+p_{3}$ will be proportional to

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty} \eta_{+}\left(t_{1}\right) \eta_{+}\left(t_{2}\right) \eta_{*}\left(\frac{N}{x}-t_{1}-t_{2}\right) d t_{1} d t_{2} \tag{2}
\end{equation*}
$$

whereas the main error terms will be proportional to $\left|\eta_{+}\right|^{2}\left|\eta_{*}\right|_{\infty}$.

Introduction

The circle method
The major arcs
Minor arcs
Conclusion

What weight η_{+}?

The main term for the number of (weighted) solutions to $N=p_{1}+p_{2}+p_{3}$ will be proportional to

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty} \eta_{+}\left(t_{1}\right) \eta_{+}\left(t_{2}\right) \eta_{*}\left(\frac{N}{x}-t_{1}-t_{2}\right) d t_{1} d t_{2} \tag{2}
\end{equation*}
$$

whereas the main error terms will be proportional to $\left|\eta_{+}\right|^{2}\left|\eta_{*}\right|_{\infty}$.
To maximize (2) (divided by $\left|\eta_{+}\right|^{2}\left|\eta_{*}\right|_{\infty}$), define $\eta_{+}(t)$ so that (a) it is approximately symmetric around $t=1$, (b) it is (almost) supported on $[0,2]$.

What weight η_{+}?

The main term for the number of (weighted) solutions to $N=p_{1}+p_{2}+p_{3}$ will be proportional to

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty} \eta_{+}\left(t_{1}\right) \eta_{+}\left(t_{2}\right) \eta_{*}\left(\frac{N}{x}-t_{1}-t_{2}\right) d t_{1} d t_{2} \tag{2}
\end{equation*}
$$

whereas the main error terms will be proportional to $\left|\eta_{+}\right|^{2}\left|\eta_{*}\right|_{\infty}$.
To maximize (2) (divided by $\left|\eta_{+}\right|^{2}\left|\eta_{*}\right|_{\infty}$), define $\eta_{+}(t)$ so that (a) it is approximately symmetric around $t=1$, (b) it is (almost) supported on [0, 2].
Solution: since $\eta(t)=g(t) e^{-t^{2} / 2}$, we let g be a band-limited approximation to $e^{t} \cdot I_{[0,2]}$.

The ternary Goldbach problem

Harald Andrés

Helfgott

Introduction
The circle method
The major arcs
Minor arcs
Conclusion

What weight η_{*} ?

In order to estimate $S_{\eta_{*}}$ on the major arcs, we want a η_{*} whose Mellin transform decreases exponentially for $\Re(s)$ bounded, $\Im(s) \rightarrow \pm \infty$.

What weight η_{*} ?

In order to estimate $S_{\eta_{*}}$ on the major arcs, we want a η_{*} whose Mellin transform decreases exponentially for $\Re(s)$ bounded, $\Im(s) \rightarrow \pm \infty$.

To estimate $S_{\eta_{*}}$ on the minor arcs, we prefer a η_{*} with compact support bounded away from 0.

Introduction

The circle method
The major arcs
Minor arcs
Conclusion

What weight η_{*} ?

In order to estimate $S_{\eta_{*}}$ on the major arcs, we want a η_{*} whose Mellin transform decreases exponentially for $\Re(s)$ bounded, $\Im(s) \rightarrow \pm \infty$.

To estimate $S_{\eta_{*}}$ on the minor arcs, we prefer a η_{*} with compact support bounded away from 0 .

Vinogradov chose $\eta_{*}=1_{[0,1]}$.
We would like: $\eta_{+}(x)=f{ }_{*_{M}} f$, where

$$
\left(f *_{M} f\right)\left(t_{0}\right)=\int_{0}^{\infty} f(t) f\left(\frac{t_{0}}{t}\right) \frac{d t}{t}
$$

f of compact support (e.g. $\eta_{2}:=f *_{M} f, f=2 \cdot 1_{[1 / 2,1]}$, as in Tao).

What weight η_{*} ?

In order to estimate $S_{\eta_{*}}$ on the major arcs, we want a η_{*} whose Mellin transform decreases exponentially for $\Re(s)$ bounded, $\Im(s) \rightarrow \pm \infty$.
To estimate $S_{\eta_{*}}$ on the minor arcs, we prefer a η_{*} with compact support bounded away from 0 .

Vinogradov chose $\eta_{*}=1_{[0,1]}$.
We would like: $\eta_{+}(x)=f *_{M} f$, where

$$
\left(f *_{M} f\right)\left(t_{0}\right)=\int_{0}^{\infty} f(t) f\left(\frac{t_{0}}{t}\right) \frac{d t}{t}
$$

f of compact support (e.g. $\eta_{2}:=f *_{M} f, f=2 \cdot 1_{[1 / 2,1]}$, as in Tao).
Solution: $\eta_{*}:=\eta_{0} *_{M} f *_{M} f$, where η_{0} has a Mellin transform with exponential decay.

What weight η_{*} ?

In order to estimate $S_{\eta_{*}}$ on the major arcs, we want a η_{*} whose Mellin transform decreases exponentially for $\Re(s)$ bounded, $\Im(s) \rightarrow \pm \infty$.
To estimate $S_{\eta_{*}}$ on the minor arcs, we prefer a η_{*} with compact support bounded away from 0 .

Vinogradov chose $\eta_{*}=1_{[0,1]}$.
We would like: $\eta_{+}(x)=f *_{M} f$, where

$$
\left(f *_{M} f\right)\left(t_{0}\right)=\int_{0}^{\infty} f(t) f\left(\frac{t_{0}}{t}\right) \frac{d t}{t}
$$

f of compact support (e.g. $\eta_{2}:=f *_{M} f, f=2 \cdot 1_{[1 / 2,1]}$, as in Tao).

Solution: $\eta_{*}:=\eta_{0} *_{M} f *_{M} f$, where η_{0} has a Mellin transform with exponential decay.
If we know $S_{f * f}(\alpha, x)$ or $S_{\eta_{0}}(\alpha, x)$, we know $S_{\eta_{*}}(\alpha, x)$.

Introduction

The circle method
The major arcs
Minor arcs
Conclusion

The new bound for minor arcs

Theorem (Helfgott, May 2012 - March 2013)

Let $x \geq x_{0}, x_{0}=2.16 \cdot 10^{20}$. Let $2 \alpha=a / q+\delta / x$, $\operatorname{gcd}(a, q)=1,|\delta / x| \leq 1 / q Q$, where $Q=(3 / 4) x^{2 / 3}$. If $q \leq x^{1 / 3} / 6$, then $\left|S_{\eta_{2}}(\alpha, x)\right| / x$ is less than

$$
\frac{R_{x, \delta_{0} q}\left(\log \delta_{0} q+0.002\right)+0.5}{\sqrt{\delta_{0} \phi(q)}}+\frac{2.491}{\sqrt{\delta_{0} q}}
$$

$$
+\frac{2}{\delta_{0} q} \min \left(\frac{q}{\phi(q)}\left(\log \delta_{0}^{7 / 4} q^{13 / 4}+\frac{80}{9}\right), \frac{5}{6} \log x+\frac{50}{9}\right)
$$

$$
+\frac{2}{\delta_{0} q}\left(\log q^{\frac{80}{9}} \delta_{0}^{\frac{16}{9}}+\frac{111}{5}\right)+3.2 x^{-1 / 6}
$$

where $\delta_{0}=\max (2,|\delta| / 4)$,

$$
R_{x, t_{1}, t_{2}}=0.4141+0.2713 \log \left(1+\frac{\log 4 t_{1}}{2 \log \frac{9 x^{1 / 3}}{2.004 t_{2}}}\right) .
$$

The ternary Goldbach problem

Harald Andrés

 Helfgott
Introduction

The circle method
The major arcs
Minor arcs
Conclusion

The new bound for minor arcs, II

Theorem (Helfgott, May 2012 - March 2013, bound for q large)

If $q>x^{1 / 3} / 6$, then

$$
\left|S_{\eta}(\alpha, x)\right| \leq 0.27266 x^{5 / 6}(\log x)^{3 / 2}+1217.35 x^{2 / 3} \log x .
$$

Introduction

The circle method
The major arcs

Minor arcs

Conclusion

The new bound for minor arcs, II

Theorem (Helfgott, May 2012 - March 2013, bound for q large)

If $q>x^{1 / 3} / 6$, then

$$
\left|S_{\eta}(\alpha, x)\right| \leq 0.27266 x^{5 / 6}(\log x)^{3 / 2}+1217.35 x^{2 / 3} \log x
$$

For $x=10^{25}, q \sim 1.5 \cdot 10^{5},|\delta|<8$ (the most delicate case)

$$
R_{X, \delta_{0} q}=0.5833 \ldots
$$

The ternary Goldbach problem

Harald Andrés

Helfgott

Introduction
The circle method
The major arcs
Minor arcs
Conclusion

Worst-case comparison

Let us compare the results here (2012-2013) with those of Tao (Feb 2012) for q highly composite, $|\delta|<8$:

Introduction

The circle method
The major arcs
Minor arcs
Conclusion

Worst-case comparison

Let us compare the results here (2012-2013) with those of Tao (Feb 2012) for q highly composite, $|\delta|<8$:

q_{0}	$\frac{\left\|S_{\eta}(a / q, x)\right\|}{x}, \mathrm{HH}$	$\frac{\left\|S_{\eta}(a / q, x)\right\|}{x}$, Tao
10^{5}	0.04521	0.34475
$1.5 \cdot 10^{5}$	0.03820	0.28836
$2.5 \cdot 10^{5}$	0.03096	0.23194
$5 \cdot 10^{5}$	0.02335	0.17416
10^{6}	0.01767	0.13159
10^{7}	0.00716	0.05251

Table: Upper bounds on $x^{-1}\left|S_{\eta}(a / 2 q, x)\right|$ for $q \geq q_{0}$, $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13\left|q,|\delta| \leq 8, x=10^{25}\right.$. The trivial bound is 1 .

Introduction

The circle method
The major arcs
Minor arcs
Conclusion

Worst-case comparison

Let us compare the results here (2012-2013) with those of Tao (Feb 2012) for q highly composite, $|\delta|<8$:

q_{0}	$\frac{\left\|S_{\eta}(a / q, x)\right\|}{x}, \mathrm{HH}$	$\frac{\left\|S_{\eta}(a / q, x)\right\|}{x}$, Tao
10^{5}	0.04521	0.34475
$1.5 \cdot 10^{5}$	0.03820	0.28836
$2.5 \cdot 10^{5}$	0.03096	0.23194
$5 \cdot 10^{5}$	0.02335	0.17416
10^{6}	0.01767	0.13159
10^{7}	0.00716	0.05251

Table: Upper bounds on $x^{-1}\left|S_{\eta}(a / 2 q, x)\right|$ for $q \geq q_{0}$, $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13\left|q,|\delta| \leq 8, x=10^{25}\right.$. The trivial bound is 1 .

Need to do a little better than $1 / 2 \log q$ to win. Meaning: Helfgott

Introduction

The circle method

Worst-case comparison

Let us compare the results here (2012-2013) with those of Tao (Feb 2012) for q highly composite, $|\delta|<8$:

q_{0}	$\frac{\left\|S_{\eta}(a / q, x)\right\|}{x}, \mathrm{HH}$	$\frac{\left\|S_{\eta}(a / q, x)\right\|}{x}$, Tao
10^{5}	0.04521	0.34475
$1.5 \cdot 10^{5}$	0.03820	0.28836
$2.5 \cdot 10^{5}$	0.03096	0.23194
$5 \cdot 10^{5}$	0.02335	0.17416
10^{6}	0.01767	0.13159
10^{7}	0.00716	0.05251

Table: Upper bounds on $x^{-1}\left|S_{\eta}(a / 2 q, x)\right|$ for $q \geq q_{0}$, $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13\left|q,|\delta| \leq 8, x=10^{25}\right.$. The trivial bound is 1 .

Need to do a little better than $1 / 2 \log q$ to win. Meaning: GRH verification needed only for $q \leq 1.5 \cdot 10^{5}$, q odd, and $q \leq 3 \cdot 10^{5}, q$ even.

The ternary Goldbach problem

Harald Andrés

Helfgott

Introduction
The circle method
The major arcs
Minor arcs
Conclusion

The new bounds for minor arcs: ideas

Qualitative improvements:

The new bounds for minor arcs: ideas

Qualitative improvements:

- cancellation within Vaughan's identity
- $\delta / x=\alpha-a / q$ is a friend, not an enemy:

The new bounds for minor arcs: ideas

Qualitative improvements:

- cancellation within Vaughan's identity
- $\delta / x=\alpha-a / q$ is a friend, not an enemy:

In type I: (a) decrease of $\widehat{\eta}$, change in approximations; In type II: scattered input to the large sieve

- relation between the circle method and the large sieve - in its version for primes;
- the benefits of a continuous η (also in Tao, Ramaré),

Introduction

The circle method
The major arcs
Minor arcs
Conclusion

Cancellation within Vaughan's identity

Vaughan's identity:

$$
\Lambda=\mu_{\leq U} * \log -\Lambda_{\leq V} * \mu_{\leq U} * 1+1 * \mu_{>U} * \Lambda_{>V}+\Lambda_{\leq V}
$$

where $f_{\leq V}(n)=f(n)$ if $n \leq V, f_{\leq V}(n)=0$ if $n>V$. (Four summands: type I, type I, type II, negligible.)

Introduction

The circle method
The major arcs
Minor arcs
Conclusion

Cancellation within Vaughan's identity

Vaughan's identity:

$$
\Lambda=\mu_{\leq U} * \log -\Lambda_{\leq V} * \mu_{\leq U} * 1+1 * \mu_{>U} * \Lambda_{>V}+\Lambda_{\leq V}
$$

where $f_{\leq V}(n)=f(n)$ if $n \leq V, f_{\leq V}(n)=0$ if $n>V$. (Four summands: type I, type I, type II, negligible.)
This is a gambit:

- Advantage: flexibility - we may choose U and V;
- Disadvantage: cost of two factors of log. (Two convolutions.)

Introduction

The circle method
The major arcs
Minor arcs
Conclusion

Cancellation within Vaughan's identity

Vaughan's identity:

$$
\Lambda=\mu_{\leq U} * \log -\Lambda_{\leq V} * \mu_{\leq U} * 1+1 * \mu_{>U} * \Lambda_{>V}+\Lambda_{\leq V}
$$

where $f_{\leq V}(n)=f(n)$ if $n \leq V, f_{\leq V}(n)=0$ if $n>V$. (Four summands: type I, type I, type II, negligible.)
This is a gambit:

- Advantage: flexibility - we may choose U and V;
- Disadvantage: cost of two factors of log. (Two convolutions.)

We can recover at least one of the logs. Helfgott

Introduction

The circle method

Cancellation within Vaughan's identity

Vaughan's identity:

$$
\Lambda=\mu_{\leq U} * \log -\Lambda_{\leq V} * \mu_{\leq U} * 1+1 * \mu_{>U} * \Lambda_{>V}+\Lambda_{\leq V}
$$

where $f_{\leq V}(n)=f(n)$ if $n \leq V, f_{\leq V}(n)=0$ if $n>V$. (Four summands: type I, type I, type II, negligible.)
This is a gambit:

- Advantage: flexibility - we may choose U and V;
- Disadvantage: cost of two factors of log. (Two convolutions.)

We can recover at least one of the logs.
Alternative would have been: use a log-free formula (e.g. Daboussi-Rivat); proceeding as above seems better in practice.

How to recover factors of log

Harald Andrés
 Helfgott

Introduction
The circle method
The major arcs
Minor arcs
Conclusion

In type I sums:
We use cancellation in $\sum_{n \leq M: d \mid n} \mu(n) / n$.
This is allowed: we are using only ζ, not L. This is explicit: Granville-Ramaré, El Marraki, Ramaré.

How to recover factors of log

Harald Andrés Helfgott

Introduction
The circle method
The major arcs
Minor arcs
Conclusion

In type I sums:
We use cancellation in $\sum_{n \leq M: d \mid n} \mu(n) / n$.
This is allowed: we are using only ζ, not L. This is explicit: Granville-Ramaré, El Marraki, Ramaré.

Vinogradov's basic lemmas on trigonometric sums get improved.

Introduction

The circle method
The major arcs
Minor arcs
Conclusion

How to recover factors of log

In type I sums:
We use cancellation in $\sum_{n \leq M: d \mid n} \mu(n) / n$.
This is allowed: we are using only ζ, not L. This is explicit: Granville-Ramaré, El Marraki, Ramaré.

Vinogradov's basic lemmas on trigonometric sums get improved.

In type II sums:
Proof of cancellation in $\sum_{m \leq M}\left(\sum_{d>U} \mu(d)\right)^{2}$, even for U almost as large as M.

Introduction

The circle method
The major arcs
Minor arcs
Conclusion

How to recover factors of log

In type I sums:
We use cancellation in $\sum_{n \leq M: d \mid n} \mu(n) / n$.
This is allowed: we are using only ζ, not L. This is explicit: Granville-Ramaré, El Marraki, Ramaré.

Vinogradov's basic lemmas on trigonometric sums get improved.

In type II sums:
Proof of cancellation in $\sum_{m \leq M}\left(\sum_{d>U} \mu(d)\right)^{2}$, even for U almost as large as M.

Application of the large sieve for primes.

The ternary Goldbach problem

Harald Andrés Helfgott

Introduction
The circle method
The major arcs
Minor arcs
Conclusion

The "error" $\delta / x=\alpha-a / q$ is a friend

In type II:

- $\widehat{\eta}(\delta) \ll 1 / \delta^{2}$ (so that $\left|\eta^{\prime \prime}\right|_{1}<\infty$),
- if $\delta \neq 0$, there has to be another approximation a^{\prime} / q^{\prime} with $q^{\prime} \sim x / \delta q$; use it.

Introduction

The circle method

The "error" $\delta / x=\alpha-a / q$ is a friend

In type II:

- $\widehat{\eta}(\delta) \ll 1 / \delta^{2}$ (so that $\left|\eta^{\prime \prime}\right|_{1}<\infty$),
- if $\delta \neq 0$, there has to be another approximation a^{\prime} / q^{\prime} with $q^{\prime} \sim x / \delta q$; use it.

In type II: the angles $m \alpha$ are separated by $\geq \delta / x$ (even when $m \geq q$). We can apply the large sieve to all $m \alpha$ in one go. We can even use prime support: double scattering, by δ and by Montgomery's lemma.

The ternary Goldbach problem

Harald Andrés
Helfgott

Introduction
The circle method
The major arcs
Minor arcs
Conclusion

Final result

All goes well for $n \geq 10^{30}$ (or well beneath that). As we have seen, the case $n \leq 10^{30}$ is already done (computation).

Introduction

The circle method
The major arcs
Minor arcs
Conclusion

Final result

All goes well for $n \geq 10^{30}$ (or well beneath that). As we have seen, the case $n \leq 10^{30}$ is already done (computation).

Theorem (Helfgott, May 2013)

Every odd number $n \geq 7$ is the sum of three prime numbers.

