HEISENBERG ODOMETERS

Alexandre I. Danilenko (joint work with Mariusz Lemańczyk)

Insitute for Low Temperature Physics and Engineering, NAS of Ukraine
July 7, 2014

Koopman unitary representation

Let $T=\left(T_{g}\right)_{g \in G}$ be an ergodic measure preserving action of a I.c.s.c. group G on a standard probability space (X, \mathfrak{B}, μ). Denote by $U_{T}=\left(U_{T}(g)\right)_{g \in G}$ the associated Koopman unitary representation of G in $L^{2}(X, \mu)$:

$$
U_{T}(g) f:=f \circ T_{g}^{-1}, \quad f \in L^{2}(X, \mu)
$$

Actions with pure point spectrum. Abelian case

Suppose first that G is Abelian. If U_{T} is a direct countable sum of 1-dimensional unitary sub-representations then T is said to have a pure point spectrum. In 1932, J. von Neumann developed a theory of such actions in the case $G=\mathbb{R}$.

Three main aspects of this theory

- isospectrality: two ergodic flows with pure point spectrum are isomorphic if and only if the associated Koopman unitary representations are unitarily equivalent,
- classification by simple algebraic invariants: the ergodic flows with pure point spectrum considered up to isomorphism are in one-to-one correspondence with the countable subgroups in $\widehat{\mathbb{R}}$ which is the dual of \mathbb{R},
- structure: if an ergodic flow has pure point spectrum then it is isomorphic to a flow by rotations on a compact metric Abelian group endowed with the Haar measure.

Remark

Similar results hold for the general Abelian G.

Actions with pure point spectrum. Non-Abelian case

G. Mackey (1964) extended the concept of pure point spectrum to actions of non-Abelian groups: T has a pure point spectrum if U_{T} is a direct sum of countably many finite dimensional irreducible unitary representations of G.
He established a structure for these actions: an ergodic action T has pure point spectrum if and only if it is isomorphic to a G-action by rotations on a homogeneous space of a compact group. However, in general, the G-actions with pure point spectrum are not isospectral even in the case of finite G.

Objects considered in the talk

G is the 3-dimensional real Heisenberg group $H_{3}(\mathbb{R})$ which is apparently the 'simplest' non-Abelian nilpotent Lie group. Moreover, we single out a special class of actions of $\mathrm{H}_{3}(\mathbb{R})$ which we call odometers. They are inverse limits of transitive $H_{3}(\mathbb{R})$-actions on homogeneous spaces by lattices in $H_{3}(\mathbb{R})$.
For discrete finitely generated groups G, the G-odometers were considered by M. Cortez and S. Petit (2008) in the context of topological dynamics. We define G-odometers for arbitrary l.c.s.c. groups and study them as measure preserving dynamical systems. "Discrete" Heisenberg odometers, i.e. odometer actions of $H_{3}(\mathbb{Z})$ were considered earlier in ["The structure and the spectrum of Heisenberg odometers", S. Lightwood, A. Şahin and I. Ugarcovici, PAMS, to appear]

Our Purpose

To investigate whether von Neumann's theory of flows with pure point spectrum extends (or partially extends) to the Heisenberg odometers.

Heisenberg group $H_{3}(\mathbb{R})$

consists of 3×3 upper triangular matrices of the form

$$
\left(\begin{array}{lll}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right)
$$

where a, b, c are arbitrary reals. The Heisenberg group endowed with the natural topology is a connected, simply-connected nilpotent Lie group.

We now let

$$
a(t):=\left(\begin{array}{lll}
1 & t & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), b(t):=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right), c(t):=\left(\begin{array}{lll}
1 & 0 & t \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Then $\{a(t) \mid t \in \mathbb{R}\},\{b(t) \mid t \in \mathbb{R}\}$ and $\{c(t) \mid t \in \mathbb{R}\}$ are three closed one-parameter subgroups in $H_{3}(\mathbb{R})$. The last is the center of $H_{3}(\mathbb{R})$. Every element g of $H_{3}(\mathbb{R})$ can be written uniquely as the product $g=c\left(t_{3}\right) b\left(t_{2}\right) a\left(t_{1}\right)$ for some $t_{1}, t_{2}, t_{3} \in \mathbb{R}$.

Unitary dual of $H_{3}(\mathbb{R})$.

The set of unitarily equivalent classes of irreducible (weakly continuous) unitary representations of $H_{3}(\mathbb{R})$ is denoted by $\widehat{H_{3}(\mathbb{R})}$.
The irreducible unitary representations of $H_{3}(\mathbb{R})$ are well known. They consist (up to unitary equivalence) of a family of 1-dimensional representations $\pi_{\alpha, \beta}, \alpha, \beta \in \mathbb{R}$, and a family of infinite dimensional representations $\pi_{\gamma}, \gamma \in \mathbb{R} \backslash\{0\}$, as follows:

$$
\begin{aligned}
\pi_{\alpha, \beta}\left(c\left(t_{3}\right) b\left(t_{2}\right) a\left(t_{1}\right)\right): & =e^{2 \pi i\left(\alpha t_{1}+\beta t_{2}\right)} \quad \text { and } \\
\left(\pi_{\gamma}\left(c\left(t_{3}\right) b\left(t_{2}\right) a\left(t_{1}\right)\right) f\right)(x): & =e^{2 \pi i \gamma\left(t_{3}+t_{2} x\right)} f\left(x+t_{1}\right), \quad f \in L^{2}\left(\mathbb{R}, \lambda_{\mathbb{R}}\right)
\end{aligned}
$$

Thus we can identify $\widehat{H_{3}(\mathbb{R})}$ with the disjoint union $\mathbb{R}^{2} \sqcup \mathbb{R}^{*}$.

Lattices in $H_{3}(\mathbb{R})$. Invariants ξ_{Γ}, k_{Γ} and $p(\Gamma)$

Every lattice is co-compact.
Fix a lattice Γ in $H_{3}(\mathbb{R})$. There is a real $\xi_{\Gamma}>0$ such that

$$
\Gamma \cap\{c(t) \mid t \in \mathbb{R}\}=\left\{c\left(m \xi_{\Gamma}\right) \mid m \in \mathbb{Z}\right\}
$$

The commutator subgroup $[\Gamma, \Gamma]$ is of a finite index $k_{\Gamma}>0$ in $\{c(t) \mid t \in \mathbb{R}\} \cap \Gamma$. The central extension

$$
\{0\} \leftarrow \mathbb{R}^{2} \stackrel{p}{\longleftarrow} H_{3}(\mathbb{R}) \stackrel{c}{\leftarrow} \mathbb{R} \leftarrow\{0\}
$$

induces a short exact sequence

$$
\{0\} \longleftarrow p(\Gamma) \stackrel{p}{\longleftarrow} \Gamma{ }^{c} \xi_{\Gamma} \mathbb{Z} \longleftarrow\{0\}
$$

$p(\Gamma)$ is a lattice in \mathbb{R}^{2}.

Classification of lattices

Theorem

Given a lattice Γ in $\mathrm{H}_{3}(\mathbb{R})$, there is an automorphism θ of $\mathrm{H}_{3}(\mathbb{R})$ such that

$$
\theta(\Gamma)=\left\{\left.\left(\begin{array}{ccc}
1 & I & \frac{n}{k_{r}} \\
0 & 1 & m \\
0 & 0 & 1
\end{array}\right) \right\rvert\, I, m, n \in \mathbb{Z}\right\} .
$$

Hence two lattices Γ_{1} and Γ_{2} in $H_{3}(\mathbb{R})$ are automorphic if and only if $k_{\Gamma_{1}}=k_{\Gamma_{2}}$. Two lattices Γ_{1} and Γ_{2} in $H_{3}(\mathbb{R})$ are conjugate if and only if $k_{\Gamma_{1}}=k_{\Gamma_{2}}$ and $p\left(\Gamma_{1}\right)=p\left(\Gamma_{2}\right)$.

Odometer actions of locally compact groups

Let $\Gamma_{1} \supset \Gamma_{2} \supset \cdots$ be a nested sequence of lattices in G. Consider a projective sequence of homogeneous G-spaces

$$
G / \Gamma_{1} \leftarrow G / \Gamma_{2} \leftarrow \cdots
$$

All arrows are G-equivariant and onto. Denote by X the projective limit of this sequence. Then X is a locally compact second countable G-space: G / Γ_{1} is locally compact and every arrow is finite-to-one. X is compact if and only if each Γ_{n} is co-compact in G. The G-action is minimal and uniquely ergodic. The only invariant probability measure μ on X is the projective limit of the probability Haar measures on G / Γ_{n}.

Definition

We call the dynamical system (X, μ, G) a G-odometer.

Freeness of Heisenberg odometers

Theorem

Let T be the $H_{3}(\mathbb{R})$-odometer associated with a sequence $\Gamma_{1} \supset \Gamma_{2} \supset \cdots$ of lattices in $H_{3}(\mathbb{R})$. Then T is free if and only if $\{c(t) \mid t \in \mathbb{R}\} \cap \bigcap_{n=1}^{\infty} \Gamma_{n}=\{1\}$.

Example

Let $\Gamma_{n}:=\left\{c\left(n!i_{3}\right) b\left(n!i_{2}\right) a\left(i_{1}\right) \mid i_{1}, i_{2}, i_{3} \in \mathbb{Z}\right\}$. Then Γ_{n} is a lattice in $H_{3}(\mathbb{R}), \Gamma_{1} \supset \Gamma_{2} \supset \cdots$ and $\{c(t) \mid t \in \mathbb{R}\} \cap \bigcap_{n=1}^{\infty} \Gamma_{n}=\{1\}$. On the other hand, $\bigcap_{n=1}^{\infty} \Gamma_{n}=\left\{a\left(i_{1}\right) \mid i_{1} \in \mathbb{Z}\right\}$.

If Γ_{n} is normal in Γ_{1} for each n and T is free then $\bigcap_{n=1}^{\infty} p\left(\Gamma_{n}\right)=\{0\}$.
In general, $\bigcap_{n=1}^{\infty} \Gamma_{n}=\{1\}$ does not imply $\bigcap_{n=1}^{\infty} p\left(\Gamma_{n}\right)=\{0\}$.

Spectral analysis for transitive actions of $H_{3}(\mathbb{R})$ on nil-manifolds

Fix a lattice Γ in $H_{3}(\mathbb{R})$ and consider the homogeneous $H_{3}(\mathbb{R})$-space $H_{3}(\mathbb{R}) / \Gamma$.
Let U denote the corresponding Koopman unitary representation of $H_{3}(\mathbb{R})$.
If $p(\Gamma)=A\left(\mathbb{Z}^{2}\right)$ for some matrix $A \in \mathrm{GL}_{2}(\mathbb{R})$ then we denote by $p(\Gamma)^{*}$ the dual lattice $\left(A^{*}\right)^{-1} \mathbb{Z}^{2}$ in \mathbb{R}^{2}. It is easy to see that the dual lattice does not depend on the choice of A.

Theorem

$$
U=\bigoplus_{(\alpha, \beta) \in p(\Gamma)^{*}} \pi_{\alpha, \beta} \oplus \bigoplus_{0 \neq n \in \mathbb{Z}} \bigoplus_{1}^{|n| k_{\Gamma}} \pi_{n \xi_{\Gamma}^{-1}}
$$

Isospectrality of transitive $H_{3}(\mathbb{R})$-actions on nil-manifolds

Corollary

Let Γ and Γ^{\prime} be two lattices in $H_{3}(\mathbb{R})$. Denote by T and T^{\prime} the corresponding measure preserving actions of $\mathrm{H}_{3}(\mathbb{R})$ on the homogeneous spaces $H_{3}(\mathbb{R}) / \Gamma$ and $H_{3}(\mathbb{R}) / \Gamma^{\prime}$ respectively. The following are equivalent:

- T and T^{\prime} are isomorphic.
- $p(\Gamma)=p\left(\Gamma^{\prime}\right)$ and $k_{\Gamma}=k_{\Gamma^{\prime}}$.
- $p(\Gamma)=p\left(\Gamma^{\prime}\right)$ and $\xi_{\Gamma}=\xi_{\Gamma^{\prime}}$.
- The Koopman representations of $H_{3}(\mathbb{R})$ generated by T and T^{\prime} are unitarily equivalent.
- T and T^{\prime} have the same maximal spectral type.

Non-degenerate odometers

Denote by (X, μ, T) the $H_{3}(\mathbb{R})$-odometer associated with $\Gamma_{1} \supset \Gamma_{2} \supset \cdots$. Let (Y, ν) stand for the space of
$\left(T_{c(t)}\right)_{t \in \mathbb{R}}$-ergodic components and let $f: X \rightarrow Y$ stand for the corresponding projection. Then an \mathbb{R}^{2}-action $V=\left(V_{t_{1}, t_{2}}\right)_{\left(t_{1}, t_{2}\right) \in \mathbb{R}^{2}}$ is well defined by the formula $V_{t_{1}, t_{2}} f(x):=f\left(T_{b\left(t_{2}\right) a\left(t_{1}\right)} x\right)$. We call it the underlying \mathbb{R}^{2}-odometer. It is the \mathbb{R}^{2}-odometer associated with the sequence $p\left(\Gamma_{1}\right) \supset p\left(\Gamma_{2}\right) \supset \cdots$ of lattices in \mathbb{R}^{2}.

Definition

We say that T is non-degenerate if one of the following equivalent conditions is satisfied:

- The underlying \mathbb{R}^{2}-odometer is non-transitive.
- The subgroup $\bigcup_{j=1}^{\infty} p\left(\Gamma_{j}\right)^{*}$ is not closed in \mathbb{R}^{2}
- The sequence $\left(p\left(\Gamma_{j}\right)\right)_{j=1}^{\infty}$ does not stabilize, i.e. for each $j>0$ there is $j_{1}>j$ such that $p\left(\Gamma_{j}\right) \neq p\left(\Gamma_{j_{1}}\right)$.

Spectral decomposition for Heisenberg odometers

Theorem

Let U stand for the Koopman unitary representation of $\mathrm{H}_{3}(\mathbb{R})$ generated by a Heisenberg odometer T.

- If T is non-degenerate then

$$
U=\bigoplus_{(\alpha, \beta) \in \bigcup_{j=1}^{\infty} p\left(\Gamma_{j}\right)^{*}} \pi_{\alpha, \beta} \oplus \bigoplus_{0 \neq \gamma \in \bigcup_{j=1}^{\infty} \xi_{\Gamma_{j}}^{-1} \mathbb{Z}} \bigoplus_{1}^{\infty} \pi_{\gamma}
$$

- If there is $I>0$ such that $p\left(\Gamma_{j}\right)=p\left(\Gamma_{l}\right)$ for all $j \geq I$ then

$$
U=\bigoplus_{(\alpha, \beta) \in p\left(\Gamma_{l}\right)^{*}} \pi_{\alpha, \beta} \oplus \bigoplus_{0 \neq \gamma \in \cup_{j=1}^{\infty} \xi_{\Gamma_{j}}^{-1} \mathbb{Z}} \bigoplus_{1}^{m(\gamma)} \pi_{\gamma},
$$

where $m(\gamma):=|\gamma| \xi_{\Gamma_{j}} k_{\Gamma_{j}}$ for each $\gamma \in \xi_{\Gamma_{j}}^{-1} \mathbb{Z}, j \geq 1$.

Off-rational subgroups

Definition

A subgroup S in \mathbb{R}^{m} is off-rational if its closure \bar{S} is co-compact in \mathbb{R}^{m} and there are a subgroup $Q \subset \mathbb{Q}^{m}$ and a matrix $A \in G L_{m}(\mathbb{R})$ such that $S=A Q$.

Given S, we associate to S an off-rational subgroup $\tau(S)$ in \mathbb{R}.
Since S is off-rational, there is a sequence of matrices
$A_{j} \in G L_{m}(\mathbb{R}) \cap M_{m}(\mathbb{Z})$ such that $A_{1}^{-1} \mathbb{Z}^{m} \subset A_{2}^{-1} \mathbb{Z}^{m} \subset \cdots$ and $\bigcup_{j=1}^{\infty} A_{j}^{-1} \mathbb{Z}^{m}=Q$ and hence $S=\bigcup_{j=1}^{\infty} A A_{j}^{-1} \mathbb{Z}^{m}$. Consider now a sequence of subgroups

$$
\frac{\operatorname{det} A}{\operatorname{det} A_{1}} \mathbb{Z} \subset \frac{\operatorname{det} A}{\operatorname{det} A_{2}} \mathbb{Z} \subset \cdots
$$

in \mathbb{R}. Then $\tau(S):=\bigcup_{j=1}^{\infty} \frac{\operatorname{det} A}{\operatorname{det} A_{j}} \mathbb{Z}$ is a dense off-rational subgroup of \mathbb{R} if $m>1$.
$\tau(S)$ does not depend on the choice of the sequence $\left(A_{j}\right)_{j=1}^{\infty}$.

Invariants S_{Γ} and ξ_{Γ}

Suppose we are given a sequence $\Gamma=\left(\Gamma_{j}\right)_{j=1}^{\infty}$ of lattices
$\Gamma_{1} \supset \Gamma_{2} \supset \cdots$ in $H_{3}(\mathbb{R})$. Then $S_{\Gamma}:=\bigcup_{j=1}^{\infty} p\left(\Gamma_{j}\right)^{*}$ is an off-rational subgroup of \mathbb{R}^{2} and $\xi_{\Gamma}:=\bigcup_{j=1}^{\infty} \xi_{\Gamma_{j}}^{-1} \mathbb{Z}$ is an off-rational subgroup in \mathbb{R}. If T is free then ξ_{Γ} is dense in \mathbb{R}.

Proposition

$\tau\left(S_{\Gamma}\right) \supset \xi_{\Gamma}$.

Theorem

Given an off-rational subgroup S in \mathbb{R}^{2} and an off-rational subgroup ξ in \mathbb{R} such that $\tau(S) \supset \xi$, there is a sequence Γ of lattices $\Gamma_{1} \supset \Gamma_{2} \supset \cdots$ in $H_{3}(\mathbb{R})$ such that $S_{\Gamma}=S$ and $\xi_{\Gamma}=\xi$. If S is dense then $\bigcap_{j=1}^{\infty} p\left(\Gamma_{j}\right)=\{0\}$. If, in addition, ξ is dense in \mathbb{R} then $\bigcap_{j=1}^{\infty} \Gamma_{j}=\{1\}$.

f-isomorphism

Definition

Two $H_{3}(\mathbb{R})$-odometers T and T^{\prime} are called -isomorphic if they are associated with some sequences $\left(\Gamma_{j}\right)_{j=1}^{\infty}$ and $\left(\Gamma_{j}^{\prime}\right)_{j=1}^{\infty}$ (respectively) of lattices in $H_{3}(\mathbb{R})$ such that Γ_{j} and Γ_{j}^{\prime} are conjugate in $H_{3}(\mathbb{R})$ for each j.

Theorem

- Let $\Gamma=\left(\Gamma_{j}\right)_{j=1}^{\infty}$ and $\Gamma^{\prime}=\left(\Gamma_{j}^{\prime}\right)_{j=1}^{\infty}$ be two sequences of lattices in $H_{3}(\mathbb{R})$ such that $\Gamma_{1} \supset \Gamma_{2} \supset \cdots$ and $\Gamma_{1}^{\prime} \supset \Gamma_{2}^{\prime} \supset \cdots$. Let T denote the odometer associated to Γ and let T^{\prime} denote the odometer associated to Γ^{\prime}. Then T and T^{\prime} are f-isomorphic if and only if $S_{\Gamma}=S_{\Gamma^{\prime}}$ and $\xi_{\Gamma}=\xi_{\Gamma^{\prime}}$.
- The Heisenberg odometers T and T^{\prime} are f-isomorphic if and only if the Koopman unitary representations of $\mathrm{H}_{3}(\mathbb{R})$ associated with them are unitarily equivalent.

Heisenberg odometers are not isospectral

Example

(cf. [The structure and the spectrum of Heisenberg odometers, by S. Lightwood, A. Şahin and I. Ugarcovici, Example 4.9]). Fix a sequence of natural numbers $k_{1}<k_{2}<\cdots$ such that $k_{1}=1$ and $k_{n}\left(k_{n}+1\right)=k_{n+1}$ for each n. Let

$$
\begin{aligned}
& \Gamma_{n}:=\left\{c\left(k_{n} j_{3}\right) b\left(k_{n} j_{2}\right) a\left(k_{n} j_{1}\right) \mid j_{1}, j_{2}, j_{3} \in \mathbb{Z}\right\} \text { and } \\
& \Gamma_{n}^{\prime}:=\left\{c\left(k_{n} j_{3}+j_{1}\right) b\left(k_{n} j_{2}\right) a\left(k_{n} j_{1}\right) \mid j_{1}, j_{2}, j_{3} \in \mathbb{Z}\right\},
\end{aligned}
$$

$n \in \mathbb{N}$. The corresponding $H_{3}(\mathbb{R})$-odometers T and T^{\prime} are f-isomorphic but non-isomorphic. Let σ denote the flip in $H_{3}(\mathbb{R})$, i.e. $\sigma(a(t))=b(t), \sigma(b(t))=a(t)$ and $\sigma(c(t))=c(-t), t \in \mathbb{R}$. Moreover, T is symmetric, i.e. T isomorphic to $T \circ \sigma$ but T^{\prime} is asymmetric. Nevertheless, T^{\prime} is f-isomorphic to $T^{\prime} \circ \sigma$.

Product of odometers

Theorem

Let T and T^{\prime} be two Heisenberg odometers associated with the nested sequences of lattices $\Gamma=\left(\Gamma_{j}\right)_{j=1}^{\infty}$ and $\Gamma^{\prime}=\left(\Gamma_{j}^{\prime}\right)_{j=1}^{\infty}$ in $H_{3}(\mathbb{R})$ respectively. Then

- $T \times T^{\prime}$ is ergodic if and only if $S_{\Gamma} \cap S_{\Gamma^{\prime}}=\{0\}$.
- $T \times T^{\prime}$ is ergodic and has discrete maximal spectral type if and only if $S_{\Gamma} \cap S_{\Gamma^{\prime}}=\{0\}$ and $\xi_{\Gamma} \cap \xi_{\Gamma^{\prime}}=\{0\}$. In this case the Koopman unitary representation $U_{T \times T^{\prime}}$ of $H_{3}(\mathbb{R})$ decomposes into irreducible representations as follows

$$
U_{T \times T^{\prime}}=\bigoplus_{(\alpha, \beta) \in S_{\Gamma}+S_{\Gamma^{\prime}}} \pi_{\alpha, \beta} \oplus \bigoplus_{0 \neq \gamma \in \xi_{\Gamma}+\xi_{\Gamma^{\prime}}} \bigoplus_{1}^{\infty} \pi_{\gamma}
$$

- $T \times T^{\prime}$ is not isomorphic (even not spectrally equivalent) to any Heisenberg odometer.

(A) Self-joinings of transitive Heisenberg odometers

Let $\Gamma=\{c(n / k) b(m) a(I) \mid n, m, I \in \mathbb{Z}\}$ for some $k \in \mathbb{N}$. Every element $g \in H_{3}(\mathbb{R})$ can be written uniquely as $g=c\left(t_{3}\right) b\left(t_{2}\right) a\left(t_{1}\right) \gamma$ for some $\gamma \in \Gamma$ and $0 \leq t_{3}<1 / k, 0 \leq t_{2}<1$ and $0 \leq t_{1}<1$. Hence the quotient space $H_{3}(\mathbb{R}) / \Gamma$ is a 3 -torus

$$
\mathbb{T}^{3}=\left\{\left(t_{1}, t_{2}, t_{3}\right) \mid 0 \leq t_{1}<1,0 \leq t_{2}<1 \text { and } 0 \leq t_{3}<1 / k\right\} .
$$

We write the $H_{3}(\mathbb{R})$-action on the homogeneous space $H_{3}(\mathbb{R}) / \Gamma$ in a skew product form:

$$
T_{g}(y, z)=(p(g) \cdot y, \alpha(g, y)+z)
$$

where $(y, z) \in Y \times Z:=(\mathbb{R} / \mathbb{Z})^{2} \times\left(\mathbb{R} / k^{-1} \mathbb{Z}\right)$, the symbol "." denotes the usual action of \mathbb{R}^{2} on Y by rotations and $\alpha: H_{3}(\mathbb{R}) \times Y \rightarrow Z$ is the corresponding cocycle.

Let Δ_{d} denote the measure on $Y \times Y$ sitting on the subset $\{(y, d+y) \mid y \in Y\}$ and projecting on the Haar measure on Y along each of the two coordinate projections. Given a closed subgroup Λ in $Z \times Z$, we denote by λ_{Λ} the Haar measure on Λ. We consider it as a measure on $Z \times Z$. Given $z \in Z$, we denote by $\lambda_{\Lambda} \circ z$ the image of λ_{Λ} under the rotation
$Z \times Z \ni\left(z_{1}, z_{2}\right) \mapsto\left(z_{1}, z_{2}+z\right) \in Z \times Z$. Let
$D_{q}:=\bigcup_{j=0}^{q-1}\left\{\left(t+k^{-1} \mathbb{Z}, t+j /(q k)+k^{-1} \mathbb{Z} \mid 0 \leq t<1\right\} \subset Z \times Z\right.$.

Theorem

The set $J_{2}^{e}(T)$ of all ergodic 2-fold self-joinings of T is the union of two families as follows:
$\left\{\Delta_{d} \times \lambda_{Z \times Z} \mid d\right.$ is aperiodic $\} \cup\left\{\Delta_{d} \times \lambda_{D_{q(d)}} \circ z \mid d\right.$ is periodic, $\left.z \in Z\right\}$
Every joining from the first family is a non-transitive dynamical system and every joining from the second family is a transitive dynamical system.

Remark

There exist ergodic 2-fold self-joinings of T which are not isomorphic to any Heisenberg odometer.

(B) Self-joinings of general Heisenberg odometers

We now consider a Heisenberg odometer T associated to a sequence of latices $\Gamma_{1} \supset \Gamma_{2} \supset \cdots$. The T-action can be represented as a skew product. The space of this action is the product $Y \times Z$ of two compact Abelian groups $Y:=\operatorname{proj} \lim _{j \rightarrow \infty} \mathbb{R}^{2} / p\left(\Gamma_{j}\right)$ and $Z:=\operatorname{proj}^{\lim }{ }_{j \rightarrow \infty} Z_{j}$, where $Z_{j}:=\mathbb{R} / \xi_{\Gamma_{j}} \mathbb{Z}$. Given $d \in Y$, we denote by Δ_{d} the image of the Haar measure on Y under the map $Y \ni y \mapsto(y, y+d) \in Y \times Y$. Every element $d \in Y$ is a sequence $\left(d_{j}\right)_{j \in \mathbb{N}}$ of elements $d_{j} \in \mathbb{R}^{2} / p\left(\Gamma_{j}\right)$ such that d_{j+1} maps to d_{j} under the natural projection $\mathbb{R}^{2} / p\left(\Gamma_{j+1}\right) \rightarrow \mathbb{R}^{2} / p\left(\Gamma_{j}\right)$ for each j. In a similar way, every element $z \in Z$ is a sequence $\left(z_{j}\right)_{j \in \mathbb{N}}$ of elements $z_{j} \in Z_{j}$ such that z_{j+1} maps to z_{j} under the natural projection $Z_{j+1} \rightarrow Z_{j}$ for each j.

If d_{j} is periodic then we denote by D_{j} be the closed subgroup of $Z_{j} \times Z_{j}$ associated with d_{j} in the way described in the part (A). We note that D_{j} contains the diagonal of $Z_{j} \times Z_{j}$ as a subgroup of finite index. Moreover, D_{j+1} maps onto D_{j} under the natural projection $Z_{j+1} \rightarrow Z_{j}$ for each j. Hence a projective limit $D_{d}:=$ proj $\lim _{j \rightarrow \infty} D_{j}$ is well defined. It is a closed subgroup of Z. Given a closed subgroup Λ of $Z \times Z$, let λ_{Λ} stand for the Haar measure on Λ. Given $z \in Z$, let $\lambda_{\Lambda} \circ z$ denote the image of λ_{Λ} viewed as a measure on $Z \times Z$ under the rotation $\left(z_{1}, z_{2}\right) \mapsto\left(z_{1}, z_{2}+z\right)$ of $Z \times Z$.

Theorem

The set $J_{2}^{e}(T)$ of all ergodic 2-fold self-joinings of T is the union of the following two families:
$J_{2}^{e}(T)=\left\{\Delta_{d} \times \lambda_{Z \times Z} \mid d=\left(d_{j}\right)_{j \in \mathbb{N}}\right.$ with d_{j} aperiodic for each $\left.j\right\}$ $\cup\left\{\Delta_{d} \times \lambda_{D_{d}} \circ z \mid d=\left(d_{j}\right)_{j \in \mathbb{N}}\right.$ with d_{j} periodic for each j and $\left.z \in Z\right\}$.

On spectral determinacy of Heisenberg odometers

(A) The case of transitive odometers

Let T be an ergodic action of $H_{3}(\mathbb{R})$ on a standard probability space (X, μ). Denote by U_{T} the corresponding Koopman unitary representation of $H_{3}(\mathbb{R})$.

Theorem

If U_{T} is unitarily equivalent to the Koopman unitary representation generated by the action Q of $H_{3}(\mathbb{R})$ by translations on $H_{3}(\mathbb{R}) / \Gamma$ for a lattice Γ in $H_{3}(\mathbb{R})$ then T is isomorphic to Q.

Thus the class of transitive Heisenberg odometers is spectrally determined.

On spectral determinacy of Heisenberg odometers (B) The general case

Theorem

- The subclass of degenerate Heisenberg odometers is spectrally determined.
- Let T be a non-degenerate Heisenberg odometer. Then there is an ergodic action R of $H_{3}(\mathbb{R})$ such that R has the same maximal spectral type as T but R is not isomorphic to T (and hence to any $\mathrm{H}_{3}(\mathbb{R})$-odometer).
- There is is an ergodic action of $H_{3}(\mathbb{R})$ which is unitarily equivalent to a Heisenberg odometer but which is not isomorphic to any Heisenberg odometer.

On $H_{3}(\mathbb{Z})$-odometers (considered in "The structure and the spectrum of Heisenberg odometers", by S. Lightwood, A. Şahin and I. Ugarcovici, PAMS, to appear)

Let $\Gamma_{1} \supset \Gamma_{2} \supset \cdots$ be a decreasing sequence of cofinite subgroups
in $H_{3}(\mathbb{Z})$. Denote by $T=\left(T_{g}\right)_{g \in H_{3}(\mathbb{Z})}$ the associated $H_{3}(\mathbb{Z})$-odometer. Let (X, μ) be the space of this odometer.
We call T normal if Γ_{j} is normal in $H_{3}(\mathbb{Z})$ for each j.
Let $T^{\prime}=\left(T_{g}^{\prime}\right)_{g \in H_{3}(\mathbb{R})}$ denote the $H_{3}(\mathbb{R})$-odometer associated with $\Gamma_{1} \supset \Gamma_{2} \supset \cdots$. Then T^{\prime} is the action induced from T.

If T is normal then X is a compact totally disconnected group and μ is the normalized Haar measure on X. Indeed, we obtain a sequence

$$
H_{3}(\mathbb{Z}) / \Gamma_{1} \leftarrow H_{3}(\mathbb{Z}) / \Gamma_{2} \leftarrow \cdots
$$

of finite groups $\mathrm{H}_{3}(\mathbb{Z}) / \Gamma_{j}$ and canonical onto homomorphisms such that $X=$ proj $\lim _{j \rightarrow \infty} H_{3}(\mathbb{Z}) / \Gamma_{j}$. Moreover, a group homomorphism $\varphi: H_{3}(\mathbb{Z}) \rightarrow X$ is well defined by the formula $\varphi(g)=\left(\varphi(g)_{j}\right)_{j=1}^{\infty}$, where $\varphi(g)_{j}:=g \Gamma_{j}$. Of course, $\varphi\left(H_{3}(\mathbb{Z})\right)$ is dense in X. It is easy to see that $T_{g} x=\varphi(g) x$ for all $g \in H_{3}(\mathbb{Z})$ and $x \in X$. Hence T has a pure point spectrum in the sense of G. Mackey. Moreover, T is normal in the sense of R.Zimmer (1976).

Theorem
 The normal $\mathrm{H}_{3}(\mathbb{Z})$-odometers are isospectral.

Let L_{j} denote the left regular representation of $H_{3}(\mathbb{Z}) / \Gamma_{j}$. Let \mathcal{I}_{j} stand for the unitary dual of $H_{3}(\mathbb{Z}) / \Gamma_{j}$. It is well known that (up to the unitary equivalence) $L_{j}=\bigoplus_{\tau \in \mathcal{I}_{j}} \bigoplus_{1}^{d_{\tau}} \tau$, where d_{τ} is the dimension of τ. In particular, $\#\left(H_{3}(\mathbb{Z}) / \Gamma_{j}\right)=\sum_{\tau \in \mathcal{I}_{j}} d_{\tau}^{2}$. Moreover, $\# \mathcal{I}_{j}$ equals the cardinality of the set of congugacy classes in $H_{3}(\mathbb{Z}) / \Gamma_{j}$.

Spectral decomposition of the normal $H_{3}(\mathbb{Z})$-odomoters

The canonical projection $X \rightarrow H_{3}\left(\mathbb{Z} / \Gamma_{j}\right)$ generates an embedding $L^{2}\left(H_{3}(\mathbb{Z}) / \Gamma_{j}\right) \subset L^{2}(X)$. Therefore we obtain an increasing sequence

$$
L^{2}\left(H_{3}(\mathbb{Z}) / \Gamma_{1}\right) \subset L^{2}\left(H_{3}(\mathbb{Z}) / \Gamma_{2}\right) \subset \cdots
$$

of U_{T}-invariant subspaces whose union is dense in $L^{2}(X)$ and such that the restriction $U_{T} \upharpoonright L^{2}\left(H_{3}(\mathbb{Z}) / \Gamma_{j}\right)$ is unitarily equivalent to $L_{j} \circ p_{j}$, where $p_{j}: H_{3}(\mathbb{Z}) \rightarrow H_{3}(\mathbb{Z}) / \Gamma_{j}$ is the canonical projection.

Theorem

Let $\mathcal{I}_{T}:=\bigcup_{j \in \mathbb{N}}\left\{\tau \circ p_{j} \mid \tau \in \mathcal{I}_{j}\right\}$ and d_{ι} is the dimension of ι.
Then we have

$$
U_{T}=\bigoplus_{\iota \in \mathcal{I}_{T}} \bigoplus_{1}^{d_{\iota}} \iota
$$

An explicit computation of \mathcal{I}_{T} in terms of the sequence $\left(\Gamma_{j}\right)_{j=1}^{\infty}$ was done in [Lightwood, A. Șahin and I. Ugarcovici, to appear].

Corollary

Two normal $H_{3}(\mathbb{Z})$-odometers T and R are (measure theoretically) isomorphic if and only if $\mathcal{I}_{T}=\mathcal{I}_{R}$.

Remark

There are non-isomorphic normal $H_{3}(\mathbb{Z})$-odometers such that the Koopman representations of $H_{3}(\mathbb{R})$ generated by the $H_{3}(\mathbb{R})$-odometers associated with the same sequences of lattices are unitarily equivalent.

Questions

Let Γ be a lattice in a I.c.s.c. group G.

Definition

Two ergodic actions T and R of Γ are called flow equivalent if the induced actions $\operatorname{Ind}_{\Gamma}^{G}(T)$ and $\operatorname{Ind}_{\Gamma}^{G}(T)$ are isomorphic.

If G is Abelian then the actions are flow equivalent if and only if they are isomorphic.

Questions

- Are there flow equivalent non-isomorphic ergodic actions of $H_{3}(\mathbb{Z})$?
- The same within the class of odometers?

