Invariant measures on the circle

Christopher Deninger

For an integer $N \geq 1$ consider the endomorphism φ_{N} of the unit circle \mathbb{T} given by $\varphi_{N}(\zeta)=\zeta^{N}$. It is known that besides Haar measure there are many φ_{N}-invariant atomless probability measures on \mathbb{T}, see $[B]$.

There are natural ways to characterize a measure μ on \mathbb{T} by an associated function defined either on \mathbb{T} or holomorphic in the unit disc. Invariance of the measure under φ_{N} translates into functional equations for the corresponding functions. For example consider the holomorphic function $f_{\mu}=\exp \left(-h_{\mu}\right)$ on the unit disc D where h_{μ} is the Herglotz-transform of μ

$$
h_{\mu}(z)=\int_{\mathbb{T}} \frac{\zeta+z}{\zeta-z} d \mu(\zeta) .
$$

Then φ_{N}-invariance of μ is equivalent to a functional equation for $f=f_{\mu}$

$$
\begin{equation*}
f\left(z^{N}\right)^{N}=\prod_{\zeta^{N}=1} f(\zeta z) \tag{1}
\end{equation*}
$$

Theorem 1. Up to a unique positive constant any non-zero function f in \mathcal{N} satisfying (1) is a quotient of singular inner functions.

Thus Blaschke products and outer functions in \mathcal{N} cannot satisfy (1) unless they are constant.

Not much is known about measures on \mathbb{T} which are invariant under at least two endomorphisms φ_{N} and φ_{M} with N prime to M, but see $[\mathrm{R}]$. It is therefore interesting to look for holomorphic functions on D which satisfy the
functional equation (1) for several integers N. Consider the multiplicative monoid \mathcal{S} generated by pairwise prime integers $N_{1}, \ldots, N_{s} \geq 2$. It acts on \mathbb{T} if we identify $N \in \mathcal{S}$ with φ_{N}. For a subgroup $\mathcal{G} \subset \mathcal{O}^{1}=\left\{f \in \mathcal{O}(D)^{\times} \mid f(0)=\right.$ 1 \} set

$$
H^{0}(\mathcal{S}, \mathcal{G})=\{f \in \mathcal{G} \mid f \text { satisfies (1) for all } N \in \mathcal{S}\}
$$

and

$$
Z(\mathcal{S}, \mathcal{G})=\left\{\alpha \in \mathcal{G} \mid \prod_{\zeta^{N}=1} \alpha(\zeta z)=1 \quad \text { for } 1 \neq N \in \mathcal{S}\right\}
$$

Here the conditions need to be checked for $N=N_{1}, \ldots, N_{s}$ only. The group $Z\left(\mathcal{S}, \mathcal{O}^{1}\right)$ is easy to describe as a certain quotient of \mathcal{O}^{1}. Moreover there are mutually inverse isomorphisms

$$
Z\left(\mathcal{S}, \mathcal{O}^{1}\right) \underset{\Phi_{\mathcal{S}}}{\stackrel{\Psi_{\mathcal{S}}}{\rightleftarrows}} H^{0}\left(\mathcal{S}, \mathcal{O}^{1}\right)
$$

For $s=1$ they are given by the formulas

$$
\Phi_{\mathcal{S}}(f)(z)=f(z) / f\left(z^{N_{1}}\right) \quad \text { and } \quad \Psi_{\mathcal{S}}(\alpha)(z)=\prod_{\nu=0}^{\infty} \alpha\left(z^{N_{1}^{\nu}}\right)
$$

For general \mathcal{S} we have

$$
\Psi_{\mathcal{S}}(\alpha)=\prod_{N \in \mathcal{S}} \alpha\left(z^{N}\right)
$$

Thus for $f \in \mathcal{O}^{1}$ the description of simultanous solutions of (1) is easy. The situation becomes interesting when one imposes growth conditions on the solutions f. Recall that for a probability measure μ on \mathbb{T} the function f_{μ} lies in the Hardy space $H^{\infty}(D)$ of bounded analytic functions on D.

If μ is φ_{N}-invariant for $N \in \mathcal{S}$ then f_{μ} lies in $H^{0}\left(\mathcal{S}, \mathcal{O}^{1}\right)$. Consequently $\Phi_{\mathcal{S}}\left(f_{\mu}\right) \in Z\left(\mathcal{S}, \mathcal{N}^{1}\right)$ where $\mathcal{N}^{1}=\mathcal{N}^{\times} \cap \mathcal{U}$. Here we have used that quotients of nowhere vanishing bounded holomorphic functions lie in \mathcal{N}^{\times}.

It is not known which functions are of the form f_{μ} for an \mathcal{S}-invariant probability measure μ. By the above they can be recovered from $\Phi_{\mathcal{S}}\left(f_{\mu}\right)$ by applying $\Psi_{\mathcal{S}}$. Thus it is natural to study the map $\Psi_{\mathcal{S}}$ on $Z\left(\mathcal{S}, \mathcal{N}^{1}\right)$. The space $Z\left(\mathcal{S}, \mathcal{N}^{1}\right)$ is naturally a quotient of \mathcal{N}^{1} with a known kernel. The image under $\Psi_{\mathcal{S}}$ contains the space $H^{0}\left(\mathcal{S}, \mathcal{N}^{1}\right)$ whose structure we would like to understand but it is strictly bigger. One basic result is the following

Theorem 2. There is an inclusion $\quad \Psi_{\mathcal{S}}\left(Z\left(\mathcal{S}, \mathcal{N}^{1}\right)\right) \subset H^{0}\left(\mathcal{S}, \mathcal{N}_{s}^{1}\right)$.
Here $\mathcal{N}_{s}^{1}=\mathcal{N}_{s}^{\times} \cap \mathcal{U}$ and \mathcal{N}_{s} is the algebra of functions $f \subset \mathcal{O}(D)$ that can be written in the form $f=g_{1} g_{2}^{-1}$ where g_{2} has no zeroes and both g_{1} and g_{2} satisfy an estimate of the form

$$
\begin{equation*}
|g(z)| \leq a_{g} \exp \left(r_{g} \log ^{s}(1-|z|)^{-1}\right) \quad \text { for } z \in D \tag{2}
\end{equation*}
$$

where $a_{g} \geq 0$ and $r_{g} \geq 0$ are constants. For $s=0$ the estimate (2) asserts that $g \in H^{\infty}(D)$ so that $\mathcal{N}_{0}=\mathcal{N}$. For $s=1$ it asserts that

$$
|g(z)| \leq a_{g}(1-|z|)^{-r_{g}}
$$

This means that $g \in \mathcal{A}^{-\infty}$ in the notation of Korenblum [K1], [K2]. The more general classes \mathcal{N}_{s} appear in the works [BL], [K4] and [S] for example.
Classically the elements of \mathcal{N}^{1} can be described by finite signed measures on \mathbb{T}. More generally, by a theorem of Korenblum the elements of \mathcal{N}_{s}^{1} correspond to real premeasures of bounded κ_{s}-variation on the circle. Here κ_{s} is the generalized entropy-function on $[0,1]$

$$
\kappa_{s}(x)=x \sum_{\nu=0}^{s} \frac{1}{\nu!}|\log x|^{\nu} .
$$

Thus $\kappa_{0}(x)=x$ and $\kappa_{1}(x)=x(1+|\log x|)=x \log \frac{e}{x}$. The premeasure μ on \mathbb{T} is of bounded κ_{s}-variation if there is a constant $A \geq 0$ such that

$$
\sum_{j}\left|\mu\left(C_{j}\right)\right| \leq A \sum_{j} \kappa_{s}\left(\left|C_{j}\right|\right)
$$

holds for all finite partitions of \mathbb{T} into disjoint connected subsets C_{j} (arcs). Here $|C|$ is the arc length of C normalized by $|\mathbb{T}|=1$.

If the premeasure μ corresponds to $f \in \mathcal{N}_{s}^{1}$ then as for measures, μ is $\varphi_{N^{-}}$ invariant if and only if f satisfies equation (1). Hence we have obtained an injection from $Z\left(\mathcal{S}, \mathcal{N}^{1}\right)$ into the space of premeasures of bounded $\kappa_{s^{-}}$ variation which are invariant under N_{1}, \ldots, N_{s}. One can do a little better: For suitable functions in $Z\left(\mathcal{S}, \mathcal{N}^{1}\right)$ one even obtains premeasures of bounded κ_{s-1}-variation invariant under N_{1}, \ldots, N_{s}.

Classically the atoms of a measure μ can be seen in the function f_{μ}. For the Korenblum correspondence between premeasures and functions this is still
true but more subtle. It rests on a positivity argument as with the Féjèr kernel in Fourier analysis.
In the theory described up to now there are analogous assertions for spaces of atomless (pre-)measures and functions. For example, one obtains many φ_{N} and φ_{M} invariant atomless premeasures of bounded κ_{1}-variation.

As part of a more general theory, Korenblum has shown that premeasures μ of $\kappa=\kappa_{s}$-bounded variation induce compatible measures μ^{F} on the Borel algebras of κ-Carleson sets F. These are closed subsets of \mathbb{T} of Lebesgue measure zero such that

$$
\sum_{I} \kappa(|I|)<\infty .
$$

Here $\mathbb{T} \backslash F=\amalg I$ is the decomposition into connected components I. The family $\mu_{s}=\left(\mu^{F}\right)$ is called the κ-singular measure attached to μ. Using Korenblums results and general facts from measure theory we show that κ singular measures can be interpreted as " κ-thin measures" $\tilde{\mu}$. These live in the Grothendieck group of a semigroup of positive σ-finite measures on the Borel algebra of \mathbb{T} (with further properties). Thus $\tilde{\mu}$ is given by a class of pairs of σ-finite positive measures $\tilde{\mu}_{i}$:

$$
\tilde{\mu}=\left[\tilde{\mu}_{1}, \tilde{\mu}_{2}\right] .
$$

Because of a cancellation property there is equality

$$
\left[\tilde{\mu}_{1}, \tilde{\mu}_{2}\right]=\left[\tilde{\nu}_{1}, \tilde{\nu}_{2}\right]
$$

if and only if $\tilde{\mu}_{1}+\tilde{\nu}_{2}=\tilde{\mu}_{2}+\tilde{\nu}_{1}$. Combining the previously defined maps $\Psi_{\mathcal{S}}$ with the passage to κ_{s}-thin measures, we obtain for every $\alpha \in Z\left(\mathcal{S}, \mathcal{N}^{1}\right)$ or corresponding measure σ, pairs of σ-finite measures $\tilde{\mu}_{1}, \tilde{\mu}_{2}$ with $\tilde{\mu}_{1}+N_{*} \tilde{\mu}_{2}=$ $N_{*} \tilde{\mu}_{1}+\tilde{\mu}_{2}$ for all $N \in \mathcal{S}$. The measures $\tilde{\mu}_{i} \geq 0$ live on countable unions of κ_{s}-Carleson sets and are restricted by further properties. If $\tilde{\mu}_{1}$ or $\tilde{\mu}_{2}$ is finite then $\tilde{\mu}=\tilde{\mu}_{1}-\tilde{\mu}_{2}$ is a signed measure and both $\tilde{\mu}^{+}$and $\tilde{\mu}^{-}$are \mathcal{S}-invariant.

We prove that every \mathcal{S}-invariant positive ergodic probability measure which is non-zero on some κ_{s}-Carleson set is κ_{s}-thin and can be obtained by the preceeding constructions. The last condition may be automatically satisfied. This is true if non-constant cyclic elements in certain topological algebras $\mathcal{A}_{\gamma} \subset \mathcal{O}(D)$ defined by growth conditions cannot satisfy the functional equation (1) for too many coprime integers N. The relation comes from

Korenblum's theory [K2], [K3] characterizing cyclicity in terms of vanishing κ-singular measure. For $\gamma=0$ the assertion is true.

There are some useful operations on functions, (pre-)measures and (Schwartz)distributions. These operations behave like Frobenius, Verschiebung and the Teichmüller character for Witt vectors. In fact the ring $\mathcal{D}^{\prime}(\mathbb{T})$ of distributions on \mathbb{T} under convolution embeds naturally into the ring of big Witt vectors of \mathbb{C} such that the corresponding operations on both sides are identified. As a small example we note that the Artin-Hasse exponential for the prime p is the image of a p-invariant premeasure on \mathbb{T} of κ_{1}-bounded variation which is not a measure and whose κ_{1}-thin (or singular) measure is zero.

References

[B] Rufus Bowen. Equilibrium states and the ergodic theory of Anosov diffeomorphisms, volume 470 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, revised edition, 2008. With a preface by David Ruelle, Edited by Jean-René Chazottes.
[BL] Alexander Borichev and Yurii Lyubarskii. Uniqueness theorems for Korenblum type spaces. J. Anal. Math., 103:307-329, 2007.
[K1] Boris Korenblum. An extension of the Nevanlinna theory. Acta Math., 135(3-4):187-219, 1975.
[K2] Boris Korenblum. A Beurling-type theorem. Acta Math., 138(3-4):265-293, 1976.
[K3] Boris Korenblum. Cyclic elements in some spaces of analytic functions. Bull. Amer. Math. Soc. (N.S.), 5(3):317-318, 1981.
[K4] Boris Korenblum. On a class of Banach spaces of functions associated with the notion of entropy. Trans. Amer. Math. Soc., 290(2):527-553, 1985.
[R] Daniel J. Rudolph. $\times 2$ and $\times 3$ invariant measures and entropy. Ergodic Theory Dynam. Systems, 10(2):395-406, 1990.
[S] Kristian Seip. An extension of the Blaschke condition. J. London Math. Soc. (2), 51(3):545-558, 1995.

