Invariant measures on the circle

Christopher Deninger

For an integer $N \geq 1$ consider the endomorphism φ_N of the unit circle \mathbb{T} given by $\varphi_N(\zeta) = \zeta^N$. It is known that besides Haar measure there are many φ_N -invariant atomless probability measures on \mathbb{T} , see [B].

There are natural ways to characterize a measure μ on \mathbb{T} by an associated function defined either on \mathbb{T} or holomorphic in the unit disc. Invariance of the measure under φ_N translates into functional equations for the corresponding functions. For example consider the holomorphic function $f_{\mu} = \exp(-h_{\mu})$ on the unit disc D where h_{μ} is the Herglotz-transform of μ

$$h_{\mu}(z) = \int_{\mathbb{T}} \frac{\zeta + z}{\zeta - z} \, d\mu(\zeta) \, .$$

Then φ_N -invariance of μ is equivalent to a functional equation for $f = f_{\mu}$

$$f(z^N)^N = \prod_{\zeta^N = 1} f(\zeta z) . \tag{1}$$

Theorem 1. Up to a unique positive constant any non-zero function f in \mathcal{N} satisfying (1) is a quotient of singular inner functions.

Thus Blaschke products and outer functions in \mathcal{N} cannot satisfy (1) unless they are constant.

Not much is known about measures on \mathbb{T} which are invariant under at least two endomorphisms φ_N and φ_M with N prime to M, but see [R]. It is therefore interesting to look for holomorphic functions on D which satisfy the functional equation (1) for several integers N. Consider the multiplicative monoid \mathcal{S} generated by pairwise prime integers $N_1, \ldots, N_s \geq 2$. It acts on \mathbb{T} if we identify $N \in \mathcal{S}$ with φ_N . For a subgroup $\mathcal{G} \subset \mathcal{O}^1 = \{f \in \mathcal{O}(D)^{\times} | f(0) = 1\}$ set

$$H^0(\mathcal{S},\mathcal{G}) = \{ f \in \mathcal{G} \mid f \text{ satisfies } (1) \text{ for all } N \in \mathcal{S} \}$$

and

$$Z(\mathcal{S},\mathcal{G}) = \{ \alpha \in \mathcal{G} \mid \prod_{\zeta^N = 1} \alpha(\zeta z) = 1 \text{ for } 1 \neq N \in \mathcal{S} \}.$$

Here the conditions need to be checked for $N = N_1, \ldots, N_s$ only. The group $Z(\mathcal{S}, \mathcal{O}^1)$ is easy to describe as a certain quotient of \mathcal{O}^1 . Moreover there are mutually inverse isomorphisms

$$Z(\mathcal{S},\mathcal{O}^1)\xleftarrow{\Psi_{\mathcal{S}}}{\Phi_{\mathcal{S}}} H^0(\mathcal{S},\mathcal{O}^1)\;.$$

For s = 1 they are given by the formulas

$$\Phi_{\mathcal{S}}(f)(z) = f(z)/f(z^{N_1})$$
 and $\Psi_{\mathcal{S}}(\alpha)(z) = \prod_{\nu=0}^{\infty} \alpha(z^{N_1^{\nu}})$.

For general \mathcal{S} we have

$$\Psi_{\mathcal{S}}(\alpha) = \prod_{N \in \mathcal{S}} \alpha(z^N) \; .$$

Thus for $f \in \mathcal{O}^1$ the description of simultanous solutions of (1) is easy. The situation becomes interesting when one imposes growth conditions on the solutions f. Recall that for a probability measure μ on \mathbb{T} the function f_{μ} lies in the Hardy space $H^{\infty}(D)$ of bounded analytic functions on D.

If μ is φ_N -invariant for $N \in \mathcal{S}$ then f_{μ} lies in $H^0(\mathcal{S}, \mathcal{O}^1)$. Consequently $\Phi_{\mathcal{S}}(f_{\mu}) \in Z(\mathcal{S}, \mathcal{N}^1)$ where $\mathcal{N}^1 = \mathcal{N}^{\times} \cap \mathcal{U}$. Here we have used that quotients of nowhere vanishing bounded holomorphic functions lie in \mathcal{N}^{\times} .

It is not known which functions are of the form f_{μ} for an S-invariant probability measure μ . By the above they can be recovered from $\Phi_{\mathcal{S}}(f_{\mu})$ by applying $\Psi_{\mathcal{S}}$. Thus it is natural to study the map $\Psi_{\mathcal{S}}$ on $Z(\mathcal{S}, \mathcal{N}^1)$. The space $Z(\mathcal{S}, \mathcal{N}^1)$ is naturally a quotient of \mathcal{N}^1 with a known kernel. The image under $\Psi_{\mathcal{S}}$ contains the space $H^0(\mathcal{S}, \mathcal{N}^1)$ whose structure we would like to understand but it is strictly bigger. One basic result is the following **Theorem 2.** There is an inclusion $\Psi_{\mathcal{S}}(Z(\mathcal{S}, \mathcal{N}^1)) \subset H^0(\mathcal{S}, \mathcal{N}^1_s).$

Here $\mathcal{N}_s^1 = \mathcal{N}_s^{\times} \cap \mathcal{U}$ and \mathcal{N}_s is the algebra of functions $f \subset \mathcal{O}(D)$ that can be written in the form $f = g_1 g_2^{-1}$ where g_2 has no zeroes and both g_1 and g_2 satisfy an estimate of the form

$$|g(z)| \le a_g \exp(r_g \log^s (1 - |z|)^{-1}) \text{ for } z \in D$$
 (2)

where $a_g \ge 0$ and $r_g \ge 0$ are constants. For s = 0 the estimate (2) asserts that $g \in H^{\infty}(D)$ so that $\mathcal{N}_0 = \mathcal{N}$. For s = 1 it asserts that

$$|g(z)| \le a_g (1 - |z|)^{-r_g}$$
.

This means that $g \in \mathcal{A}^{-\infty}$ in the notation of Korenblum [K1], [K2]. The more general classes \mathcal{N}_s appear in the works [BL], [K4] and [S] for example.

Classically the elements of \mathcal{N}^1 can be described by finite signed measures on \mathbb{T} . More generally, by a theorem of Korenblum the elements of \mathcal{N}_s^1 correspond to real premeasures of bounded κ_s -variation on the circle. Here κ_s is the generalized entropy-function on [0, 1]

$$\kappa_s(x) = x \sum_{\nu=0}^s \frac{1}{\nu!} |\log x|^{\nu}$$

Thus $\kappa_0(x) = x$ and $\kappa_1(x) = x(1 + |\log x|) = x \log \frac{e}{x}$. The premeasure μ on \mathbb{T} is of bounded κ_s -variation if there is a constant $A \ge 0$ such that

$$\sum_{j} |\mu(C_j)| \le A \sum_{j} \kappa_s(|C_j|)$$

holds for all finite partitions of \mathbb{T} into disjoint connected subsets C_j (arcs). Here |C| is the arc length of C normalized by $|\mathbb{T}| = 1$.

If the premeasure μ corresponds to $f \in \mathcal{N}_s^1$ then as for measures, μ is φ_{N-1} invariant if and only if f satisfies equation (1). Hence we have obtained an injection from $Z(\mathcal{S}, \mathcal{N}^1)$ into the space of premeasures of bounded κ_s variation which are invariant under N_1, \ldots, N_s . One can do a little better: For suitable functions in $Z(\mathcal{S}, \mathcal{N}^1)$ one even obtains premeasures of bounded κ_{s-1} -variation invariant under N_1, \ldots, N_s .

Classically the atoms of a measure μ can be seen in the function f_{μ} . For the Korenblum correspondence between premeasures and functions this is still

true but more subtle. It rests on a positivity argument as with the Féjèr kernel in Fourier analysis.

In the theory described up to now there are analogous assertions for spaces of atomless (pre-)measures and functions. For example, one obtains many φ_N and φ_M invariant atomless premeasures of bounded κ_1 -variation.

As part of a more general theory, Korenblum has shown that premeasures μ of $\kappa = \kappa_s$ -bounded variation induce compatible measures μ^F on the Borel algebras of κ -Carleson sets F. These are closed subsets of \mathbb{T} of Lebesgue measure zero such that

$$\sum_I \kappa(|I|) < \infty \; .$$

Here $\mathbb{T} \setminus F = \amalg II$ is the decomposition into connected components I. The family $\mu_s = (\mu^F)$ is called the κ -singular measure attached to μ . Using Korenblums results and general facts from measure theory we show that κ -singular measures can be interpreted as " κ -thin measures" $\tilde{\mu}$. These live in the Grothendieck group of a semigroup of positive σ -finite measures on the Borel algebra of \mathbb{T} (with further properties). Thus $\tilde{\mu}$ is given by a class of pairs of σ -finite positive measures $\tilde{\mu}_i$:

$$ilde{\mu} = [ilde{\mu}_1, ilde{\mu}_2]$$
 .

Because of a cancellation property there is equality

$$[\tilde{\mu}_1, \tilde{\mu}_2] = [\tilde{\nu}_1, \tilde{\nu}_2]$$

if and only if $\tilde{\mu}_1 + \tilde{\nu}_2 = \tilde{\mu}_2 + \tilde{\nu}_1$. Combining the previously defined maps Ψ_S with the passage to κ_s -thin measures, we obtain for every $\alpha \in Z(S, \mathcal{N}^1)$ or corresponding measure σ , pairs of σ -finite measures $\tilde{\mu}_1, \tilde{\mu}_2$ with $\tilde{\mu}_1 + N_* \tilde{\mu}_2 =$ $N_* \tilde{\mu}_1 + \tilde{\mu}_2$ for all $N \in S$. The measures $\tilde{\mu}_i \geq 0$ live on countable unions of κ_s -Carleson sets and are restricted by further properties. If $\tilde{\mu}_1$ or $\tilde{\mu}_2$ is finite then $\tilde{\mu} = \tilde{\mu}_1 - \tilde{\mu}_2$ is a signed measure and both $\tilde{\mu}^+$ and $\tilde{\mu}^-$ are S-invariant.

We prove that every S-invariant positive ergodic probability measure which is non-zero on some κ_s -Carleson set is κ_s -thin and can be obtained by the preceeding constructions. The last condition may be automatically satisfied. This is true if non-constant cyclic elements in certain topological algebras $\mathcal{A}_{\gamma} \subset \mathcal{O}(D)$ defined by growth conditions cannot satisfy the functional equation (1) for too many coprime integers N. The relation comes from Korenblum's theory [K2], [K3] characterizing cyclicity in terms of vanishing κ -singular measure. For $\gamma = 0$ the assertion is true.

There are some useful operations on functions, (pre-)measures and (Schwartz-)distributions. These operations behave like Frobenius, Verschiebung and the Teichmüller character for Witt vectors. In fact the ring $\mathcal{D}'(\mathbb{T})$ of distributions on \mathbb{T} under convolution embeds naturally into the ring of big Witt vectors of \mathbb{C} such that the corresponding operations on both sides are identified. As a small example we note that the Artin–Hasse exponential for the prime p is the image of a p-invariant premeasure on \mathbb{T} of κ_1 -bounded variation which is not a measure and whose κ_1 -thin (or singular) measure is zero.

References

- [B] Rufus Bowen. Equilibrium states and the ergodic theory of Anosov diffeomorphisms, volume 470 of Lecture Notes in Mathematics.
 Springer-Verlag, Berlin, revised edition, 2008. With a preface by David Ruelle, Edited by Jean-René Chazottes.
- [BL] Alexander Borichev and Yurii Lyubarskii. Uniqueness theorems for Korenblum type spaces. J. Anal. Math., 103:307–329, 2007.
- [K1] Boris Korenblum. An extension of the Nevanlinna theory. Acta Math., 135(3-4):187–219, 1975.
- [K2] Boris Korenblum. A Beurling-type theorem. Acta Math., 138(3-4):265–293, 1976.
- [K3] Boris Korenblum. Cyclic elements in some spaces of analytic functions. Bull. Amer. Math. Soc. (N.S.), 5(3):317–318, 1981.
- [K4] Boris Korenblum. On a class of Banach spaces of functions associated with the notion of entropy. Trans. Amer. Math. Soc., 290(2):527–553, 1985.
- [R] Daniel J. Rudolph. ×2 and ×3 invariant measures and entropy. Ergodic Theory Dynam. Systems, 10(2):395–406, 1990.

[S] Kristian Seip. An extension of the Blaschke condition. J. London Math. Soc. (2), 51(3):545–558, 1995.