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In this talk we presented the joint work [4] with G. Margulis, A. Mohammadi,
and A. Venkatesh concerning the equidistribution of semisimple orbits on adelic
quotients. The motivation to studying these orbits come from the fact that number
theoretical problems often relate to orbits of subgroups (also called periods) and so
can be attacked by dynamical methods.

1. Statement of main theorem

To be more specific let us recall the following terminology. Let X = Γ\G be a
homogeneous space defined by a lattice Γ < G in a locally compact group G. Note
that any subgroup H < G acts naturally by right multiplication on X , sending h ∈
H to the map x ∈ X 7→ xh−1. We will refer to H as the acting subgroup. A
homogeneous (probability) measure on X is, by definition, a probability measure µ

that is supported on a single closed orbit Y = ΓgHY of its stabilizer HY = Stab(µ).
Ratner’s celebrated measure classification theorem [12] and the so called lin-

earization techniques (cf. [3] and [10]) imply in the case where G is a real Lie group
that, given a sequence of homogeneous probability measures {µi} with the property
that Hi = Stab(µi) contain “enough” unipotents, any weak∗ limit of {µi} is also
homogeneous, where often the stabilizer of the weak∗ limit has bigger dimension
than Hi for every i. This has been extended also to quotients of S-algebraic groups
(see [13], [9], [6, App. A] and [8, Sect. 6]) for any finite set S of places (containing
the infinite place and finitely many primes). We note that the latter allow similar
corollaries (see [8]) for adelic quotients if the acting groups Hi contain unipotents
at one and the same place for all i – let us refer to this as a splitting condition.
These theorems have found many applications in number theory (see e.g. [7], [6],
and [8] to name a few examples), but are (in most cases) ineffective.

In [4] one instance of an adelic result is presented which dispenses with the
splitting condition and is effective in terms of the volume of the orbit. A simplified
version of this theorem is given by the following statement.

Theorem 1 (Equidistribution of adelic periods). Let G be a semisimple sim-
ply connected algebraic group defined over Q and define the adelic homogeneous
space X = G(Q)\G(A) with Haar measure mX normalized to be a probability mea-
sure. Also assume that H < G is a semisimple simply connected algebraic subgroup
which is a maximal subgroup1 of G. Let Y = G(Q)H(A)g be the corresponding
adelic orbit (pushed by some g ∈ G(A)) and let µY denote the normalized Haar
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1Here maximality is understood in the collection of connected algebraic subgroups over the

algebraic closure of Q.

1



2 M. EINSIEDLER

measure on the orbit Y . Then
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≪ vol(Y )−κ0S(f) for all f ∈ C∞

c (X),

where S(f) denotes a certain adelic Sobolev norm, and κ0 is a positive constant
which depends only on dimG.

We note that the Sobolev norm S(f) of a smooth function f ∈ C∞

c (X) takes
into account the support, the smoothness properties in the real directions as well
as the smoothness properties (level) of f in the p-adic directions.

Let us highlight two features of this theorem. Our method relies on Clozel’s
property (τ). However, it also allows us to give an independent proof of property
(τ) except for groups of type A1 – i.e., if we only suppose property (τ) for groups
of type A1, we can deduce property (τ) in all other cases as well as our theorem.
The theorem also allows H to vary without any splitting condition.

2. Volume of orbits

To make sense of the theorem another question needs to be answered: What is
the volume for a homogeneous set?

If H = Stab(µ) is fixed, then one may define the volume of an H-orbit xH using
a fixed Haar measure on H . However, as we will allow the acting group H to vary
we give another reasonably intrinsic way of measuring this.

Let Y be an algebraic homogeneous set with corresponding probability mea-
sure µY and associated group HY = g−1H(A)g. We shall always consider HY as
equipped with that measure, denoted by mY , which projects to µY under the orbit
map.

Fix an open subset Ω0 ⊂ G(A) that contains the identity and has compact
closure. Set

(2.1) vol(Y ) := mY (HY ∩Ω0)
−1,

this should be regarded as a measure of the “volume” of Y . It depends on Ω0, but
the notions arising from two different choices of Ω0 are comparable to each other,
in the sense that their ratio is bounded above and below. Consequently, we do not
explicate the choice of Ω0 in the notation.

The above notion of the volume of an adelic orbit is strongly related to the
discriminant of the orbit. The theorem could also be phrased using this notion of
arithmetic height or complexity instead of the volume.

3. An overview of the argument

The dynamical argument is similar to the one from [5], where a splitting condition
is made at the infinite place. Here we wish to use dynamics at a p-adic component
instead of the real component. To overcome the absence of a splitting condition we
make crucial use of Prasad’s volume formula in [11] to find a small prime where the
acting group has good properties.

The dynamical argument uses unipotent flows. Assuming that the volume is
large, we find by a pigeon-hole principle nearby points that have equidistributing
orbits. Using polynomial divergence of the unipotent flow we obtain almost invari-
ance under a transverse direction. By maximality and spectral gap on the ambient
space we conclude the equidistribution.
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The first difficulty in this outline is that the notion of nearby depends here on the
volume of the orbit, the “distance” will be a negative power V −κ of the volume V

(for some κ > 0). If we take just any prime where the acting group is split, the
argument might fail as the prime might even be larger than V κ. Using [11] we
establish a logarithmic bound for the first useful (“good”) prime in terms of the
volume. We also need to use [1] if H is not simply connected.

The second difficulty is that we also need to know that there are many points for
which the orbit effectively equidistributes with respect to the measure in question.
This effectivity also relies on spectral gap, but as the measure µY (and so its L2-
space) varies we need uniformity for this spectral gap. This is Clozel’s property (τ),
see [2].
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