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Digitally networked control systems

Examples for networked systems:

automated highway systems (vehicle platoons)

sensor networks (e.g., smart cities)

unmanned aerial vehicles

smart grids

telerobotics

. . .
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Communication in digitally networked systems

It is not always possible to transmit information instantaneously, lossless
and with arbitrary precision. This raises the question about the minimal
information per time unit (data rate) necessary to accomplish a certain
control task.

To analyze this problem, start with the simplest setting:

The simplest network topology

One controller and one dynamical system connected via a digital channel
with a certain bit rate

The simplest control problem

Invariance of a set (example: vehicle platoons)
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The simplest setting

System

Coder

noiseless digital channel

Controller

R bits/sec

Explanation

System Deterministic, discrete or
continuous time
Coder Encodes the state by a
symbol from a (time-dependent)
alphabet at discrete times kτ ,
k = 0, 1, 2, . . .
Controller Generates open-loop
controls on a finite time interval of
length τ

Control objective

Invariance of a compact subset of the state space
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Feedback entropy (Nair, Evans, Mareels, Moran 2004)

Consider a discrete-time system with transition map

ϕ : Z+ × X × UZ+ → X , (n, x , ω) 7→ ϕ(n, x , ω).

Assumption: Q ⊂ X a compact and controlled invariant set, i.e.,

∀x ∈ Q ∃ω ∈ UZ+ : ∀k ≥ 1, ϕ(k , x , ω) ∈ intQ.

Invariant open covers

A triple (A, τ,G ), where A an open cover of Q, τ ≥ 1, and G : A → Uτ

s.t.
ϕ(k,A,G (A)) ⊂ intQ, A ∈ A, k = 1, . . . , τ.

Every finite sequence (“path”) of sets in A defines an open set consisting
of the points which follow this path under the dynamics given by
(A, τ,G ). This yields a sequence A[n] of open covers of Q.
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Feedback entropy

The entropy of (A, τ,G ) is given by

hfb(A, τ,G ) := lim
n→∞

1

nτ
log2 N(Q|A[n]),

where N(Q|A[n]) is the minimal cardinality of a subcover. The feedback
entropy of Q is defined as

hfb(Q) := inf
(A,τ,G)

hfb(A, τ,G ).
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Alternative definition: Invariance entropy (Colonius 2007)

A set S of control sequences is called (τ,Q)-spanning if

∀x ∈ Q ∃ω ∈ S : ϕ(k , x , ω) ∈ intQ, k = 1, . . . , τ.

If rinv(τ,Q) is the minimal cardinality of such a set, then

hfb(Q) = lim
τ→∞

1

τ
log2 rinv(τ,Q).

Advantage of this characterization: Simpler and easier to adapt to other
control problems!

Intuition

If the controller receives n bits per unit time, it can generate at most 2n

different control sequences. Therefore, the number of control sequences,
necessary to accomplish the control task for arbitrary initial states on a
finite time interval, is a measure for the necessary information.
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Additional assumptions

Goal

Describe hfb(Q) in terms of dynamical quantities such as Lyapunov
exponents

To this end, we need more control-theoretic and dynamical structure!

Control-theoretic: Global and infinitesimal controllability properties

Dynamical: Hyperbolicity

From now on:

Continuous and time-invertible systems, ϕ : R×M ×U → M, where M a
differentiable manifold and ϕ(·, x , ω) solution of a differential equation

ẋ(t) = F (x(t), ω(t)), ω ∈ U = L∞(R,U), U ⊂ Rm.
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Controllability properties

Control set (Colonius, Kliemann)

A set D ⊂ M with nonempty interior is called a control set if it is a
maximal set of complete approximate controllability.

Regular trajectories

A trajectory (ϕ(·, x , ω), ω(·)) is called regular on [0, τ ] if the linearization
of the system along this trajectory is controllable on [0, τ ].

Note: Regularity implies local controllability.
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Upper bounds

Theorem [K., 2009]

Let D be a control set with compact closure, and let (ϕ(·, x , ω), ω(·)) be
a regular periodic trajectory in the interior of D. Then

hfb(clD) ≤
∑
λ

max{0, nλλ},

where the sum runs over the distinct Lyapunov exponents λ with
multiplicities nλ.

Idea of proof

First steer into a small neighborhood of x and then use local
controllability to stay in a neighborhood of the periodic orbit for all
future times. The sum of the positive Lyapunov exponents measures how
fast one is driven away (on average) from the periodic trajectory without
applying controls.
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Upper bounds

Question

When do regular periodic trajectories exist?

Answer

From a theorem of J.-M. Coron follows: If the system is smooth and
satisfies a strong accessibility assumption (“strong jet accessibility”),
then at every point in the interior of D we find a regular periodic
trajectory. For many classes of systems weaker conditions suffice.
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Upper bounds

Corollary [K., 2013]

If the assumption for existence of regular trajectories is satisfied, then

hfb(clD) ≤ inf
(ω,x)

lim sup
τ→∞

1

τ
log+ ‖(dϕτ,ω)∧x ‖ ,

where the infimum runs over all (ω, x) ∈ U ×M s.t. the corresponding
trajectory ϕ(·, x , ω) does not leave a compact subset of the interior of D.
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Lower bounds

Definition

A compact and (full-time) controlled invariant set Q is called hyperbolic
if there is an invariant and continuous splitting

TxM = E s
ω,x ⊕ E u

ω,x

for all (ω, x) with ϕ(R, x , ω) ⊂ Q such that uniform contraction on E s

and uniform expansion on E u holds.

Remark

This makes sense for control-affine systems

ẋ(t) = f0(x(t)) +
m∑
i=1

ωi (t)fi (x(t))

with compact and convex control value space U ⊂ Rm. In this setting,
there exists a reasonable topology on U .
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Lower bounds

Estimation by escape rate

Let µ be a Borel measure on M with 0 < µ(Q) <∞. Then

hfb(Q) ≥ lim sup
τ→∞

−1

τ
log sup

ω
µ(Q(ω, τ)),

where
Q(ω, τ) = {x ∈ Q : ϕ([0, τ ], x , ω) ⊂ Q} .

From now on: µ = vol (Riemannian volume). The measures of the sets
Q(ω, τ) are estimated by covering them with Bowen-balls

Bω,τε (x) = {y ∈ M : d(ϕ(t, x , ω), ϕ(t, y , ω)) < ε, ∀t ∈ [0, τ ]} .
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Volume lemma and lower estimate

Bowen-Ruelle-Liu volume lemma

In the hyperbolic case, for small ε, all τ ≥ 0 and (ω, x) we have

0 < αε ≤ vol(Bω,τε (x))
∣∣∣det(dϕτ,ω)|E u

ω,x

∣∣∣ ≤ βε < +∞.

Theorem [Da Silva, K., 2014]

Let Q be a hyperbolic set such that for each ω ∈ U there exists a unique
x(ω) ∈ Q with ϕ(R, x(ω), ω) ⊂ Q. Then

hfb(Q) ≥ inf
(ω,x)∈Q

lim sup
τ→∞

1

τ
log
∣∣∣det(dϕτ,ω)|E u

ω,x

∣∣∣ ,
where Q = {(ω, x) ∈ U ×M : ϕ(R, x , ω) ⊂ Q}.

Remark

The theorem applies to small control sets around hyperbolic equilibria.
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Right-invariant systems on flag manifolds

Let G be a non-compact semisimple Lie group and FΘ = G/PΘ a flag
manifold of G . Then a right-invariant control-affine system on G induces
a control-affine system on FΘ. The control structure of such systems has
been studied by Luiz San Martin and coworkers. In particular, there are
finitely many control sets which are parametrized by a double coset space
of the Weyl group of G .

Theorem (Da Silva, K., 2014)

Each control set EΘ,w on FΘ has a partially hyperbolic structure. The
hyperbolic ones satisfy

hfb(EΘ,w ) = inf
(ω,x)∈EΘ,w

lim sup
τ→∞

1

τ
log
∣∣∣det(dϕτ,ω)|E u

ω,x

∣∣∣ ,
where EΘ,w = {(ω, x) : ϕ(R, x , ω) ⊂ EΘ,w}.
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Right-invariant systems on flag manifolds

Remark

For the non-hyperbolic control sets we need a better understanding of
escape rates from small neighborhoods of invariant sets for
non-autonomous dynamical systems. Even for autonomous systems there
is still very little known for the non-hyperbolic cases.
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Thank you for your
attention!
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