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1. The setting

The Lorentz gas is defined as an ensemble of non-interacting point particles moving in an
array of spherical scatterers placed at the elements of a given point set P ⊂ Rd (d ≥ 2, and we
assume that the scatterers do not overlap). Each particle travels with constant velocity along
straight lines until it collides with a scatterer, and is then reflected elastically. We denote
by q(t),v(t) the position and velocity of a particle at time t. Since the reflection is elastic,
speed is a constant of motion; we may assume without loss of generality that ‖v(t)‖ = 1. The
“phase space” is then the unit tangent bundle T1(Kρ) where Kρ ⊂ Rd is the complement of

the set Bdρ + P (the “billiard domain”), and Bdρ denotes the open ball of radius ρ, centered at

the origin. We parametrize T1(Kρ) by (q,v) ∈ Kρ × Sd−11 , where we use the convention that
for q ∈ ∂Kρ the vector v points away from the scatterer (so that v describes the velocity after
the collision). The Liouville measure on T1(Kρ) is

(1.1) dν(q,v) = dvol(q) dω(v)

where vol and ω refer to the Lebesgue measures on Rd and Sd−11 , respectively.
The first collision time corresponding to the initial condition (q,v) ∈ T1(Kρ) is

(1.2) τ1(q,v; ρ) = inf{t > 0 : q + tv /∈ Kρ}.

Since all particles are moving with unit speed, we may also refer to τ1(q,v; ρ) as the free
path length. The distribution of free path lengths in the limit of small scatterer density
(Boltzmann-Grad limit) has been studied extensively when P is a fixed realisation of a random
point process (such as a spatial Poisson process) [5, 11, 23, 29] and when P is a Euclidean
lattice [1, 2, 6, 7, 9, 10, 12, 16, 22, 23]. In the Boltzmann-Grad limit, the Lorentz process
in fact converges to a random flight process, see [11, 29, 5] for the case of random P and
[8, 17, 18, 19] for periodic P.

2. Cut and project

In the present work, we consider the Lorentz gas for scatterer configurations P given by
regular cut-and-project sets, cf. [14, 31]. Examples of such P include large classes of quasicrys-
tals, for instance the vertex set of any of the classical Penrose tilings [26]. Further examples
include all locally finite periodic point sets such as graphene’s honeycomb lattice [3, 4].

To give a precise definition of cut-and-project sets in Rd, denote by π and πint the orthogonal
projection of Rn = Rd × Rm onto the first d and last m coordinates, and refer to Rd and Rm
as the physical space and internal space, respectively. Let L ⊂ Rn be a lattice of full rank.
Then the closure of the set πint(L) is an abelian subgroup A of Rm. We denote by A◦ the
connected subgroup of A containing 0; then A◦ is a linear subspace of Rm, say of dimension
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m1, and there exist b1, . . . , bm2 ∈ L (m = m1 + m2) such that πint(b1), . . . , πint(bm2) are
linearly independent in Rm/A◦ and

A = A◦ + Zπint(b1) + . . .+ Zπint(bm2).(2.1)

Given L and a bounded subset W ⊂ A with non-empty interior, we define

(2.2) P(W,L) = {π(y) : y ∈ L, πint(y) ∈ W} ⊂ Rd.

We will call P = P(W,L) a cut-and-project set, and W the window. We denote by µA the
Haar measure of A, normalized so that its restriction to A◦ is the standard m1-dimensional
Lebesgue measure. IfW has boundary of measure zero with respect to µA, we will say P(W,L)
is regular. Set V = Rd ×A◦; then LV = L ∩ V is a lattice of full rank in V. Let µV = vol×µA
be the natural volume measure on Rd ×A (this restricts to the standard d+m1 dimensional
Lebesgue measure on V). It follows from Weyl equidistribution (see [13]) that for any regular
cut-and-project set P and any bounded D ⊂ Rd with boundary of measure zero with respect
to Lebesgue measure,

(2.3) lim
T→∞

#{b ∈ L : π(b) ∈ P ∩ TD}
T d

= δd,m(L) vol(D)µA(W)

where

δd,m(L) :=
1

µV(V/LV)
.(2.4)

A further condition often imposed in the quasicrystal literature is that π|L is injective (i.e.,
the map L → π(L) is one-to-one); we will not require this here. To avoid coincidences in P,
we simply assume in the following that the window is appropriately chosen so that the map
πW : {y ∈ L : πint(y) ∈ W} → P is bijective. Then (2.3) implies

(2.5) lim
T→∞

#(P ∩ TD)

T d
= δd,m(L) vol(D)µA(W).

Under the above assumptions P(W,L) is a Delone set, i.e., uniformly discrete and relatively
dense in Rd.

We may obviously extend the definition of cut-and-project sets P(W, L̃) to affine lattices

L̃ = L+ x, for any x ∈ Rn; note that P(W,L+ x) = P(W − πint(x),L) + π(x).

3. The distribution of free path lengths in the Boltzmann-Grad limit

In order to study the distribution of the free path length for random initial data (q,v) we
need to specify a probability measure on T1(Kρ). A natural choice is of course any Borel
probability measure which is absolutely continuous with respect to the Liouville measure ν.
Given s > 0 and a Borel probability measure Λ on T1(Rd), we define the family of Borel

probability measures Λ(s) on T1(Rd) by

(3.1) Λ(s)(E) = Λ
({

(s−1q,v) : (q,v) ∈ E
})
.

Theorem 3.1. Given any regular cut-and-project set P there is a non-increasing continuous
function FP : [0,∞] → [0, 1] with FP(0) = 1, FP(∞) = 0, such that for any Borel probability
measure Λ on T1(Rd) which is absolutely continuous with respect to Liouville measure, and
any s0 > 0, ξ > 0, we have

(3.2) Λ(s)({(q,v) ∈ T1(Kρ) : ρd−1τ1(q,v; ρ) ≥ ξ})→ FP(ξ),

as ρ→ 0, uniformly over all s ≥ s0.

We highlight the fact that the limit distribution is independent of Λ. Our techniques will
allow us to prove limit theorems for more singular measures. A natural example is to fix a
generic point q 6∈ P and take v random:
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Theorem 3.2. Given any regular cut-and-project set P there is a subset S ⊂ Rd of Lebesgue
measure zero such that for any q ∈ Rd \S, any ξ > 0 and any Borel probability measure λ on

Sd−11 which is absolutely continuous with respect to Lebesgue measure, we have

(3.3) lim
ρ→0

λ({v ∈ Sd−11 : ρd−1τ1(q,v; ρ) ≥ ξ}) = FP(ξ),

with FP(ξ) as in Theorem 3.1.

In fact our proof shows that the limit in (3.3) exists for every q ∈ Rd; however for q ∈ S
the limit in general depends on q.

Another possibility is to specify the location q ∈ P of a scatterer and consider the initial
data (qρ,β(v),v) ∈ T1(Rd) where qρ,β(v) := q+ρβ(v) is on (or near) the scatterer’s boundary.

Here β : Sd−11 → Rd is some fixed continuous function and v is again chosen at random on

Sd−11 . To avoid pathologies, we assume that (β(v) + R>0v) ∩ Bd1 = ∅ for all v ∈ Sd−11 . Let

us also write β⊥(v) =
√
‖β(v)‖2 − (β(v) · v)2 for the length of the orthogonal projection of

β(v) onto the orthogonal complement of v in Rn.

Theorem 3.3. Given any regular cut-and-project set P and q ∈ P, there is a continuous func-
tion FP,q : [0,∞]×R≥0 → [0, 1] with FP,q( · , r) non-increasing, FP,q(0, r) = 1, FP,q(∞, r) = 0

for all r ∈ R≥0, such that for any ξ > 0 and any Borel probability measure λ on Sd−11 which
is absolutely continuous with respect to Lebesgue measure, we have

(3.4) lim
ρ→0

λ({v ∈ Sd−11 : ρd−1τ1(qρ,β(v),v; ρ) ≥ ξ}) =

∫
Sd−1
1

FP,q(ξ, β⊥(v)) dλ(v).

The convergence in (3.4) is uniform over all q ∈ P.

We remark that the proof actually shows that (3.4) holds for any fixed q ∈ π(L), and
uniformly over all q in any set of the form π(L ∩ π−1int (B)) with B a bounded subset of A.

4. Spaces of quasicrystals

We will now characterise the limit distributions in Theorems 3.2 and 3.3 in terms of a certain
homogeneous space (Γ ∩ Hg)\Hg equipped with a translation-invariant probability measure
µg. In analogy with the space of Euclidean lattices of covolume one, SL(n,Z)\ SL(n,R), we
will call such a space a space of quasicrystals.

Set G = ASL(n,R) = SL(n,R)nRn, Γ = ASL(n,Z). The multiplication law in G is defined
by

(4.1) (M, ξ)(M ′, ξ′) = (MM ′, ξM ′ + ξ′).

For g ∈ G we define an embedding of ASL(d,R) in G by

(4.2) ϕg : ASL(d,R)→ G, (A,x) 7→ g

((
A 0
0 1m

)
, (x,0)

)
g−1.

We also set G1 = SL(n,R) and Γ1 = SL(n,Z), and identify G1 with a subgroup of G in
the standard way; similarly we identify SL(d,R) with a subgroup of ASL(d,R). It follows
from Ratner’s work [24], [25] that there exists a unique closed connected subgroup Hg of G
such that Γ ∩ Hg is a lattice in Hg, ϕg(SL(d,R)) ⊂ Hg, and the closure of Γ\Γϕg(SL(d,R))
in Γ\G is given by Γ\ΓHg (cf. in particular [25, p. 237 (lines 1–2 and Cor. B)], and note
that ϕg(SL(d,R)) is connected and generated by Ad-unipotent one-parameter subgroups of
G). Note that Γ\ΓHg can be naturally identified with the homogeneous space (Γ ∩Hg)\Hg.
We denote the unique right-Hg invariant probability measure on either of these spaces by µg;
sometimes we will also let µg denote the corresponding Haar measure on Hg.

Similarly, there exists a unique closed connected subgroup H̃g of G such that Γ ∩ H̃g is a

lattice in H̃g, ϕg(ASL(d,R)) ⊂ H̃g, and the closure of Γ\Γϕg(ASL(d,R)) in Γ\G is given by

Γ\ΓH̃g. Note that Γ\ΓH̃g can be naturally identified with the homogeneous space (Γ∩H̃g)\H̃g.
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We denote the unique right-H̃g invariant probability measure on either of these spaces by µ
H̃g

;

sometimes we will also use µ
H̃g

to denote the corresponding Haar measure on H̃g. Of course,

Hg ⊂ H̃g, and H̃g = H̃g(1n,x) for any x ∈ Rd × {0}.
We will refer to Hg and H̃g as Ratner subgroups. Note that if g ∈ G1 then Hg ⊂ G1; in fact

in this case Hg is the unique closed connected subgroup of G1 such that Γ1 ∩Hg is a lattice in
Hg, ϕg(SL(d,R)) ⊂ Hg, and the closure of Γ1\Γ1ϕg(SL(d,R)) in Γ1\G1 is given by Γ1\Γ1Hg.

Given g ∈ G and δ > 0 we set L = δ1/n(Zng) and let A = πint(L) as before. Then

πint(δ1/n(Znhg)) ⊂ A for all h ∈ H̃g and πint(δ1/n(Znhg)) = A for µ
H̃g

-almost all h ∈ H̃g and

also for µg-almost all h ∈ Hg. We fix δ > 0 and a window W ⊂ A, and consider the map from

Γ\ΓH̃g to the set of point sets in Rd,

(4.3) Γ\Γh 7→ P(W, δ1/n(Znhg)).

We denote the image of this map by Q̃g = Q̃g(W, δ), and define a probability measure on Q̃g as
the push-forward of µ

H̃g
(for which we will use the same symbol). This defines a random point

process in Rd which is invariant under the natural action of ASL(d,R) on Rd. Similarly we
denote by Qg = Qg(W, δ) the image of Γ\ΓHg under the map (4.3), and define a probability

measure on Qg as the push-forward of µg; this again defines a random point process in Rd,
invariant under the natural action of SL(d,R) on Rd.

We let Zξ be the cylinder in Rd defined by

(4.4) Zξ =
{

(x1, . . . , xd) ∈ Rd : 0 < x1 < ξ, x22 + . . .+ x2d < 1
}
.

The following theorem provides formulas for the limit distributions in Theorems 3.1, 3.2 and

3.3 in terms of H̃g and Hg.

Theorem 4.1. Let P = P(L,W) be a regular cut-and-project set, and q ∈ Rd. Choose g ∈ G
and δ > 0 so that L − (q,0) = δ1/n(Zng). Then the function FP(ξ) in Theorems 3.1 and 3.2
is given by

(4.5) FP(ξ) = µ
H̃g

({P ′ ∈ Q̃g : Zξ ∩ P ′ = ∅}).

In fact if q ∈ Rd \S (as in Theorem 3.2), then Hg = H̃g and this group is independent of the
choice of q. On the other hand if q ∈ P, then the function FP,q(ξ, r) in Theorem 3.3 is given
by

(4.6) FP,q(ξ, r) = µg({P ′ ∈ Qg : (Zξ + red) ∩ P ′ = ∅})
with ed = (0, . . . , 0, 1).

5. The Siegel integral formula for quasicrystals

The Siegel integral formula is a fundamental identity in the geometry of numbers [27, 28].
We will prove an analogue for the space of quasicrystals, which in fact is a special case of the
Siegel-Veech formula [30, Thm. 0.12]. Let f ∈ L1(Rd). Define for every P ∈ Qg the Siegel
transform

(5.1) f̂(P) =
∑

q∈P\{0}

f(q).

Recall the definition of δd,m(L) in (2.4); for L an affine lattice we extend the definition by
setting δd,m(L) := δd,m(L− L); note that L− L is the lattice in Rn of which L is a translate.

Theorem 5.1. Let L = δ1/n(Zng) and Qg = Qg(W, δ) as above, and assume that P =
P(W,L) is regular and the map πW : {y ∈ L : πint(y) ∈ W} → P is bijective. Then for any
f ∈ L1(Rd) we have

(5.2)

∫
Qg

f̂(P) dµg(P) = δd,m(L)µA(W)

∫
Rd

f(x) dvol(x).
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The continuity for ξ < ∞ of the limit distributions FP and FP,q in Theorems 3.1, 3.2 and
3.3 is an immediate consequence of Theorem 5.1 and the formulas in Theorem 4.1; for FP one

uses also the fact that each Q̃g can be obtained as Qg′ for an appropriate g′.
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