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1. THE SETTING

The Lorentz gas is defined as an ensemble of non-interacting point particles moving in an
array of spherical scatterers placed at the elements of a given point set P C R% (d > 2, and we
assume that the scatterers do not overlap). Each particle travels with constant velocity along
straight lines until it collides with a scatterer, and is then reflected elastically. We denote
by q(t),v(t) the position and velocity of a particle at time ¢. Since the reflection is elastic,
speed is a constant of motion; we may assume without loss of generality that ||v(¢)|| = 1. The
“phase space” is then the unit tangent bundle Tl(le) where K, C R? is the complement of
the set Bg + P (the “billiard domain”), and Bg denotes the open ball of radius p, centered at

the origin. We parametrize Tl(le) by (q,v) € K, x S‘li_l, where we use the convention that
for g € OKC, the vector v points away from the scatterer (so that v describes the velocity after
the collision). The Liouville measure on T'(K,) is

(1.1) dv(g,v) = dvol(q) dw(v)

where vol and w refer to the Lebesgue measures on R% and S‘ffl, respectively.
The first collision time corresponding to the initial condition (q,v) € T'(K,) is

(1.2) T1(q,v;p) =inf{t >0:q+tv ¢ K,}.

Since all particles are moving with unit speed, we may also refer to 7i(q,v;p) as the free
path length. The distribution of free path lengths in the limit of small scatterer density
(Boltzmann-Grad limit) has been studied extensively when P is a fixed realisation of a random
point process (such as a spatial Poisson process) [5], 1), 23, 29] and when P is a Euclidean
lattice [Il, 2} [6l [7, O 10, 12] 16, 22| 23]. In the Boltzmann-Grad limit, the Lorentz process
in fact converges to a random flight process, see [I1], 29, [5] for the case of random P and
[8, 17, 18, 19] for periodic P.

2. CUT AND PROJECT

In the present work, we consider the Lorentz gas for scatterer configurations P given by
regular cut-and-project sets, cf. [I4), 31]. Examples of such P include large classes of quasicrys-
tals, for instance the vertex set of any of the classical Penrose tilings [26]. Further examples
include all locally finite periodic point sets such as graphene’s honeycomb lattice [3] [4].

To give a precise definition of cut-and-project sets in R%, denote by 7 and iy, the orthogonal
projection of R = R% x R™ onto the first d and last m coordinates, and refer to R and R™
as the physical space and internal space, respectively. Let £ C R™ be a lattice of full rank.
Then the closure of the set miy (L) is an abelian subgroup A of R™. We denote by A° the
connected subgroup of A containing 0; then A° is a linear subspace of R, say of dimension
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mi, and there exist by,..., by, € L (m = mi + ma) such that min(b1),. .., Tint(bm,) are
linearly independent in R™/A° and

(2.1) A = A° + Zming(b1) + . . . + ZTing (b, )-
Given £ and a bounded subset W C A with non-empty interior, we define
(2:2) PW, L) = {n(y) : y € L, mn(y) € W} CR™.

We will call P = P(W, L) a cut-and-project set, and W the window. We denote by u4 the
Haar measure of A, normalized so that its restriction to A° is the standard mi-dimensional
Lebesgue measure. If W has boundary of measure zero with respect to p.4, we will say P(W, L)
is reqular. Set V = R? x A°; then £y = LNV is a lattice of full rank in V. Let py = vol x4
be the natural volume measure on RY x A (this restricts to the standard d 4+ m; dimensional
Lebesgue measure on V). It follows from Weyl equidistribution (see [I3]) that for any regular
cut-and-project set P and any bounded D C R? with boundary of measure zero with respect
to Lebesgue measure,

o #{be Ll : n(b)e PNTD}

(2.3) lim. i — Gam (L) vol(D)a(W)
where
(2.4) Sam(L) = _ 1

' T (Y Ly)

A further condition often imposed in the quasicrystal literature is that «|. is injective (i.e.,
the map £ — 7(L£) is one-to-one); we will not require this here. To avoid coincidences in P,
we simply assume in the following that the window is appropriately chosen so that the map
mw :{y € L : mint(y) € W} — P is bijective. Then implies

PNTD
(2.5) lim Ld) = dg.m (L) vol(D)ua(WV).
T—o0 T ’
Under the above assumptions P(W, £) is a Delone set, i.e., uniformly discrete and relatively
dense in R, N
We may obviously extend the definition of cut-and-project sets P(W, L) to affine lattices

L =L+ x, for any € R™; note that POW, L + x) = P(W — mins(x), £) + 7(x).

3. THE DISTRIBUTION OF FREE PATH LENGTHS IN THE BOLTZMANN-GRAD LIMIT

In order to study the distribution of the free path length for random initial data (q,v) we
need to specify a probability measure on Tl(le). A natural choice is of course any Borel
probability measure which is absolutely continuous with respect to the Liouville measure v.
Given s > 0 and a Borel probability measure A on T!(R?), we define the family of Borel
probability measures A®) on T!(R?) by

(3.1) A(E) =A({(s7'q,v) : (g,v) € E}).

Theorem 3.1. Given any reqular cut-and-project set P there is a non-increasing continuous
function Fp : [0,00] — [0,1] with Fp(0) = 1, Fp(oco) = 0, such that for any Borel probability
measure A on TY(R?) which is absolutely continuous with respect to Liouville measure, and
any so > 0, & > 0, we have

(32) A9 ({(q,v) € THK,) : p'11(q, v5p) > £}) = Fp($),
as p — 0, uniformly over all s > sg.

We highlight the fact that the limit distribution is independent of A. Our techniques will
allow us to prove limit theorems for more singular measures. A natural example is to fix a
generic point q ¢ P and take v random:
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Theorem 3.2. Given any reqular cut-and-project set P there is a subset & C R% of Lebesque
measure zero such that for any q € R*\ &, any &€ > 0 and any Borel probability measure X on
Scllf1 which is absolutely continuous with respect to Lebesgue measure, we have

(3.3) lim A({v € ST p? (g, vip) 2 €3) = Fp(€),
with Fp (&) as in Theorem[3.1]

In fact our proof shows that the limit in (3.3)) exists for every ¢ € R% however for q € &
the limit in general depends on q.

Another possibility is to specify the location q € P of a scatterer and consider the initial
data (g, g(v),v) € T!(R) where q,3(v) = g+pB(v) is on (or near) the scatterer’s boundary.
Here 3 : S‘ll_1 — R? is some fixed continuous function and v is again chosen at random on
Scllfl. To avoid pathologies, we assume that (8(v) + Rsov) N B¢ = for all v € S‘lifl. Let
us also write 81 (v) = /[|B(v)|?> — (B(v) - v)2 for the length of the orthogonal projection of
B(v) onto the orthogonal complement of v in R™.

Theorem 3.3. Given any regular cut-and-project set P and g € P, there is a continuous func-
tion Fp g : [0,00] x R>qg — [0, 1] with Fp q(-,r) non-increasing, Fp 4(0,7) =1, Fp g(co,7) =0
for all v € R>q, such that for any £ > 0 and any Borel probability measure A on Silil which
s absolutely continuous with respect to Lebesgue measure, we have

(3.4) ;ig% A{vesi™: pi (g, 5(v),vip) > €}) = / Fpql& BL(v)) dA(v).

d—
Sl

The convergence in (3.4)) is uniform over all q € P.

We remark that the proof actually shows that (3.4) holds for any fixed ¢ € 7(£), and
uniformly over all q in any set of the form w(£ N7, (B)) with B a bounded subset of A.

4. SPACES OF QUASICRYSTALS

We will now characterise the limit distributions in Theorems[3.2land [3.3]in terms of a certain
homogeneous space (I' N Hy)\Hy equipped with a translation-invariant probability measure
ftg. In analogy with the space of Euclidean lattices of covolume one, SL(n,Z)\ SL(n,R), we
will call such a space a space of quasicrystals.

Set G = ASL(n,R) = SL(n,R) x R", I = ASL(n, Z). The multiplication law in G is defined
by

(4.1) (M, &)(M', &)= (MM, eM' +¢).
For g € G we define an embedding of ASL(d,R) in G by
(4.2) g : ASL(d,R) = G, (A,x)—g ((13 10 > ,(ZB,O)) g L.

We also set G = SL(n,R) and I'" = SL(n,Z), and identify G' with a subgroup of G in
the standard way; similarly we identify SL(d,R) with a subgroup of ASL(d,R). It follows
from Ratner’s work [24], [25] that there exists a unique closed connected subgroup H, of G
such that I' N Hy is a lattice in Hy, ¢4(SL(d,R)) C Hy, and the closure of I'\I'p4(SL(d, R))
in T'\G is given by I'\I'H, (cf. in particular [25, p. 237 (lines 1-2 and Cor. B)], and note
that ¢4(SL(d,R)) is connected and generated by Ad-unipotent one-parameter subgroups of
G). Note that I'\I'H, can be naturally identified with the homogeneous space (I' N Hy)\ Hy,.
We denote the unique right-H, invariant probability measure on either of these spaces by g;
sometimes we will also let u, denote the corresponding Haar measure on H,,.

Similarly, there exists a unique closed connected subgroup ﬁg of G such that I' N ﬁlg is a
lattice in ﬁg, 0q(ASL(d,R)) C .FNIg, and the closure of I'\I'p,(ASL(d,R)) in I'\G is given by
I\T'H ¢ Note that I\T'H 4 can be naturally identified with the homogeneous space (TNH, g)\ﬁ g-
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We denote the unique right—ﬁ 4 invariant probability measure on either of these spaces by iy’
sometimes we will also use i, to denote the corresponding Haar measure on ﬁg. Of course,
H, C PNIg, and PNIg = ﬁg(lmw) for any & € R? x {0}.

We will refer to H,; and H ; as Ratner subgroups. Note that if g € G! then H, C G*; in fact
in this case H, is the unique closed connected subgroup of G such that I'' N H, is a lattice in
Hg, ¢4(SL(d,R)) C Hy, and the closure of T'\I''¢,(SL(d,R)) in T*\G! is given by I'\I'' H,,.

Given g € G and § > 0 we set £ = 6/*(Z"g) and let A = 7 (L) as before. Then
Tint (61/7(Zhg)) C A for all h € H, and min: (6/7(Zhg)) = A for pujz,-almost all h € H, and
also for p4-almost all h € Hy. We fix 6 > 0 and a window VW C A, and consider the map from
F\Fflg to the set of point sets in R,

(4.3) \['h — POW,§Y™(Z"hg)).

We denote the image of this map by {]g = ﬁg(W, d), and define a probability measure on 559 as
the push-forward of u i, (for which we will use the same symbol). This defines a random point

process in R? which is invariant under the natural action of ASL(d,R) on R%. Similarly we
denote by Q, = Q,(W, §) the image of I'\['H, under the map ([4.3), and define a probability
measure on £, as the push-forward of p,; this again defines a random point process in R,
invariant under the natural action of SL(d,R) on R?.

We let 3¢ be the cylinder in R? defined by

(4.4) 3e={(z1,...,z0) ER": 0 <2y <& a3 +...+25 <1}

The following theorem provides formulas for the limit distributions in Theorems [3.1] [3.2] and
in terms of H, and H,,.

Theorem 4.1. Let P = P(L,W) be a regular cut-and-project set, and q € R?. Choose g € G
and 6 > 0 so that L — (q,0) = 6Y/™(Z"g). Then the function Fp(€) in Theorems and
s given by

(4.5) Fp(€) = ng, ({P' €9Q, : 3¢nP' =0}).

In fact if g € R*\ & (as in Theorem , then Hy = ﬁg and this group is independent of the
choice of q. On the other hand if q € P, then the function Fp 4(§,7) in Theorem s given
by

(4.6) Fpgq(&r) = pg({P' € Qg : (3¢ +req) NP =0})

with eq = (0,...,0,1).

5. THE SIEGEL INTEGRAL FORMULA FOR QUASICRYSTALS

The Siegel integral formula is a fundamental identity in the geometry of numbers [27], 28].
We will prove an analogue for the space of quasicrystals, which in fact is a special case of the
Siegel-Veech formula [30, Thm. 0.12]. Let f € L'(RY). Define for every P € 9, the Siegel
transform

(5.1) Py =Y f).
qeP\{0}

Recall the definition of 64.,,(L£) in (2.4); for £ an affine lattice we extend the definition by
setting 6g.m (L) := dgm (L — L); note that £ — L is the lattice in R™ of which £ is a translate.

Theorem 5.1. Let £ = §Y/"(Z"g) and Q, = Q,(W,5) as above, and assume that P =
PW, L) is reqular and the map my : {y € L : mint(y) € W} — P is bijective. Then for any
f € LYRY) we have

(5.2) F(P) dpg(P) = q,m(L)pa(W) / f(z) dvol().
Q, Rd
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The continuity for £ < oo of the limit distributions Fp and Fp 4 in Theorems and

3.3is an immediate consequence of Theorem and the formulas in Theorem for Fp one
uses also the fact that each Q, can be obtained as Q4 for an appropriate ¢'.
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