This note is a summery of the talk I gave at the Dynamical Numbers conference on July 2014 at MPI Bonn based on a joint work with Barak Weiss bearing the same title. My aim in this note is to describe what I perceive as the main result in [SW14] and along the way illustrate some arguments dealing with simplifications.

Let \(X_n \) denote the space of \(n \)-dimensional unimodular lattices in \(\mathbb{R}^n \) where \(G \) is the group of \(n \times n \) matrices with determinant 1, \(\Gamma \) is the group of \(n \times n \) matrices with positive determinant, \(\kappa(x) \) is a function defined as

\[
\kappa(x) = \sup \left\{ 2^{-n} \text{vol}(B) : B \text{ is a symmetric } x \text{-admissible box with faces parallel to the hyperplanes of the axis} \right\}.
\]

Here a set \(B \) is \(x \)-admissible if \(x \cap B = \{0\} \). We refer to \(\kappa(x) \) as the Mordell constant of \(x \) and to the image of \(\kappa \) as the Mordell-Gruber spectrum. Note that the upper bound \(\kappa(x) \leq 1 \) is a consequence of Minkowski’s convex body theorem and that indeed there are lattices (such as \(\mathbb{Z}^n \)) with Mordell constant 1.

The dynamical interpretation of the Mordell constant is as follows. Let \(X_n \) denote the space of \(n \)-dimensional unimodular lattices in \(\mathbb{R}^n \) where \(G \) is the group of \(n \times n \) matrices with determinant 1, \(\Gamma \) is the group of \(n \times n \) matrices with positive determinant, \(\kappa(x) \) is a function defined as

\[
\kappa(x) = \sup \left\{ 2^{-n} \text{vol}(B) : B \text{ is a symmetric } x \text{-admissible box with faces parallel to the hyperplanes of the axis} \right\}.
\]

Here a set \(B \) is \(x \)-admissible if \(x \cap B = \{0\} \). We refer to \(\kappa(x) \) as the Mordell constant of \(x \) and to the image of \(\kappa \) as the Mordell-Gruber spectrum. Note that the upper bound \(\kappa(x) \leq 1 \) is a consequence of Minkowski’s convex body theorem and that indeed there are lattices (such as \(\mathbb{Z}^n \)) with Mordell constant 1.

The dynamical interpretation of the Mordell constant is as follows. Let us denote by \(\| \cdot \| \) the \(\infty \)-norm on \(\mathbb{R}^n \) and for \(\epsilon > 0 \) let \(X_n(\epsilon) \) be the set of \(x \) where \(\epsilon \) is a constant of \(x \) and to the image of \(\kappa \) as the Mordell-Gruber spectrum. Note that the upper bound \(\kappa(x) \leq 1 \) is a consequence of Minkowski’s convex body theorem and that indeed there are lattices (such as \(\mathbb{Z}^n \)) with Mordell constant 1.

The dynamical interpretation of the Mordell constant is as follows. Let us denote by \(\| \cdot \| \) the \(\infty \)-norm on \(\mathbb{R}^n \) and for \(\epsilon > 0 \) let \(X_n(\epsilon) \) be the set of \(x \) where \(\epsilon \) is a constant of \(x \) and to the image of \(\kappa \) as the Mordell-Gruber spectrum. Note that the upper bound \(\kappa(x) \leq 1 \) is a consequence of Minkowski’s convex body theorem and that indeed there are lattices (such as \(\mathbb{Z}^n \)) with Mordell constant 1.

The dynamical interpretation of the Mordell constant is as follows. Let us denote by \(\| \cdot \| \) the \(\infty \)-norm on \(\mathbb{R}^n \) and for \(\epsilon > 0 \) let \(X_n(\epsilon) \) be the set of \(x \) where \(\epsilon \) is a constant of \(x \) and to the image of \(\kappa \) as the Mordell-Gruber spectrum. Note that the upper bound \(\kappa(x) \leq 1 \) is a consequence of Minkowski’s convex body theorem and that indeed there are lattices (such as \(\mathbb{Z}^n \)) with Mordell constant 1.

The dynamical interpretation of the Mordell constant is as follows. Let us denote by \(\| \cdot \| \) the \(\infty \)-norm on \(\mathbb{R}^n \) and for \(\epsilon > 0 \) let \(X_n(\epsilon) \) be the set of \(x \) where \(\epsilon \) is a constant of \(x \) and to the image of \(\kappa \) as the Mordell-Gruber spectrum. Note that the upper bound \(\kappa(x) \leq 1 \) is a consequence of Minkowski’s convex body theorem and that indeed there are lattices (such as \(\mathbb{Z}^n \)) with Mordell constant 1.

The dynamical interpretation of the Mordell constant is as follows. Let us denote by \(\| \cdot \| \) the \(\infty \)-norm on \(\mathbb{R}^n \) and for \(\epsilon > 0 \) let \(X_n(\epsilon) \) be the set of \(x \) where \(\epsilon \) is a constant of \(x \) and to the image of \(\kappa \) as the Mordell-Gruber spectrum. Note that the upper bound \(\kappa(x) \leq 1 \) is a consequence of Minkowski’s convex body theorem and that indeed there are lattices (such as \(\mathbb{Z}^n \)) with Mordell constant 1.
The following measure theoretical analogue of the above topological statement will be more suitable for our discussion: Given an A-invariant and ergodic Radon measure μ on X_n, it is natural to define κ_μ as the μ-almost sure value of the A-invariant function κ. By (0.2)

$$\kappa_\mu = \max \{ \kappa(x) : x \in \text{supp}(\mu) \}.$$

It is clear that when supp $\mu_1 \subset$ supp μ_2 then $\kappa_{\mu_1} \leq \kappa_{\mu_2}$. Our discussion deals with trying to understand when does a strict inequality $\kappa_{\mu_1} < \kappa_{\mu_2}$ holds. Note that if $\mu = m_{X_n}$ is the G-invariant probability measure on X_n then $\kappa_\mu = 1$. The following observation was the starting point of our study.

Proposition 0.1. Let μ be an A-invariant measure supported on a compact set. Then $\kappa_\mu < 1$.

Proof. The following short argument relies on a rather heavy tool, namely Hajós Theorem [Haj49]. In our context this theorem (which settled a conjecture of Minkowski) asserts the equality

$$X_n(1) = \sqcup \sigma UZ^n,$$

where $U < G$ is the subgroup of upper triangular unipotent matrices and σ is a permutation matrix. A straightforward check shows the inclusion \supset in the above equation and the content of Hajós' theorem is the inclusion \subset. What we need to take out of this theorem is the fact that any lattice in $X_n(1)$ contains a non-trivial vector on one of the axis. In particular, by (0.2), if $\kappa_\mu = 1$ then in supp μ there exists a lattice having a non-trivial vector on one of the axis. This vector could then be made as short as we wish by acting upon with a suitable element of A in contradiction to the compactness of supp μ. \hfill \Box

The following is a first approximation of the main result I wish to describe here. It generalizes the above proposition when μ is assumed to be homogeneous.

Theorem 0.2. Let $H_1 < H_2$ be a strict containment between two connected closed subgroups of G containing A. Let μ_i be an H_i-invariant Radon measure supported on an H_i-orbit (i.e. a homogeneous measure). Suppose that supp $\mu_1 \subset$ supp μ_2 and that $\mu_1(X_n) < \infty$. Then

$$\kappa_{\mu_1} < \kappa_{\mu_2}.$$

Note that the assumption $\mu_1(X_n) < \infty$ is needed as is shown by considering the orbit containment $AZ^n \subset GZ^n$ each of which supports an A-invariant and ergodic Radon measures having generic Mordell constants equal to 1.

\footnote{One can show that in this case μ_i are A-ergodic.}
The main theorem that we prove in [SW14] is stronger than Theorem 0.2 but is more elaborate to state. We attach to each A-invariant and ergodic homogeneous Radon measure μ an algebraic invariant; namely a certain finite dimensional \mathbb{Q}-algebra A_μ in such a way that if μ_i are such measures and $\text{supp} \mu_1 \subset \text{supp} \mu_2$ then there is a reversed inclusion $A_{\mu_2} \hookrightarrow A_{\mu_1}$. The associated algebras A_μ that arise in this way are of the form $\bigoplus_i \mathbb{F}_i$ where \mathbb{F}_i are number fields. We say that an inclusion $A_{\mu_2} \hookrightarrow A_{\mu_1}$ is essential if it is onto when post-composing with the projections onto the number field components of A_{μ_1}. Otherwise this inclusion is said to be non-essential.

Theorem 0.3. Let μ_i be two measures as in Theorem 0.2 but without the finiteness assumption $\mu_1 (X_n) < \infty$. Then, if the containment of the associated algebras $A_{\mu_2} \hookrightarrow A_{\mu_1}$ is non-essential, then there is a strict inequality $\kappa_{\mu_1} < \kappa_{\mu_2}$.

We end noting two things:

1. In the notation of the Theorem, if $\mu_1 (X_n) < \infty$ then the containment $A_{\mu_2} \hookrightarrow A_{\mu_1}$ is automatically non-essential and so Theorem 0.3 indeed implies Theorem 0.2.

2. In the example of orbit-inclusion $A\mathbb{Z}^n \subset G\mathbb{Z}^n$ discussed above, giving rise to an equality between the generic Mordell constants, the associated algebras turn to be $A_{\mu_1} = \bigoplus_i \mathbb{Q}$, and $A_{\mu_2} = \mathbb{Q}$. So, the (diagonal) inclusion $\mathbb{Q} \hookrightarrow \bigoplus_i \mathbb{Q}$ is essential and so this fits with Theorem 0.3.

References
