Segal Approach for Algebraic Structures

Eduard Balzin

Laboratoire J. A. Dieudonné, Université Nice Sophia Antipolis ⊂ Université Côte d'Azur

14 February 2017

▲日▼▲雪▼▲目▼▲目▼ 目 ⊙⊘⊘

▲日▼▲雪▼▲目▼▲目▼ 目 ⊙⊘⊘

Segal objects

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Γ -spaces (Segal, 1974)

Denote by **Fin** the category of finite sets and by **Fin**₊ the category with the same objects as in **Fin**, and with morphisms given by partially defined maps, $S \supset U \rightarrow T$.

Denote 1 a one-element set. Given a finite set S, its elements $\{s\} \subset S$ induce the morphisms $\rho_s : S \hookrightarrow 1 \to 1$ in **Fin**₊. A Γ -space is then a functor

 $A: \mathbf{Fin}_+ \longrightarrow \mathbf{Top},$

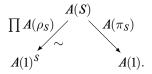
such that the induced morphism (the Segal map)

$$\prod A(\rho_S) : A(S) \longrightarrow A(1)^S$$

is a (weak) homotopy equivalence for each $S \in \mathbf{Fin}_+$.

Homotopy coherent multiplication

Given $S \in Fin_+$, we have the usual map $\pi_S : S \stackrel{=}{\longleftrightarrow} S \to 1$ defined everywhere on S. Consider the span



which left arrow is a homotopy equivalence. Inverting it, we obtain multiplication operations $m_S: A(1)^S \to A(1)$.

In Ho **Top**, the homotopy type of A(1) is a commutative monoid. But a Γ -space contains much more information than an *H*-space ("Segal delooping machinery").

Operator categories (Barwick 2013)

One can replace **Fin** by **Ord**, the category of finite ordered sets. Somewhat equivalently, one can work with Δ^{op} instead of **Fin**₊. A way to systematise:

Definition. An operator category C is a small category with a terminal object 1, such that the hom-sets C(1, x) are finite for each $x \in C$ and that pullbacks exist along any map $1 \rightarrow x$ of C.

Examples. Already mentioned Fin, Ord. Consider also the category B:

1. Its objects are injections $f : S \hookrightarrow D$ with domain $S \in Fin$, into the 2-disc D same thing as |S| distinct points in D.

2. A map between $f: S \hookrightarrow D$ and $f': S' \hookrightarrow D$ is given by a set map $\alpha : S \to S'$ and by a path f to $f' \circ \alpha$ in the stratified groupoid $\prod_{1}^{EP}(Cf(S, D))$ of the configuration space $Cf(S, D) = \{S \to D\}$.

Intuition: **B** is like **Fin**, but with braid-automorphisms.

Algebra Classifiers

Definition. Let C be an operator category. Its *algebra classifier* is the category C_+ such that

1. $Ob C_+ = Ob C$,

2. the hom-sets $C_+(x, y)$ are given by equivalence classes of span diagrams $x \leftrightarrow z \rightarrow y$, where $z \rightarrow y$ is in C and $z \rightarrow x$ is an *admissible monomorphism*: a composition of pullbacks of elementary (admissible) monos $1 \rightarrow t$.

For example, Fin_+ is the same category as before. For **Ord**, the admissible monos are interval inclusions. All monos are admissible in **B**.

A morphism in C_+ is *inert* if it can be presented as $z \leftrightarrow x \xrightarrow{=} x$, and *active* if it can be presented as $y \xleftarrow{=} y \rightarrow t$. Inert and active maps form a factorisation system (In_C, Act_C) on C_+ .

Homotopical algebra with Segal objects

Given an operator category C, we can now define a Segal C-spaces as a functor $A: C_+ \to \text{Top}$ with Segal conditions: that

$$\prod A(\rho_x): A(x) \longrightarrow A(1)^{|x|}$$

is a homotopy equivalence for $x \in C_+$, |x| = C(1, x).

For example, Segal Ord-spaces are homotopy associative monoids.

Because of the correspondence between constructible sheaves on Cf(S, D)and functors $\Pi_1^{EP}(Cf(S, D)) \to$ **Top**, Segal **B**-spaces are the same data as constructible factorisation spaces over a 2-disc, hence E₂-algebras in **Top**.

Barwick shows how to construct operator categories related to E_n -spaces. There are also other approaches (Batanin-Markl, Berger).

Resolutions

Resolutions (of operator categories)

Definition. A functor $F : \mathcal{D} \to \mathcal{C}$ is a *resolution* if for each $\mathbf{c}_{[n]} = c_0 \to \dots \to c_n$ de \mathbb{C} , the category $\mathcal{D}(\mathbf{c}_{[n]})$ of strings $d_0 \to \dots \to d_n$ in $\mathsf{Fun}([n], \mathcal{D})$ with isomorphisms $(Fd_0 \to \dots \to Fd_n) \cong \mathbf{c}_{[n]}$ is contractible.

Formal examples: $\int N\mathcal{C} \to \mathcal{C}^{op}$, $\int N\mathcal{C} \to \mathcal{C}$, equivalences of categories, (op)fibrations with contractible fibres.

Definition. A functor $F : D \to C$ between operator categories is a resolution if:

- 1. The functor *F* preserves limits and $D(1, x) \cong C(1, F(x))$,
- 2. The functor F is a resolution.

NB: No requirement for $D_+ \rightarrow C_+$ to be a resolution!

Example: classifying spaces and representations

Let G and denote BG its classifying space. Let I be a regular cell decomposition of BG, viewed as a poset. There is a natural functor

$$F: I \longrightarrow \Pi_1(BG) \cong G$$

given by choosing a point in each cell. The functor F is a resolution.

Denoting $\mathcal{D}(\mathcal{C}, k)$ the derived category of functors $\mathcal{C} \to \mathbf{DVect}_k$, we have

 $F^* : \mathsf{DRep}(G, k) \cong \mathcal{D}(\Pi_1(BG), k) \to \mathcal{D}(I, k) \cong \mathcal{D}(A(I) \operatorname{-\mathbf{Mod}}).$

One can prove that F^* is full and faithful, and that its image consists of $X : I \to \mathbf{DVect}_k$ which are *locally constant*: for each $f : i \to i'$ de I, X(f) is a quasi-isomorphism.

Does this example arise in operator categories?

Planar trees

A planar tree T is

1. a connected unoriented graph without cycles possessing a distinguished vertex of valency 1 called the root,

2. both the set of vertices V(T) and the set of edges E(T) are finite,

3. for each $v \in V(T)$ there is a datum of cyclic order on the set of edges attached to v. This makes T into an oriented graph.

A morphism $f:T\to T'$ is an oriented cellular map $|f|:|T|\to |T'|$ between the geometric realisations, such that

1. |f| preserves the roots,

2. for each $a, b \in V(T)$, the image by |f| of a geodesic between a and b in |T| is a geodesic between |f|(a) et |f|(b).

Planar trees form a category T_0 . It is an operator category with zero object.

Stable planar trees

A marked planar tree is a pair (T, S), where $T \in \mathbf{T}_0$ and $S \subset V(T)$ is a subset not containing the root. A marked planar tree is *stable* if each non-marked vertex (but the root) has valency at least three 3.

Definition. An object of the category **T** is a marked stable planar tree (T, S). A morphism $(T, S) \rightarrow (T', S')$ is given by a map $f : T \rightarrow T'$ in **T**₀ such that f sends S to S'.

The category **T** is an operator category.

There is another category $\tilde{\mathbf{T}}$ with the objects given by those of \mathbf{T} plus an immersion into a 2-disc which sends all roots to one fixed point on the boundary. The forgetful functor $\tilde{\mathbf{T}} \to \mathbf{T}$ is an equivalence of categories.

Forgetting everything but the marked vertices induces another functor $\tilde{\mathbf{T}} \rightarrow \mathbf{B}$. Inverting the equivalence $\tilde{\mathbf{T}} \xrightarrow{\sim} \mathbf{T}$, we get $F : \mathbf{T} \rightarrow \mathbf{B}$.

Resolution of \mathbf{B} by planar trees

Theorem PT (partially observed by Kontsevich-Soibelman, Kaledin). The functor $F : T \to B$ is a resolution of operator categories.

Corollary. The inverse image functor between categories of Segal objects

$$F^* : \operatorname{Ho} \operatorname{Fun}_{Seg}(\mathbf{B}_+, \mathbf{Top}) \to \operatorname{Ho} \operatorname{Fun}_{Seg}(\mathbf{T}_+, \mathbf{Top})$$

is full and faithful, and its essential image consists of $A : \mathbf{T}_+ \to \mathbf{Top}$ such that whenever F(f) is an iso in \mathbf{B}_+ , the image A(f) is a weak homotopy equivalence.

Thus to construct E_2 -algebras in **Top**, do it first over **T** in a good manner, then descend. Examples might involve another proof of

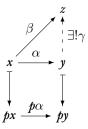
Deligne Conjecture. For a dg-algebra A, there is an E_2 -algebra structure on $CH^{\bullet}(A, A)$ (which realises the well-known operations on $HH^{\bullet}(A, A)$).

... except how to do Segal objects in non-cartesian monoidal setting?

Grothendieck (op)fibrations

Opcartesian morphisms (à l'ancienne)

Let $p: \mathcal{E} \to \mathcal{C}$ be a functor. A morphism $\alpha : x \to y$ of \mathcal{E} is *p*-opcartesian if for each $\beta : x \to z$ such that $p\beta = p\alpha$ there exists unique factorisation $\beta = \gamma \alpha$, where $p(\gamma) = id_{p(\gamma)}$:



This definition is from SGA1; modern references call this notion locally opcartesian.

・ロト ・ 戸 ・ ・ ヨ ト ・ ヨ ・ うへつ

Opfibrations

A functor $p : \mathcal{E} \to \mathcal{C}$ is a Grothendieck opfibration if:

1. For each $f : c \to c'$ of \mathcal{C} and $x \in \mathcal{E}$ with px = c there exists an opcartesian lifting $\alpha : x \to f_! x$, $p\alpha = f$:

2. The composition of opcartesian morphisms is opcartesian.

For $c \in \mathbb{C}$, denote by $\mathcal{E}(c) = p^{-1}c$ the fibre of p over c. A choice of opcartesian liftings along $f : c \to c'$ defines a functor $f_! : \mathcal{E}(c) \to \mathcal{E}(c')$.

Dual notions: cartesian maps, Grothendieck fibrations.

Example: symmetric monoidal categories (Lurie, Segal)

Given a symmetric monoidal category \mathcal{M} with \otimes , construct an opfibration $\mathcal{M}^{\otimes} \to Fin_+$ as follows.

1. An object of \mathcal{M}^{\otimes} is a pair consisting of $S \in \mathbf{Fin}_+$ and a S-indexed family $\{X_s\}_{s \in S}$ of objects of \mathcal{M} .

2. A morphism in \mathcal{M}^{\otimes} , $(S, \{X_s\}_{s \in S}) \to (T, \{Y_t\}_{t \in T})$, consists of a map $f: S \to T$ in **Fin**₊ together with maps $\bigotimes_{s \in f^{-1}(t)} X_s \to Y_t$ for each $t \in T$.

3. The projection $(S, \{X_s\}_{s \in S}) \to S$ gives a functor $\mathcal{M}^{\otimes} \to \mathbf{Fin}_+$.

We see that $\mathcal{M}^{\otimes}(S) \cong \mathcal{M}^{S}$. The map $S \mapsto \mathcal{M}^{\otimes}(S)$ can be made into a (pseudo-)functor which satisfies Segal conditions in **Cat**. For other monoidal structures (associative, braided) one can make similar considerations.

Algebras as sections

Let $p: \mathcal{E} \to \mathcal{C}$ be an opfibration. A *section* of p is a functor $A: \mathcal{C} \to \mathcal{E}$ such that pA = id. The sections of p form a category $\text{Sect}(\mathcal{C}, \mathcal{E})$ with fibrewise natural transformations.

In the example of $\mathcal{M}^{\otimes} \to \mathbf{Fin}_+$, consider a section $A: \mathbf{Fin}_+ \to \mathcal{M}^{\otimes}$ such that for each inert morphism

$$j: S \longleftarrow T \stackrel{=}{\longrightarrow} T,$$

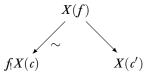
the morphism A(j) is opcartesian. Then we get $A(S) \cong (A(1), ..., A(1))$ and we obtain maps $A(1)^{\otimes S} \to A(1)$ in $\mathcal{M}^{\otimes}(1) = \mathcal{M}$. This way, the object A(1) becomes a commutative monoid in \mathcal{M} , and this construction can be reversed.

However, commutative algebras in $\mathcal{M} = \mathbf{DVect}_k$ do not form a good homotopical category.

Homotopy theory of sections?

One way to remedy the issue consists of doing $\mathcal{M}^{\otimes} \to \mathbf{Fin}_+$ and similarly for more general opfibrations $\mathcal{E} \to \mathcal{C}$ is to pass to higher-categorical context, taking a higher localisation of \mathcal{E} . Associated difficulties arise ("very fibrant replacement").

We still have no Segal description for monoids in \mathcal{M} . In general, an ordinary section A of an opfibration $\mathcal{E} \to \mathcal{C}$ produces, out of $f : c \to c'$, a map $f_!A(c) \to A(c')$. Can we get a "weak section" X, which, out of $f : c \to c'$, would produce a diagram



with left arrow a weak equivalence?

The approach proposed below addresses the latter point, and works in categorical or higher-categorical setting.

Derived, or Segal, sections

Simplicial replacements

For a small category \mathbb{C} , its *simplicial replacement* is the category \mathbb{C} such that

1. An object $\mathbf{c}_{[n]} \in \mathbb{C}$ is a sequence of composable arrows of \mathbb{C} :

$$\mathbf{c}_{[n]} = c_0 \to c_1 \to \ldots \to c_n.$$

2. A morphism $\alpha : \mathbf{c}_{[n]} \to \mathbf{c}'_{[m]}$ is given by $a : [m] \to [n]$ in Δ such that $c_{a(i)} = c'_i$ for each $i \in [m]$.

Defined this way, $\mathbb{C} = (\int N \mathcal{C})^{op}$. The maps $\mathbf{c}_{[n]} \mapsto c_0$, $\mathbf{c}_{[n]} \mapsto c_n$ yield functors $\mathbb{C} \stackrel{h}{\to} \mathcal{C}$ and $\mathbb{C} \stackrel{t}{\to} \mathcal{C}^{op}$.

Extension of $\mathcal{E} \to \mathcal{C}$ to \mathbb{C}

Recall the final object map $t : \mathbb{C} \to \mathbb{C}^{op}$, $\mathbf{c}_{[n]} \mapsto c_n$. We want to use it to lift the opfibration (covariant family) $\mathcal{E} \to \mathcal{C}$ to \mathbb{C} . However, for this we have to replace $\mathcal{E} \to \mathcal{C}$ by its *transposed fibration* (contravariant family) $\mathcal{E}^{\top} \to \mathcal{C}^{op}$.

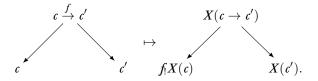
This family is characterised by the facts that $\mathcal{E}^{\top}(c) \cong \mathcal{E}(c)$ and that for each morphism $f: c' \leftarrow c$ of \mathbb{C}^{op} , the transition functor $\mathcal{E}^{\top}(c) \to \mathcal{E}^{\top}(c')$ is isomorphic to $f_!: \mathcal{E}(c) \to \mathcal{E}(c')$. This is, however, a fibration, so a normed section of $(\mathcal{M}^{\otimes})^{\top} \to \operatorname{Fin}^{\operatorname{op}}_+$ would correspond to a *coalgebra* object in \mathcal{M} .

This is natural for Segal formalism, which treats algebraic objects as "bigger" coalgebraic objects with special conditions.

We can now consider $t^* \mathcal{E}^\top \to \mathbb{C}$, the inverse image of $\mathcal{E}^\top \to \mathcal{C}^{\mathsf{op}}$ along $t : \mathbb{C} \to \mathcal{C}^{\mathsf{op}}$.

Sections of $t^* \mathcal{E}^\top \to \mathbb{C}$

Let us consider a section $X : \mathbb{C} \to t^* \mathcal{E}^\top$ of the fibration $t^* \mathcal{E}^\top \to \mathbb{C}$. For $f : c \to c'$ (associated functor $f_! : \mathcal{E}(c) \to \mathcal{E}(c')$), we get a span in $\mathcal{E}(c')$ of the desired form:

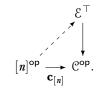


If $\mathcal{E} \to \mathcal{C}$ is equipped with a homotopical structure (e.g. weak equivalences in each $\mathcal{E}(c)$ preserved by $f_{!}$), we can ask for the left arrow to be a weak equivalence.

This is a naïve picture to keep, and works well in higher-categorical setting. However, in model-categorical setting, such objects are insufficiently homotopy coherent.

Simplicial extension of an opfibration

Given $\mathcal{E} \to \mathcal{C}$, its simplicial extension $\mathbf{E} \to \mathbb{C}$ is a family with fibres given by $\mathbf{E}(\mathbf{c}_{[n]}) = \text{Sect}([n]^{\text{op}}, \mathbf{c}_{[n]}^* \mathcal{E}^{\top})$, where we consider $\mathbf{c}_{[n]}$ as a functor:



If the opfibration $\mathcal{E} \to \mathcal{C}$ is fibrewise (finitely) complete, then the family $\mathbf{E} \to \mathbb{C}$ is a bifibration (trivally an opfibration, but also a fibration).

Definition. The category of *presections* is the category $\mathsf{PSect}(\mathcal{C}, \mathcal{E}) := \mathsf{Sect}(\mathbb{C}, \mathbf{E})$. A presection $X : \mathbb{C} \to \mathbf{E}$ is derived (or Segal) if the image $X(\alpha)$ of any left interval inclusion $\alpha : \mathbf{c}_{[n]} \to \mathbf{c}'_{[m]}$ factors as a weak equivalence followed by cartesian. We thus have

$$\mathsf{DSect}(\mathfrak{C}, \mathfrak{E}) \subset \mathsf{PSect}(\mathfrak{C}, \mathfrak{E}) = \mathsf{Sect}(\mathbb{C}, \mathbf{E}).$$

The model structure

Model category PSect

Let $\mathcal{E} \to \mathcal{C}$ be a *model opfibration*, that is, each $\mathcal{E}(x)$ is a model category, and the transition functors $\mathcal{E}(x) \to \mathcal{E}(y)$ preserve weak equivalences and fibrations. (Think **DVect**^{\otimes}_k \to **Fin**₊)

Theorem. In this case, the presections category $PSect(\mathcal{C}, \mathcal{E}) = Sect(\mathbb{C}, \mathbf{E})$ possesses a model structure, with weak equivalences fibrewise.

Implication: the category $\mathsf{DSect}(\mathcal{C}, \mathcal{E})$ is realised as a full homotopical subcategory of a model category $\mathsf{PSect}(\mathcal{C}, \mathcal{E})$. Denote by $\mathsf{Ho}\,\mathsf{PSect}(\mathcal{C}, \mathcal{E})$ and $\mathsf{Ho}\,\mathsf{DSect}(\mathcal{C}, \mathcal{E})$ the corresponding localisations.

This result is a consequence of a more general theorem for families of model categories over Reedy categories.

Semifibrations

A *semifibration* over a factorisation category $(\mathcal{C}, \mathcal{L}, \mathcal{R})$ is a functor $p : S \to \mathcal{C}$ such that

1. for each morphism $l: x \to y$ of \mathcal{L} and $Y \in S(y)$ there is a cartesian lift $l^* Y \to Y$ of l,

2. for each morphism $r : x \to y$ of \mathcal{R} and $X \in \mathcal{S}(x)$ there is an opcartesian lift $X \to \eta X$ of r,

3. given a morphism $\alpha : X \to Y$ of \mathcal{S} and a factorisation of $p(\alpha)$ as $x \xrightarrow{r} z \xrightarrow{l} y$ (wrong arrow order), there is a decomposition of α as

$$X \stackrel{\rho}{\longrightarrow} Z \stackrel{\omega}{\longrightarrow} Z' \stackrel{\lambda}{\longrightarrow} Y,$$

such that $p(\rho) = r$, $p(\lambda) = l$ and $p(\omega) = id_z$.

Theorem MS

Let \mathcal{R} be a Reedy category. A *model semifibration* over \mathcal{R} is a semifibration $S \to \mathcal{R}$ for the Reedy factorisation system $(\mathcal{R}, \mathcal{R}_-, \mathcal{R}_+)$ such that

1. each fibre S(x) is a model category,

2*L*. for each $l : x \to y$ de \mathcal{R}_{-} , the transition functor $l^* : S(y) \to S(x)$ preserves fibrations and trivial fibrations,

3*L*. for each x in \mathcal{R} , either

the matching category Mat(x) is a disjoint union of categories with initial objects, or

the functor $Sect(Mat(x), S) \rightarrow Fun(Mat(x), S(x))$ preserves limits,

and dually, 2*R*, 3*R*.

Theorem MS. The category $Sect(\mathcal{R}, S)$ of sections of a model semifibration $S \to \mathcal{R}$ has a model structure, in which weak equivalences are fibrewise, and the fibrations and cofibrations are Reedy.

Theorem MS: discussion

When $S \to \mathcal{R}$ is a bifibration, the result reduces to that of Hirschowitz-Simpson (theory of Quillen presheaves).

Corollary. Let $\mathcal{E} \to \mathcal{C}$ be a model opfibration, then the simplicial extension $\mathbf{E} \to \mathbb{C}$ is a model semifibration.

Proof. Each fibre $\mathbf{E}(\mathbf{c}_{[n]}) = \text{Sect}([n]^{\text{op}}, \mathcal{E}^{\top})$ is a model category by Theorem MS, and then we apply Theorem MS (or H.-S.) again, globally to $\mathbf{E} \to \mathbb{C}$.

Contrary to H.-S., we have a case in which nothing is assumed on transition functors (adjoints, exactness...). This allows us to consider n-fold tensor products.

For a fibrewise-presentable, accessible higher opfibration $\mathcal{E} \to \mathcal{C}$ over a 1-category, the presentability of $\mathsf{PSect}(\mathcal{C}, \mathcal{E}) = \mathsf{Sect}(\mathbb{C}, \mathbf{E})$ is almost readily apparent.

Resolutions and Segal sections

Locally constant derived sections

Let $\mathcal{E} \to \mathcal{C}$ be a model opfibration and $Iso(\mathcal{C}) \subset S \subset \mathcal{C}$ a subcategory.

Définition. A derived section $X \in \mathsf{DSect}(\mathcal{C}, \mathcal{E})$ is S-locally constant if X sends to weakly cartesian arrows those maps $\mathbf{c}_{[n]} \to \mathbf{c}'_{[m]}$ which verify the following

- 1. the induced morphism $[m] \rightarrow [n]$ in Δ is a right interval inclusion,
- 2. the maps $c_{i-1} \rightarrow c_i$, $1 \le i \le n-1$, belong to \mathcal{S} .

Example. Each algebra $A : \operatorname{Fin}_+ \to \mathfrak{M}^{\otimes}$ gives a derived section locally constant along the inert morphisms In_{Fin} .

Denote by $\mathsf{DSect}_{\mathbb{S}}(\mathbb{C}, \mathcal{E}) \subset \mathsf{DSect}(\mathbb{C}, \mathcal{E})$ the subcategory of derived S-locally constant sections.

Theorem RES

Let $\mathcal{E} \to \mathcal{C}$ be a model opfibration, $Iso(\mathcal{C}) \subset \mathcal{S} \subset \mathcal{C}$ a subcategory and $F: \mathcal{D} \to \mathcal{C}$ a functor. Then the functor F induces

$$F^* : \mathsf{DSect}_{\mathcal{S}}(\mathcal{C}, \mathcal{E}) \longrightarrow \mathsf{DSect}_{F^*\mathcal{S}}(\mathcal{D}, F^*\mathcal{E}),$$

where $F^*\mathcal{E} \to \mathcal{D}$ is the pullback of $\mathcal{E} \to \mathcal{C}$, and $\subset F^*\mathcal{S} \subset \mathcal{D}$ is a subcategory given by those f of \mathcal{D} such that $F(f) \in \mathcal{S}$.

Theorem RES. If moreover $F : \mathcal{D} \to \mathcal{C}$ is a resolution, then

 $\mathsf{h}F^* : \mathsf{Ho} \mathsf{DSect}_{\mathcal{S}}(\mathcal{C}, \mathcal{E}) \longrightarrow \mathsf{Ho} \mathsf{DSect}_{F^*\mathcal{S}}(\mathcal{D}, F^*\mathcal{E})$

is an equivalence of categories.

If $S = Iso(\mathcal{C})$, then $F^*Iso(\mathcal{C})$ is a subcategory of morphisms of \mathcal{D} which become isomorphisms in \mathcal{C} .

Some comments on the proof

To prove Theorem RES, we construct a functor hF_1 inverse to hF^* , as

$$\mathsf{h}F_{!} := \mathbb{L}p_{F,!} \circ \mathsf{h}\mu_{F}^{*} \circ \mathbb{R}\delta_{\mathcal{D},*}, \text{ where:}$$

1. The functor $\delta_{\mathcal{D},*}$: $\mathsf{PSect}(\mathcal{D}, \mathcal{E}) = \mathsf{Sect}(\mathbb{D}, \mathbf{E}) \to \mathsf{Sect}(\mathbb{D}_{\Pi}, \mathbf{E}_{\Pi})$ is a right Kan extension along $\delta_{\mathcal{D}} : \mathbb{D} \to \mathbb{D}_{\Pi}$. The category \mathbb{D}_{Π} is the Π -*replacement* of \mathcal{D} , its objects are $\mathbf{c}_{P} : P \to \mathcal{D}$, with $P \in \Pi$ a finite poset with initial and final objects.

2. The functor μ_F^* : Sect $(\mathbb{D}_{\Pi}, \mathbf{E}_{\Pi}) \to$ Sect $(\mathbb{T}(F), \mu^* \mathbf{E}_{\Pi})$ is the inverse image along $\mu : \mathbb{T}(F) \to \mathbb{D}_{\Pi}$. Here, we note by $p_F : \mathbb{T}(F) \to \mathbb{C}$ the tower of F, an opfibration which fibres are simplicial replacements of $\mathcal{D}(\mathbf{c}_{[n]})$.

3. The functor

$$p_{F,!}:\mathsf{Sect}(\mathbb{T}(F),\mu^*\mathbf{E}_{\Pi})\to\mathsf{Sect}(\mathbb{T}(F),p_F^*\mathbf{E})\to\mathsf{Sect}(\mathbb{C},\mathbf{E})=\mathsf{PSect}(\mathbb{C},\mathcal{E})$$

is obtained from a left Kan extension along the opfibration $p_F : \mathbb{T}(F) \to \mathbb{C}$.

Derived algebras

Recall: For an operator category C, the algebra classifier C_+ consists of partially defined maps with admissible domain.

Definition. Let C be an operator category. An C-monoidal category is a Grothendieck opfibration $\mathcal{M}^{\otimes} \to C_+$ such that for each $x \in C_+$, the induced functor

$$\mathfrak{M}^{\otimes}(\mathbf{x}) \longrightarrow \prod_{(\mathbf{x} \to 1) \in \mathit{In}_{\mathrm{C}}} \mathfrak{M}^{\otimes}(1)$$

is an equivalence of categories.

A C-monoidal model category is a C-monoidal C category ${\mathfrak M}^\otimes \to C_+$ which is also a model opfibration. (use suitable presentability/accessibility for highercat setting)

Definition. Given an C-monoidal model category, its *category of derived algebras* is $\mathsf{DAlg}(C, \mathcal{M}) := \mathsf{DSect}_{In_C}(C_+, \mathcal{M}^{\otimes})$, that is the category of derived sections of $\mathcal{M}^{\otimes} \to C_+$ which are In_C -locally constant.

Theorem RES-ALG

Definition (reminder). A functor $F : D \rightarrow C$ between operator categories is a resolution if:

- 1. The functor *F* preserves limits and $D(1, x) \cong C(1, F(x))$,
- 2. The functor F is a resolution.

Theorem RES-ALG. Given a C-monoidal model category $\mathcal{M}^{\otimes} \to C_+$ and a resolution of operator categories $F : D \to C$, the induced functor

 $\mathsf{h}F^* : \mathsf{Ho} \mathsf{DAlg}(\mathbf{C}, \mathcal{M}) \longrightarrow \mathsf{Ho} \mathsf{DAlg}_{F^*I\!so(\mathbf{C})}(\mathbf{D}, F^*\mathcal{M})$

is an equivalence of categories, where $\mathsf{DAlg}_{F^*I\!so(C)}(\mathsf{D}, F^*\mathfrak{M})$ is the category of derived algebras locally constant along $F^*I\!so(C) \subset \mathsf{D} \subset \mathsf{D}_+$.

Preuve. Repeated "black box" application of Theorem RES.

Resolution of **B** and Segal algebras

Theorem PT (reminder). There is a functor $F : T \to B$ which is a resolution of operator categories.

Theorems PT and RES-ALG imply that the inverse image functor

 hF^* : Ho $\mathsf{DAlg}(\mathbf{B}, \mathcal{M}) \to \mathsf{Ho} \,\mathsf{DAlg}_{F^*Lo(\mathbf{B})}(\mathbf{T}, \mathcal{M})$

is an equivalence of categories.

This can be used to prove the Deligne conjecture outside of the operad formalism. For $\mathbf{DVect}_k^{\otimes} \to \Gamma_+$ and a *dg*-algebra *A* over *k*, there is a combinatorial way to construct a derived algebra $CH^{\bullet}_{\mathbf{T}}(A) \in \mathsf{DAlg}(\mathbf{T}, \mathbf{DVect}_k)$ whose value at $1 \in \mathbf{T}$ is $CH^{\bullet}(A, A)$ and which is locally constant.

Sketch of construction

Over \mathbf{T}_+ , there is an opfibration $\mathbf{Bimod}_A^{\mathrm{T}} \to \mathbf{T}_+$ with fibres over (T, S) equivalent to $\prod_{v \in S} (A^{\otimes out(v)} \otimes A \operatorname{-} \mathbf{Bimod})$ (bimodules viewed as functors of many arguments).

This opfibration has two distinguished sections L(A), R(A), induced by the bimodules $A^{\otimes out(v)} \otimes A$ and $\operatorname{Hom}_k(A^{\otimes out(v)}, A)$ in each fibre, respectively.

Taking a hom-pairing between the corresponding derived sections (amounts to projectively deriving L(A)) produces $CH^{\bullet}_{\mathbf{T}}(A) \in \mathsf{DAlg}(\mathbf{T}, \mathbf{DVect}_k)$.

Descending the obtained derived section to **B** gives us

 $CH^{\bullet}_{\mathbf{B}}(A) \in \mathsf{DAlg}(\mathbf{B}, \mathbf{DVect}_k),$

a presentation of $CH^{\bullet}(A, A)$ as an E₂-algebra.

Thank you.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?