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Segal objects



I'-spaces (Segal, 1974)

Denote by Fin the category of finite sets and by Fin, the category with
the same objects as in Fin, and with morphisms given by partially defined
maps, § DU — T.

Denote 1 a one-element set. Given a finite set .S, its elements {s} C S
induce the morphisms p; : § <=1 — 1in Fin,. A I'-space is then a functor

A4 : Fin, — Top,
such that the induced morphism (¢he Segal map)
[T Alps) - A(S) — AD)°

is a (weak) homotopy equivalence for each § € Fin,.



Homotopy coherent multiplication

Given § € Fin,, we have the usual map 75 : § & § — 1 defined every-
where on S. Consider the span

A(S)
Mo\
A(D)S A(l).
which left arrow is a homotopy equivalence. Inverting it, we obtain multi-
plication operations mg : A(1)S — A(1).
In Ho Top, the homotopy type of A(l) is a commutative monoid. But a I'"-

space contains much more information than an H-space (“Segal delooping

machinery”).



Operator categories (Barwick 2013)

One can replace Fin by Ord, the category of finite ordered sets. Somewhat
equivalently, one can work with A°P instead of Fin . A way to systematise:

Definition. An operator category C is a small category with a terminal
object 1, such that the hom-sets C(1, x) are finite for each x € C and that
pullbacks exist along any map 1 — x of C.

Examples. Already mentioned Fin, Ord. Consider also the category B:

L. Its objects are injections f : .S < D with domain §' € Fin, into the 2-disc
D same thing as || distinct points in D.

2. A map between f : § < D and f' : & < D is given by a set map « :
§ — 8 and by a path f to f’ o « in the stratified groupoid IIZ7(Cf (S, D))
of the configuration space Cf (S, D) = {S — D}.

Intuition: B is like Fin, but with braid-automorphisms.



Algebra Classifiers

Definition. Let C be an operator category. Its algebra classifier is the
category C such that

1.ObC, = ObC,

2. the hom-sets C,(x, y) are given by equivalence classes of span diagrams
x < z — y, where z — yis in C and z — x is an admissible monomorphism:
a composition of pullbacks of elementary (admissible) monos 1 — ¢.

For example, Fin is the same category as before. For Ord, the admissible
monos are interval inclusions. All monos are admissible in B.

A morphism in C; is inert if it can be presented as z <> x — x, and
active if it can be presented as y <> y — £ Inert and active maps form a
factorisation system (Inc, Actc) on C.



Homotopical algebra with Segal objects

Given an operator category C, we can now define a Segal C-spaces as a
functor 4 : C; — Top with Segal conditions: that

[T 4ps) : Alx) — A1)
is a homotopy equivalence for x € C, |x| = C(1, x).
For example, Segal Ord-spaces are homotopy associative monoids.
Because of the correspondence between constructible sheaves on Cf (S, D)
and functors IIE2(Cf (S, D)) — Top, Segal B-spaces are the same data as

constructible factorisation spaces over a 2-disc, hence Eg-algebras in Top.

Barwick shows how to construct operator categories related to E,-spaces.
There are also other approaches (Batanin-Markl, Berger).



Resolutions



Resolutions (of operator categories)

Definition. A functor F : D — C is a resolution if for each Cly) = € —
... = ¢, de C, the category D(c[,)) of strings dy — ... — d, in Fun([x], D)
with isomorphisms (Fdy — ... — Fd,) = c[, is contractible.

Formal examples: fN(? — ©°P, fN(? — C, equivalences of categories,
(op)fibrations with contractible fibres.

Definition. A functor F : D — C between operator categories is a resolu-
tion if:
1. The functor F preserves limits and D(1, x) = C(1, F(x)),

2. The functor F is a resolution.

NB: No requirement for D4 — C, to be a resolution!



Example: classifying spaces and representations

Let G and denote BG its classifying space. Let I be a regular cell decom-
position of BG, viewed as a poset. There is a natural functor

F:I —IL(BG)~G
given by choosing a point in each cell. The functor F is a resolution.
Denoting D(C, k) the derived category of functors € — DVect;, we have
F* : DRep(G, k) = D(II;(BG), k) — D(I, k) =2 D(A(I)-Mod).

One can prove that F* is full and faithful, and that its image consists of
X : I — DVect;, which are locally constant: for each f : i — ¢ de I, X(f)
is a quasi-isomorphism.

Does this example arise in operator categories?



Planar trees

A planar tree T is

1. a connected unoriented graph without cycles possessing a distinguished
vertex of valency 1 called the root,

2. both the set of vertices V(7) and the set of edges E(T) are finite,

3. for each v € V(T) there is a datum of cyclic order on the set of edges
attached to ». This makes 7" into an oriented graph.

A morphism f : T — T’ is an oriented cellular map |f| : |T| — |T7|
between the geometric realisations, such that

L. |f| preserves the roots,

2. for each a,b € V(T), the image by |f]| of a geodesic between a and 4 in
|T| is a geodesic between |f|(a) et |f]().

Planar trees form a category T. It is an operator category with zero object.



Stable planar trees

A marked planar tree is a pair (7, S), where T € Tg and S C V(T) is
a subset not containing the root. A marked planar tree is stable if each
non-marked vertex (but the root) has valency at least three 3.

Definition. An object of the category T is a marked stable planar tree
(T,S). A morphism (7,8) — (77,8) is given by amap f : T — T’ in
T such that f sends S to S'.

The category T is an operator category.
There is another category T with the objects given by those of T plus an
immersion into a 2-disc which sends all roots to one fixed point on the

boundary. The forgetful functor T — T is an equivalence of categories.

Forgetting everything but the marked vertices induces another functor T —
B. Inverting the equivalence T 5 T, we get F: T — B.



Resolution of B by planar trees

Theorem PT (partially observed by Kontsevich-Soibelman, Kaledin).
The functor F : T — B is a resolution of operator categories.

Corollary. The inverse image functor between categories of Segal objects
F* : Ho Fung, (B, , Top) — Ho Fung, (T, Top)

is full and faithful, and its essential image consists of A : T, — Top such
that whenever F(f) is an iso in B, the image A(f) is a weak homotopy
equivalence.

Thus to construct Eq-algebras in Top, do it first over T in a good manner,
then descend. Examples might involve another proof of

Deligne Conjecture. For a dg-algebra A, there is an Eq-algebra structure on
CH*(A, A) (which realises the well-known operations on HH® (4, A)).

...except how to do Segal objects in non-cartesian monoidal setting?



Grothendieck (op)fibrations



Opcartesian morphisms (a Pancienne)

Let p: € — € be a functor. A morphism « : x — y of & is p-opcartesian
if for each 8 : x — 2z such that p3 = po there exists unique factorisation

B = ya, where p(y) = idy):

. ]

px ——py

This definition is from SGAl; modern references call this notion locally
opcartesian.



Opfibrations

A functor p: € — C is a Grothendieck opfibration if:

1. For each f : ¢ = ¢ of C and x € & with px = ¢ there exists an opcartesian
lifting a : ¥ — fix, pa = f:

3
X fix

|, ]

/
c— (.

2. The composition of opcartesian morphisms is opcartesian.

For ¢ € C, denote by &(¢) = p~'c the fibre of p over ¢. A choice of
opcartesian liftings along f : ¢ — ¢’ defines a functor fi : £(¢) — &(¢').

Dual notions: cartesian maps, Grothendieck fibrations.



Example: symmetric monoidal categories (Lurie, Segal)

Given a symmetric monoidal category M with ®, construct an opfibration
M® — Fin as follows.

1. An object of M® is a pair consisting of S € Fin; and a S-indexed family
{X;}ses of objects of M.

2. A morphism in M®, (S,{X;}ses) = (T,{Y.}icr), consists of a map
f 8 — T in Fin, together with maps ®cs1(yX; — Y; for each ¢t € T.

3. The projection (S, {X,};cs) — S gives a functor M® — Fin,.

We see that M®(S) =2 M5. The map § — M®(S) can be made into a
(pseudo-)functor which satisfies Segal conditions in Cat. For other monoidal
structures (associative, braided) one can make similar considerations.



Algebras as sections

Let p: € = C be an opfibration. A section of p is a functor A: € — &€ such
that pA = id. The sections of p form a category Sect(C, £) with fibrewise
natural transformations.

In the example of M® — Fin,, consider a section 4 : Finy — M® such
that for each inert morphism

jiS~>T —T,

the morphism A(j) is opcartesian. Then we get A(S) = (A(1),..., A(1))
and we obtain maps A(1)®¥ — A(1) in M®(1) = M. This way, the object
A(1) becomes a commutative monoid in M, and this construction can be
reversed.

However, commutative algebras in M = DVect; do not form a good ho-
motopical category.



Homotopy theory of sections?

One way to remedy the issue consists of doing M® — Fin; and similarly
for more general opfibrations & — C is to pass to higher-categorical con-
text, taking a higher localisation of €. Associated difficulties arise (“very
fibrant replacement”).

We still have no Segal description for monoids in M. In general, an ordi-

nary section 4 of an opfibration & — € produces, out of f : ¢ — ¢/, a map

Jid(c) — A(c"). Can we get a “weak section” X, which, out of f : ¢ — ¢/,
X(f

would produce a diagram
)

JiX(e) X(e)

with left arrow a weak equivalence?

The approach proposed below addresses the latter point, and works in
categorical or higher-categorical setting.



Derived, or Segal, sections



Simplicial replacements

For a small category C, its simplicial replacement is the category C such that
1. An object ¢[,) € C is a sequence of composable arrows of C:
Cluy) = €0 —7 € —7 .. —7 Cpe

2. A morphism a : ¢ — cfm] is given by a : [m] — [n] in A such that
Co(s) = ¢; for each i € [m].

Defined this way, C = ([ N€)°P. The maps c[, — ¢y, C[s) — ¢, yield
functors C LY @ and C -5 @oP,



Extension of &€ — € to C

Recall the final object map ¢: C — C°P, ¢, > ¢,- We want to use it to lift
the opfibration (covariant family) € — € to C. However, for this we have to
replace & — C by its transposed fibration (contravariant family) €T — CP,

This family is characterised by the facts that £ (¢) = &(¢) and that for
each morphism f : ¢ < ¢ of C°P, the transition functor €' (¢) — €7 (¢) is
isomorphic to fi : £(¢) — &(¢’). This is, however, a fibration, so a normed
section of (M®)" — Fin5® would correspond to a coalgebra object in M.

This is natural for Segal formalism, which treats algebraic objects as “big-
ger” coalgebraic objects with special conditions.

We can now consider £*&T — C, the inverse image of &' — C°P along
t:C — CP.



Sections of &7 — C

Let us consider a section X : C — ¢*&T of the fibration #*&7 — C. For
f ¢ = ¢ (associated functor f : E(¢) — E(¢’)), we get a span in E(¢') of
the desired form:

— )

PN X(c
2 NICIVRN
: oA

X(c).

If € — € is equipped with a homotopical structure (e.g. weak equivalences
in each &(¢) preserved by f)), we can ask for the left arrow to be a weak
equivalence.

This is a naive picture to keep, and works well in higher-categorical set-
ting. However, in model-categorical setting, such objects are insufficiently
homotopy coherent.



Simplicial extension of an opfibration

Given & — G, its simplicial extension E — C is a family with fibres given

by E(cp,) = Sect([n]°P, c*"]ET), where we consider cf,) as a functor:

[n]°P — C°P.
Clx]

If the opfibration € — C is fibrewise (finitely) complete, then the family
E — C is a bifibration (trivally an opfibration, but also a fibration).
Definition. The category of presections is the category PSect(C, &) :=
Sect(C,E). A presection X : C — E is derived (or Segal) if the image X («)
of any left interval inclusion « : ¢[,) — c{m] factors as a weak equivalence
followed by cartesian. We thus have

DSect(C, €) C PSect(C, €) = Sect(C,E).



The model structure



Model category PSect

Let & — C be a model opfibration, that is, each (x) is a model category,
and the transition functors €(x) — E(y) preserve weak equivalences and
fibrations. (Think DVect,? — Fin_)

Theorem. In this case, the presections category PSect(C, &) = Sect(C,E)
possesses a model structure, with weak equivalences fibrewise.

Implication: the category DSect(C, &) is realised as a full homotopical
subcategory of a model category PSect(C, £). Denote by Ho PSect(C, €)
and Ho DSect(C, €) the corresponding localisations.

This result is a consequence of a more general theorem for families of
model categories over Reedy categories.



Semifibrations

A semifibration over a factorisation category (C, £, R) is a functor p: § — C
such that

1. for each morphism [ : x — y of £ and Y € S(y) there is a cartesian lift
'Y - Yofl

2. for each morphism 7 : x — y of R and X € 8(x) there is an opcartesian
lift X — nX of r,

3. given a morphism o : X — Y of 8 and a factorisation of p(a) as

! . "
x - z = y (wrong arrow order), there is a decomposition of « as
A
X2 z%7 Sy,

such that p(p) = r, p(A\) = [ and p(w) = id,.



Theorem MS

Let R be a Reedy category. A model semifibration over R is a semifibration
8 — R for the Reedy factorisation system (R, R_, R ) such that

1. each fibre 8(x) is a model category,

2L. for each [ : x — y de R_, the transition functor [* : 8(y) — S(x)
preserves fibrations and trivial fibrations,

3L. for each x in R, either
the matching category Ma#(x) is a disjoint union of categories with
initial objects, or

the functor Sect(Mat(x),8) — Fun(Mat(x),S(x)) preserves limits,
and dually, 2R, 3R.
Theorem MS. The category Sect(R,8) of sections of a model semifibration

8 — R has a model structure, in which weak equivalences are fibrewise, and
the fibrations and cofibrations are Reedy.



Theorem MS: discussion

When § — R is a bifibration, the result reduces to that of Hirschowitz-
Simpson (theory of Quillen presheaves).

Corollary. Let £ — C be a model opfibration, then the simplicial extension
E — C is a model semifibration.

Proof. Fach fibre E(c,) = Sect([n]°P,&€T) is a model category by The-
orem MS, and then we apply Theorem MS (or H.-S.) again, globally to
E—-C

Contrary to H.-S., we have a case in which nothing is assumed on transition
functors (adjoints, exactness...). This allows us to consider z-fold tensor
products.

For a fibrewise-presentable, accessible higher opfibration &€ — € over a
1-category, the presentability of PSect(C, £) = Sect(C, E) is almost readily
apparent.



Resolutions and Segal sections



Locally constant derived sections

Let & — € be a model opfibration and Is0(C) C 8 C € a subcategory.

Définition. A derived section X € DSect(C, &) is S-locally constant if X
sends to weakly cartesian arrows those maps c[, — cfm] which verify the
following

1. the induced morphism [m] — [r] in A is a right interval inclusion,

2. the maps ¢;_1 — ¢, 1 < i < n—1, belong to 8.

Example. Each algebra 4 : Fin, — M® gives a derived section locally
constant along the inert morphisms Ingip.

Denote by DSectg(C,€) C DSect(C, ) the subcategory of derived 8-

locally constant sections.



Theorem RES

Let & — € be a model opfibration, Iso(C) C 8§ C € a subcategory and
F :D — C a functor. Then the functor F induces

F* : DSects(C, &) — DSectp+g(D, F*E),

where F*€ — D is the pullback of &€ = C, and C F*S§ C D is a subcate-
gory given by those f of D such that F(f) € 8.

Theorem RES. If moreover F : D — C is a resolution, then
hF* : Ho DSects(C, &) — Ho DSectp-g(D, F*E)
is an equivalence of categories.

If 8 = Iso(C), then F*Is0o(C) is a subcategory of morphisms of D which
become isomorphisms in C.



Some comments on the proof
To prove Theorem RES, we construct a functor hF inverse to hF*, as
hFi := Lpr)ohproRép ., where:

1. The functor dp . : PSect(D, €) = Sect(D, E) — Sect(Dyy, Epp) is a right
Kan extension along dp : D — Drg. The category Dry is the II-replacement
of D, its objects are cp : P — D, with P € II a finite poset with initial and
final objects.

2. The functor puj : Sect(Dy,Ern) — Sect(T(F),u*Er) is the inverse
image along i : T(F) — Dr. Here, we note by pp : T(F) — C the tower of

F, an opfibration which fibres are simplicial replacements of @(c[,,]).

3. The functor
pr.1 2 Sect(T(F), n*Err) — Sect(T(F), prE) — Sect(C,E) = PSect(C, €)

is obtained from a left Kan extension along the opfibration pr : T(F) — C.



Derived algebras

Recall: For an operator category C, the algebra classifier C; consists of
partially defined maps with admissible domain.
Definition. Let C be an operator category. An C-monoidal category is
a Grothendieck opfibration M® — C, such that for each x € C, the
induced functor
ME(x) — [ M=)
(x—1)Enc

is an equivalence of categories.

A C-monoidal model category is a C-monoidal C category M® — C which
is also a model opfibration. (use suitable presentability/accessibility for
highercat setting)

Definition. Given an C-monoidal model category, its category of derived al-
gebras is DAlg(C, M) := DSecty,.(C4,M®), that is the category of derived
sections of M® — C which are Inc-locally constant.



Theorem RES-ALG

Definition (reminder). A functor ¥ : D — C between operator categories
is a resolution if:

1. The functor F preserves limits and D(1, x) = C(1, F(x)),

2. The functor F is a resolution.

Theorem RES-ALG. Given a C-monoidal model category M® — C,. and a
resolution of operator categories F' : D — C, the induced functor

h#* : Ho DAlg(C, M) — Ho DAlg . ;) (D, F*M)

is an equivalence of categories, where DAlgp. 1, ¢y (D, F*M) is the category of
derived algebras locally constant along F*Iso(C) C D C D4.

Preuve. Repeated “black box” application of Theorem RES.



Resolution of B and Segal algebras

Theorem PT (reminder). There is a functor F : T — B which is a resolution
of operator categories.

Theorems PT and RES-ALG imply that the inverse image functor
hF* : Ho DAlg(B, M) — Ho DAlg s 1,5 (T, M)
is an equivalence of categories.

This can be used to prove the Deligne conjecture outside of the operad
formalism. For DVect,? — I'} and a dg-algebra A4 over £, there is a com-
binatorial way to construct a derived algebra CHy(A4) € DAlg(T,DVect;)
whose value at 1 € T is CH*(4, 4) and which is locally constant.



Sketch of construction

Over T, there is an opfibration Bimod§ — T, with fibres over (7,.5)
equivalent to [, (4%°(?) @ A-Bimod) (bimodules viewed as functors of
many arguments).

This opfibration has two distinguished sections L(4), R(4), induced by the
bimodules A2°“(*) © 4 and Homy(A4®(?)| A) in each fibre, respectively.

Taking a hom-pairing between the corresponding derived sections (amounts
to projectively deriving L(4)) produces CHp(A4) € DAlg(T, DVecty,).

Descending the obtained derived section to B gives us
CHg (A) € DAlg(B, DVect;),

a presentation of CH®(4, A) as an Eg-algebra.



Thank you.



