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Segal objects



Γ-spaces (Segal, 1974)

Denote by Fin the category of finite sets and by Fin+ the category with
the same objects as in Fin, and with morphisms given by partially defined
maps, S ⊃ U → T .

Denote 1 a one-element set. Given a finite set S , its elements {s} ⊂ S
induce the morphisms ρs : S ←↩ 1→ 1 in Fin+. A Γ-space is then a functor

A : Fin+ −→ Top,

such that the induced morphism (the Segal map)∏
A(ρS ) : A(S) −→ A(1)S

is a (weak) homotopy equivalence for each S ∈ Fin+.



Homotopy coherent multiplication

Given S ∈ Fin+, we have the usual map πS : S
=←↩ S → 1 defined every-

where on S . Consider the span

A(S)

A(1)S

∏
A(ρS )

∼�
A(1).

A(πS )
-

which left arrow is a homotopy equivalence. Inverting it, we obtain multi-
plication operations mS : A(1)S → A(1).

In HoTop, the homotopy type of A(1) is a commutative monoid. But a Γ-
space contains much more information than an H -space (“Segal delooping
machinery”).



Operator categories (Barwick 2013)

One can replace Fin by Ord, the category of finite ordered sets. Somewhat
equivalently, one can work with ∆op instead of Fin+. A way to systematise:

Definition. An operator category C is a small category with a terminal
object 1, such that the hom-sets C(1, x) are finite for each x ∈ C and that
pullbacks exist along any map 1→ x of C.

Examples. Already mentioned Fin, Ord. Consider also the category B:

1. Its objects are injections f : S ↪→ D with domain S ∈ Fin, into the 2-disc
D same thing as |S | distinct points in D.
2. A map between f : S ↪→ D and f ′ : S ′ ↪→ D is given by a set map α :

S → S ′ and by a path f to f ′ ◦ α in the stratified groupoid ΠEP
1 (Cf (S ,D))

of the configuration space Cf (S ,D) = {S → D}.

Intuition: B is like Fin, but with braid-automorphisms.



Algebra Classifiers

Definition. Let C be an operator category. Its algebra classifier is the
category C+ such that

1. ObC+ = ObC,

2. the hom-sets C+(x, y) are given by equivalence classes of span diagrams
x ←↩ z → y, where z → y is in C and z ↪→ x is an admissible monomorphism:
a composition of pullbacks of elementary (admissible) monos 1→ t.

For example, Fin+ is the same category as before. For Ord, the admissible
monos are interval inclusions. All monos are admissible in B.

A morphism in C+ is inert if it can be presented as z ←↩ x =→ x, and
active if it can be presented as y

=←↩ y → t. Inert and active maps form a
factorisation system (InC,ActC) on C+.



Homotopical algebra with Segal objects

Given an operator category C, we can now define a Segal C-spaces as a
functor A : C+ → Top with Segal conditions: that∏

A(ρx) : A(x) −→ A(1)|x|

is a homotopy equivalence for x ∈ C+, |x| = C(1, x).

For example, Segal Ord-spaces are homotopy associative monoids.

Because of the correspondence between constructible sheaves on Cf (S ,D)

and functors ΠEP
1 (Cf (S ,D)) → Top, Segal B-spaces are the same data as

constructible factorisation spaces over a 2-disc, hence E2-algebras in Top.

Barwick shows how to construct operator categories related to En-spaces.
There are also other approaches (Batanin-Markl, Berger).



Resolutions



Resolutions (of operator categories)

Definition. A functor F : D → C is a resolution if for each c[n] = c0 →
...→ cn de C, the category D(c[n]) of strings d0 → ...→ dn in Fun([n],D)

with isomorphisms (Fd0 → ...→ Fdn) ∼= c[n] is contractible.

Formal examples:
∫
NC → Cop,

∫
NC → C, equivalences of categories,

(op)fibrations with contractible fibres.

Definition. A functor F : D→ C between operator categories is a resolu-
tion if:

1. The functor F preserves limits and D(1, x) ∼= C(1,F (x)),

2. The functor F is a resolution.

NB: No requirement for D+ → C+ to be a resolution!



Example: classifying spaces and representations

Let G and denote BG its classifying space. Let I be a regular cell decom-
position of BG , viewed as a poset. There is a natural functor

F : I −→ Π1(BG) ∼= G

given by choosing a point in each cell. The functor F is a resolution.

Denoting D(C, k) the derived category of functors C→ DVectk , we have

F ∗ : DRep(G, k) ∼= D(Π1(BG), k)→ D(I , k) ∼= D(A(I )-Mod).

One can prove that F ∗ is full and faithful, and that its image consists of
X : I → DVectk which are locally constant: for each f : i → i′ de I , X (f )

is a quasi-isomorphism.

Does this example arise in operator categories?



Planar trees

A planar tree T is

1. a connected unoriented graph without cycles possessing a distinguished
vertex of valency 1 called the root,

2. both the set of vertices V (T ) and the set of edges E(T ) are finite,

3. for each v ∈ V (T ) there is a datum of cyclic order on the set of edges
attached to v. This makes T into an oriented graph.

A morphism f : T → T ′ is an oriented cellular map |f | : |T | → |T ′|
between the geometric realisations, such that

1. |f | preserves the roots,

2. for each a, b ∈ V (T ), the image by |f | of a geodesic between a and b in
|T | is a geodesic between |f |(a) et |f |(b).

Planar trees form a category T0. It is an operator category with zero object.



Stable planar trees

A marked planar tree is a pair (T , S), where T ∈ T0 and S ⊂ V (T ) is
a subset not containing the root. A marked planar tree is stable if each
non-marked vertex (but the root) has valency at least three 3.

Definition. An object of the category T is a marked stable planar tree
(T , S). A morphism (T , S) → (T ′, S ′) is given by a map f : T → T ′ in
T0 such that f sends S to S ′.

The category T is an operator category.

There is another category T̃ with the objects given by those of T plus an
immersion into a 2-disc which sends all roots to one fixed point on the
boundary. The forgetful functor T̃→ T is an equivalence of categories.

Forgetting everything but the marked vertices induces another functor T̃→
B. Inverting the equivalence T̃

∼→ T, we get F : T→ B.



Resolution of B by planar trees

Theorem PT (partially observed by Kontsevich-Soibelman, Kaledin).
The functor F : T→ B is a resolution of operator categories.

Corollary. The inverse image functor between categories of Segal objects

F ∗ : Ho FunSeg(B+,Top)→ Ho FunSeg(T+,Top)

is full and faithful, and its essential image consists of A : T+ → Top such
that whenever F (f ) is an iso in B+, the image A(f ) is a weak homotopy
equivalence.

Thus to construct E2-algebras in Top, do it first over T in a good manner,
then descend. Examples might involve another proof of

Deligne Conjecture. For a dg-algebra A, there is an E2-algebra structure on
CH •(A,A) (which realises the well-known operations on HH •(A,A)).

...except how to do Segal objects in non-cartesian monoidal setting?



Grothendieck (op)fibrations



Opcartesian morphisms (à l’ancienne)

Let p : E → C be a functor. A morphism α : x → y of E is p-opcartesian
if for each β : x → z such that pβ = pα there exists unique factorisation
β = γα, where p(γ) = idp(y):

z

x
α-

β
-

y

∃!γ
6

px
? pα- py

?

This definition is from SGA1; modern references call this notion locally
opcartesian.



Opfibrations

A functor p : E→ C is a Grothendieck opfibration if:

1. For each f : c → c′ of C and x ∈ E with px = c there exists an opcartesian
lifting α : x → f!x, pα = f :

x
∃α- f!x

c
? f- c′.

?

2. The composition of opcartesian morphisms is opcartesian.

For c ∈ C, denote by E(c) = p−1c the fibre of p over c. A choice of
opcartesian liftings along f : c → c′ defines a functor f! : E(c)→ E(c′).

Dual notions: cartesian maps, Grothendieck fibrations.



Example: symmetric monoidal categories (Lurie, Segal)

Given a symmetric monoidal category M with ⊗, construct an opfibration
M⊗ → Fin+ as follows.

1. An object of M⊗ is a pair consisting of S ∈ Fin+ and a S -indexed family
{Xs}s∈S of objects of M.

2. A morphism in M⊗, (S , {Xs}s∈S ) → (T , {Yt}t∈T ), consists of a map
f : S → T in Fin+ together with maps ⊗s∈f −1(t)Xs → Yt for each t ∈ T .
3. The projection (S , {Xs}s∈S )→ S gives a functor M⊗ → Fin+.

We see that M⊗(S) ∼= MS . The map S 7→ M⊗(S) can be made into a
(pseudo-)functor which satisfies Segal conditions in Cat. For other monoidal
structures (associative, braided) one can make similar considerations.



Algebras as sections

Let p : E→ C be an opfibration. A section of p is a functor A : C→ E such
that pA = id . The sections of p form a category Sect(C,E) with fibrewise
natural transformations.

In the example of M⊗ → Fin+, consider a section A : Fin+ → M⊗ such
that for each inert morphism

j : S � ⊃ T
=- T ,

the morphism A(j) is opcartesian. Then we get A(S) ∼= (A(1), ...,A(1))
and we obtain maps A(1)⊗S → A(1) in M⊗(1) = M. This way, the object
A(1) becomes a commutative monoid in M, and this construction can be
reversed.

However, commutative algebras in M = DVectk do not form a good ho-
motopical category.



Homotopy theory of sections?

One way to remedy the issue consists of doing M⊗ → Fin+ and similarly
for more general opfibrations E → C is to pass to higher-categorical con-
text, taking a higher localisation of E. Associated difficulties arise (“very
fibrant replacement”).

We still have no Segal description for monoids in M. In general, an ordi-
nary section A of an opfibration E→ C produces, out of f : c → c′, a map
f!A(c) → A(c′). Can we get a “weak section” X , which, out of f : c → c′,
would produce a diagram

X (f )

f!X (c)

∼�
X (c′)

-

with left arrow a weak equivalence?

The approach proposed below addresses the latter point, and works in
categorical or higher-categorical setting.



Derived, or Segal, sections



Simplicial replacements

For a small category C, its simplicial replacement is the category C such that

1. An object c[n] ∈ C is a sequence of composable arrows of C:

c[n] = c0 → c1 → ...→ cn.

2. A morphism α : c[n] → c′[m] is given by a : [m] → [n] in ∆ such that
ca(i) = c′i for each i ∈ [m].

Defined this way, C = (
∫
NC)op. The maps c[n] 7→ c0, c[n] 7→ cn yield

functors C h→ C and C t→ Cop.



Extension of E→ C to C

Recall the final object map t : C→ Cop, c[n] 7→ cn. We want to use it to lift
the opfibration (covariant family) E→ C to C. However, for this we have to
replace E→ C by its transposed fibration (contravariant family) E> → Cop.

This family is characterised by the facts that E>(c) ∼= E(c) and that for
each morphism f : c′ ← c of Cop, the transition functor E>(c)→ E>(c′) is
isomorphic to f! : E(c)→ E(c′). This is, however, a fibration, so a normed
section of (M⊗)> → Finop

+ would correspond to a coalgebra object in M.

This is natural for Segal formalism, which treats algebraic objects as “big-
ger” coalgebraic objects with special conditions.

We can now consider t∗E> → C, the inverse image of E> → Cop along
t : C→ Cop.



Sections of t∗E> → C

Let us consider a section X : C → t∗E> of the fibration t∗E> → C. For
f : c → c′ (associated functor f! : E(c) → E(c′)), we get a span in E(c′) of
the desired form:

c
f→ c′ X (c → c′)

7→

c
�

c′
-

f!X (c)
�

X (c′).

-

If E→ C is equipped with a homotopical structure (e.g. weak equivalences
in each E(c) preserved by f!), we can ask for the left arrow to be a weak
equivalence.

This is a naïve picture to keep, and works well in higher-categorical set-
ting. However, in model-categorical setting, such objects are insufficiently
homotopy coherent.



Simplicial extension of an opfibration

Given E → C, its simplicial extension E → C is a family with fibres given
by E(c[n]) = Sect([n]op, c∗[n]E

>), where we consider c[n] as a functor:

E>

[n]op

c[n]

-

-

Cop.
?

If the opfibration E → C is fibrewise (finitely) complete, then the family
E→ C is a bifibration (trivally an opfibration, but also a fibration).

Definition. The category of presections is the category PSect(C,E) :=

Sect(C,E). A presection X : C→ E is derived (or Segal) if the image X (α)

of any left interval inclusion α : c[n] → c′[m] factors as a weak equivalence
followed by cartesian. We thus have

DSect(C,E) ⊂ PSect(C,E) = Sect(C,E).



The model structure



Model category PSect

Let E → C be a model opfibration, that is, each E(x) is a model category,
and the transition functors E(x) → E(y) preserve weak equivalences and
fibrations. (Think DVect⊗k → Fin+)

Theorem. In this case, the presections category PSect(C,E) = Sect(C,E)

possesses a model structure, with weak equivalences fibrewise.

Implication: the category DSect(C,E) is realised as a full homotopical
subcategory of a model category PSect(C,E). Denote by HoPSect(C,E)

and HoDSect(C,E) the corresponding localisations.

This result is a consequence of a more general theorem for families of
model categories over Reedy categories.



Semifibrations

A semifibration over a factorisation category (C,L,R) is a functor p : S→ C

such that

1. for each morphism l : x → y of L and Y ∈ S(y) there is a cartesian lift
l∗Y → Y of l,

2. for each morphism r : x → y of R and X ∈ S(x) there is an opcartesian
lift X → r!X of r ,

3. given a morphism α : X → Y of S and a factorisation of p(α) as

x
r→ z

l→ y (wrong arrow order), there is a decomposition of α as

X
ρ−→ Z

ω−→ Z ′
λ−→ Y ,

such that p(ρ) = r , p(λ) = l and p(ω) = idz .



Theorem MS

Let R be a Reedy category. A model semifibration over R is a semifibration
S→ R for the Reedy factorisation system (R,R−,R+) such that

1. each fibre S(x) is a model category,

2L. for each l : x → y de R−, the transition functor l∗ : S(y) → S(x)
preserves fibrations and trivial fibrations,

3L. for each x in R, either

the matching category Mat(x) is a disjoint union of categories with
initial objects, or

the functor Sect(Mat(x), S)→ Fun(Mat(x), S(x)) preserves limits,

and dually, 2R, 3R.

Theorem MS. The category Sect(R, S) of sections of a model semifibration
S → R has a model structure, in which weak equivalences are fibrewise, and
the fibrations and cofibrations are Reedy.



Theorem MS: discussion

When S → R is a bifibration, the result reduces to that of Hirschowitz-
Simpson (theory of Quillen presheaves).

Corollary. Let E→ C be a model opfibration, then the simplicial extension
E→ C is a model semifibration.

Proof. Each fibre E(c[n]) = Sect([n]op,E>) is a model category by The-
orem MS, and then we apply Theorem MS (or H.-S.) again, globally to
E→ C.

Contrary to H.-S., we have a case in which nothing is assumed on transition
functors (adjoints, exactness...). This allows us to consider n-fold tensor
products.

For a fibrewise-presentable, accessible higher opfibration E → C over a
1-category, the presentability of PSect(C,E) = Sect(C,E) is almost readily
apparent.



Resolutions and Segal sections



Locally constant derived sections

Let E→ C be a model opfibration and Iso(C) ⊂ S ⊂ C a subcategory.

Définition. A derived section X ∈ DSect(C,E) is S-locally constant if X
sends to weakly cartesian arrows those maps c[n] → c′[m] which verify the
following

1. the induced morphism [m]→ [n] in ∆ is a right interval inclusion,

2. the maps ci−1 → ci , 1 ≤ i ≤ n− 1, belong to S.

Example. Each algebra A : Fin+ → M⊗ gives a derived section locally
constant along the inert morphisms InFin.

Denote by DSectS(C,E) ⊂ DSect(C,E) the subcategory of derived S-
locally constant sections.



Theorem RES

Let E → C be a model opfibration, Iso(C) ⊂ S ⊂ C a subcategory and
F : D→ C a functor. Then the functor F induces

F ∗ : DSectS(C,E) −→ DSectF∗S(D,F ∗E),

where F ∗E → D is the pullback of E → C, and ⊂ F ∗S ⊂ D is a subcate-
gory given by those f of D such that F (f ) ∈ S.

Theorem RES. If moreover F : D→ C is a resolution, then

hF ∗ : HoDSectS(C,E) −→ HoDSectF∗S(D,F ∗E)

is an equivalence of categories.

If S = Iso(C), then F ∗Iso(C) is a subcategory of morphisms of D which
become isomorphisms in C.



Some comments on the proof

To prove Theorem RES, we construct a functor hF! inverse to hF ∗, as

hF! := LpF ,! ◦ hµ∗F ◦ RδD,∗, where:

1. The functor δD,∗ : PSect(D,E) = Sect(D,E)→ Sect(DΠ,EΠ) is a right
Kan extension along δD : D→ DΠ. The category DΠ is the Π-replacement
of D, its objects are cP : P → D, with P ∈ Π a finite poset with initial and
final objects.

2. The functor µ∗F : Sect(DΠ,EΠ) → Sect(T(F ), µ∗EΠ) is the inverse
image along µ : T(F )→ DΠ. Here, we note by pF : T(F )→ C the tower of
F , an opfibration which fibres are simplicial replacements of D(c[n]).

3. The functor

pF ,! : Sect(T(F ), µ∗EΠ)→ Sect(T(F ), p∗FE)→ Sect(C,E) = PSect(C,E)

is obtained from a left Kan extension along the opfibration pF : T(F )→ C.



Derived algebras

Recall: For an operator category C, the algebra classifier C+ consists of
partially defined maps with admissible domain.

Definition. Let C be an operator category. An C-monoidal category is
a Grothendieck opfibration M⊗ → C+ such that for each x ∈ C+, the
induced functor

M⊗(x) −→
∏

(x→1)∈InC

M⊗(1)

is an equivalence of categories.

A C-monoidal model category is a C-monoidal C category M⊗ → C+ which
is also a model opfibration. (use suitable presentability/accessibility for
highercat setting)

Definition. Given an C-monoidal model category, its category of derived al-
gebras is DAlg(C,M) := DSectInC(C+,M

⊗), that is the category of derived
sections of M⊗ → C+ which are InC-locally constant.



Theorem RES-ALG

Definition (reminder). A functor F : D→ C between operator categories
is a resolution if:

1. The functor F preserves limits and D(1, x) ∼= C(1,F (x)),

2. The functor F is a resolution.

Theorem RES-ALG. Given a C-monoidal model categoryM⊗ → C+ and a
resolution of operator categories F : D→ C, the induced functor

hF ∗ : HoDAlg(C,M) −→ HoDAlgF∗Iso(C)(D,F
∗M)

is an equivalence of categories, where DAlgF∗Iso(C)(D,F
∗M) is the category of

derived algebras locally constant along F ∗Iso(C) ⊂ D ⊂ D+.

Preuve. Repeated “black box” application of Theorem RES.



Resolution of B and Segal algebras

Theorem PT (reminder).There is a functor F : T→ B which is a resolution
of operator categories.

Theorems PT and RES-ALG imply that the inverse image functor

hF ∗ : HoDAlg(B,M)→ HoDAlgF∗Iso(B)(T,M)

is an equivalence of categories.

This can be used to prove the Deligne conjecture outside of the operad
formalism. For DVect⊗k → Γ+ and a dg-algebra A over k, there is a com-
binatorial way to construct a derived algebra CH •T (A) ∈ DAlg(T,DVectk)
whose value at 1 ∈ T is CH •(A,A) and which is locally constant.



Sketch of construction

Over T+, there is an opfibration BimodT
A → T+ with fibres over (T , S)

equivalent to
∏
v∈S (A

⊗out(v) ⊗ A-Bimod) (bimodules viewed as functors of
many arguments).

This opfibration has two distinguished sections L(A), R(A), induced by the
bimodules A⊗out(v) ⊗ A and Homk(A⊗out(v),A) in each fibre, respectively.

Taking a hom-pairing between the corresponding derived sections (amounts
to projectively deriving L(A)) produces CH •T (A) ∈ DAlg(T,DVectk).

Descending the obtained derived section to B gives us

CH •B (A) ∈ DAlg(B,DVectk),

a presentation of CH •(A,A) as an E2-algebra.



Thank you.


