MPIM Topology Seminar

Baudry Hopkis Stojanoska

Duality

and
alizing Spheres

Mean Streets

Streets Dualizing Spheres

14 June 2021

Duality and dualizing

Duality and groups action

What is It has artice by a compart he group.

By Separation V Company of MC all separations of New Action and Separation and Separation of the Separ

Example: M=121, G= {e} M= 8°= Sk so MFRE' Sk-M= 2 Sk-1
So Z(Sk-M,)= Sk D, M= 8° specha

M₄ ≤ S^T, S^T M₄ ≃ S(T) M₄ ≤ S^T, S^T M₄ ≃ S(T)

Thorner: M=pt, DM = 5 3a. reprosented a.

where ga = Adjoint representation of G

p-adic analytic groups

Cohomology and Serre Duality

Let M be a G-module (continuoses)

$$M \rightarrow H^0(G,N) = MG$$
 $G = P$ -cour analytic

 $M \rightarrow H^0(G,N) = MG$
 $G = P$ -cour analytic

 $G = P$ -cour

M Saile

Derived bessin over to Ep.

Tuen this with how along theory and ag of

(□) (□) (□) (□) (□) (□) (□)

The dualizing sphere

A linear version

A computable Version:
$$g = g_0 \ge p'g_0 \quad \text{Senizo.}$$

As bygone your four $Bp'g = (S^1)_{p-rappole}$
 $S^{g_0} = S^{g_0} = rowin Z_+ Bp'g.$

Theorem: $H_+S^g = w_{g_0} \quad \text{concentrates in deeples d.}$

Linearization $H_+S^g = w_{g_0} \quad \text{concentrates in deeples d.}$

Clausen: Big question and rategory does S^g

Sive in?

LH for finite subgroups

Theorem: Let FEG es a finde Subgroup and Seupposa F has the Property P-Sylaw Subgroup of F/Frathrof G 5 = (Z/p) + 801 8m0 t. Then ICF SS. Gradel Castellana: Trans of the AMS actual is the lay imput. For Sn Ca it happens surprisingly often.

Geometric input

Theorem: Let FCG be finite and suppose Fr

F-innvariant lattice L=Z=g=ga fa G.
[=> QOL= QOZG].

Let V= ROL . Frepresentation. Then there so a.

F. map

which is an expressive ofter coupletion.

Except: of n=2=7, where copy Q8 < Bo which arrises

from automorphius of alptic unes. and Og ands on H

= quaterious.