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Non-isogenous AV

A vague question: Given two abelian varieties X ,Y of the same
dimension over an algebraically closed field,

find an easy “purely algebraic” way (under natural additional
conditions) to decide whether they are non-isogenous (X 6∼ Y ).

We deal with hyperelliptic jacobians X = J(Cf ),Y = J(Ch),
where

f (x), h(x) are polynomials of the same degree n ≥ 3 without
repeated roots;
Cf and Ch are smooth projective models of plane affine curves
y2 = f (x), y2 = h(x), respectively.

Wanted: easy to check conditions on f and h that give:

J(Cf ) 6∼ J(Ch).
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Elliptic curves

f (x), h(x) ∈ C[x ] are two cubic polynomials.
When Cf 6∼ Ch?

Guess: The polynomials should be very different (?).

Example: Assume that there is a subfield K ⊂ C such that

A: f (x), h(x) ∈ K [x ];

B: f (x) is irreducible over K , h(x) is reducible over K .

May be, then Cf 6∼ Ch?

Not always: Counterexample: K = Q:
f (x) = x3 − 2 irreducible, h(x) = x3 − 1 reducible. Curves

Cf : y2 = x3− 2 and Ch : y2 = x3− 1 are even isomorphic over C.
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It’s essentially the only counterexample.

Namely,

Proposition 1 (Z, 2021).

Let f , h,K be such that

A: f (x), h(x) ∈ K [x ];

B: f (x) is irreducible over K ,
h(x) is reducible over K .

If the elliptic curves Cf and Ch are isogenous then they both
are isogenous to y2 = x3 − 1.

Idea of proof Isogeny exists
Assumptions

=⇒
∃ isogeny φ not defined over K

Galois
=⇒

∃ another isogeny ψ : Cf → Ch that is a Galois conjugate of φ
such that φ = c ◦ ψ, where c ∈ End0(Ch)∗ has order 3 =⇒
End0(Ch) ⊃ Q(c) ∼= Q(

√
−3).
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When irreducible polynomials are very different?

Proposition 2, (Z, 2021).

Let f , h,K ⊂ C be such that both f (x), h(x) ∈ K [x ] are irreducible
cubic polynomials with non-isomorphic Galois groups.

Then Cf 6∼ Ch.

Remark. Since both f , h are cubic, we may assume that
Gal(f /K ) = S3, Gal(h/K ) = A3.

Proposition 3, (Z, 2021).

Let f , h,K ⊂ C be such that both f (x), h(x) ∈ K [x ] are irreducible
cubic polynomials with both Galois groups ∼= S3.
If the splitting fields of f (x) and h(x) are linearly disjoint over K
then Cf 6∼ Ch.
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Elliptic curves: examples

Example 1. K = Q,

g(x) = x3 − 1;

f (x) = x3 − 2, irreducible with Gal(f /Q) = S3;

h(x) = x3 − 15x + 22 = (x − 2)(x2 + 2x − 11) reducible;

Cf is isomorphic to Cg ;

Cf is not isomorphic to Ch :
the Endomorphisms Rings are different :

End(Cf ) = Z[−1+
√
−3

2 ], End(Ch) = Z[
√
−3] (see Silverman’s

book “Advanced topics on Ell. Curves”);

By Prop. 1, either Cf 6∼ Ch or Cf ∼ Ch ∼ Cg

The latter is true, because the End. Algebras are the same:
End0(Ch) = End(Ch)⊗Q = End0(Cf ) = End(Cf )⊗Q = Q(

√
−3).
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Example 2.

K = Q, a ∈ Z,
ha(x) = x3 − ax2 − (a + 3)x − 1 ∈ Q[x ].

ha(x) is irreducible and Gal(ha/Q) = A3 (D. Shanks, 1974).

By Prop. 2, if f (x) ∈ Q[x ] is any cubic irreducible polynomial
with Gal(f /Q) = S3 then Cf 6∼ Cha .

In particular, one may take f (x) = x3 − 2 or x3 − x − 1

Since Cha is not isogenous to y2 = x3 − 2, it is not isogenous
to y2 = x3 − 1 as well.

By Prop. 1, Cha 6∼ Cu for any cubic reducible polynomial
u(x) ∈ Q[x ] without repeated roots.



Example 2. K = Q, a ∈ Z,

ha(x) = x3 − ax2 − (a + 3)x − 1 ∈ Q[x ].

ha(x) is irreducible and Gal(ha/Q) = A3 (D. Shanks, 1974).

By Prop. 2, if f (x) ∈ Q[x ] is any cubic irreducible polynomial
with Gal(f /Q) = S3 then Cf 6∼ Cha .

In particular, one may take f (x) = x3 − 2 or x3 − x − 1

Since Cha is not isogenous to y2 = x3 − 2, it is not isogenous
to y2 = x3 − 1 as well.

By Prop. 1, Cha 6∼ Cu for any cubic reducible polynomial
u(x) ∈ Q[x ] without repeated roots.



Example 2. K = Q, a ∈ Z,
ha(x) = x3 − ax2 − (a + 3)x − 1 ∈ Q[x ].

ha(x) is irreducible and Gal(ha/Q) = A3 (D. Shanks, 1974).

By Prop. 2, if f (x) ∈ Q[x ] is any cubic irreducible polynomial
with Gal(f /Q) = S3 then Cf 6∼ Cha .

In particular, one may take f (x) = x3 − 2 or x3 − x − 1

Since Cha is not isogenous to y2 = x3 − 2, it is not isogenous
to y2 = x3 − 1 as well.

By Prop. 1, Cha 6∼ Cu for any cubic reducible polynomial
u(x) ∈ Q[x ] without repeated roots.



Example 2. K = Q, a ∈ Z,
ha(x) = x3 − ax2 − (a + 3)x − 1 ∈ Q[x ].

ha(x) is irreducible and Gal(ha/Q) = A3 (D. Shanks, 1974).

By Prop. 2, if f (x) ∈ Q[x ] is any cubic irreducible polynomial
with Gal(f /Q) = S3 then Cf 6∼ Cha .

In particular, one may take f (x) = x3 − 2 or x3 − x − 1

Since Cha is not isogenous to y2 = x3 − 2, it is not isogenous
to y2 = x3 − 1 as well.

By Prop. 1, Cha 6∼ Cu for any cubic reducible polynomial
u(x) ∈ Q[x ] without repeated roots.



Example 2. K = Q, a ∈ Z,
ha(x) = x3 − ax2 − (a + 3)x − 1 ∈ Q[x ].

ha(x) is irreducible and Gal(ha/Q) = A3 (D. Shanks, 1974).

By Prop. 2, if f (x) ∈ Q[x ] is any cubic irreducible polynomial
with Gal(f /Q) = S3

then Cf 6∼ Cha .

In particular, one may take f (x) = x3 − 2 or x3 − x − 1

Since Cha is not isogenous to y2 = x3 − 2, it is not isogenous
to y2 = x3 − 1 as well.

By Prop. 1, Cha 6∼ Cu for any cubic reducible polynomial
u(x) ∈ Q[x ] without repeated roots.



Example 2. K = Q, a ∈ Z,
ha(x) = x3 − ax2 − (a + 3)x − 1 ∈ Q[x ].

ha(x) is irreducible and Gal(ha/Q) = A3 (D. Shanks, 1974).

By Prop. 2, if f (x) ∈ Q[x ] is any cubic irreducible polynomial
with Gal(f /Q) = S3 then Cf 6∼ Cha .

In particular, one may take f (x) = x3 − 2 or x3 − x − 1

Since Cha is not isogenous to y2 = x3 − 2, it is not isogenous
to y2 = x3 − 1 as well.

By Prop. 1, Cha 6∼ Cu for any cubic reducible polynomial
u(x) ∈ Q[x ] without repeated roots.



Example 2. K = Q, a ∈ Z,
ha(x) = x3 − ax2 − (a + 3)x − 1 ∈ Q[x ].

ha(x) is irreducible and Gal(ha/Q) = A3 (D. Shanks, 1974).

By Prop. 2, if f (x) ∈ Q[x ] is any cubic irreducible polynomial
with Gal(f /Q) = S3 then Cf 6∼ Cha .

In particular, one may take f (x) = x3 − 2 or x3 − x − 1

Since Cha is not isogenous to y2 = x3 − 2, it is not isogenous
to y2 = x3 − 1 as well.

By Prop. 1, Cha 6∼ Cu for any cubic reducible polynomial
u(x) ∈ Q[x ] without repeated roots.



Example 2. K = Q, a ∈ Z,
ha(x) = x3 − ax2 − (a + 3)x − 1 ∈ Q[x ].

ha(x) is irreducible and Gal(ha/Q) = A3 (D. Shanks, 1974).

By Prop. 2, if f (x) ∈ Q[x ] is any cubic irreducible polynomial
with Gal(f /Q) = S3 then Cf 6∼ Cha .

In particular, one may take f (x) = x3 − 2 or x3 − x − 1

Since Cha is not isogenous to y2 = x3 − 2, it is not isogenous
to y2 = x3 − 1 as well.

By Prop. 1, Cha 6∼ Cu for any cubic reducible polynomial
u(x) ∈ Q[x ] without repeated roots.



Example 2. K = Q, a ∈ Z,
ha(x) = x3 − ax2 − (a + 3)x − 1 ∈ Q[x ].

ha(x) is irreducible and Gal(ha/Q) = A3 (D. Shanks, 1974).

By Prop. 2, if f (x) ∈ Q[x ] is any cubic irreducible polynomial
with Gal(f /Q) = S3 then Cf 6∼ Cha .

In particular, one may take f (x) = x3 − 2 or x3 − x − 1

Since Cha is not isogenous to y2 = x3 − 2, it is not isogenous
to y2 = x3 − 1 as well.

By Prop. 1, Cha 6∼ Cu for any cubic reducible polynomial
u(x) ∈ Q[x ] without repeated roots.



Generalizations. Data/Notation

n = 2g + 1 - an odd prime such that
2 mod n is a primitive root.

(E.g., g = 1, 2, 5, 6, 9, 14, . . . , n = 3, 5, 11, 13, 19, 29, . . . .)

K - a field with char(K ) 6= 2;

K̄ - an algebraic closure of K ;

Gal(K ) = Aut(K̄/K ) - the absolute Galois group of K .

f (x), h(x) ∈ K [x ] - degree n polynomials without repeated
roots.

Rf ,Rh ⊂ K̄ - the n-element sets of roots of f (x) and h(x)
respectively.

K (Rf ) and K (Rh) - the splitting fields of f (x) and h(x)
respectively.
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polynomials no repeated roots.

Gal(f /K ) = Gal(K (Rf )/K ) ⊂ Perm(Rf )
Gal(h/K ) = Gal(KRh)/K ) ⊂ Perm(Rh) -
the Galois groups of f (x) and h(x) viewed as permutation
groups.

The hyperelliptic jacobians J(Cf ) and J(Ch) are
g -dimensional abelian varieties over K .

We are interested in their endomorphisms, homomorphisms,
isogenies that are defined over K̄ .
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Hyperelliptic jacobians: K = Q

Example 1. f (x) = xn − 2 - irreducible polynomial,
h(x) = xn − 1 - a reducible polynomial.
The hyperelliptic curves Cf and Ch are isomorphic over Q̄. =⇒
J(Cf ) and J(Ch) are isomorphic over Q̄ abelian varieties of CM
type over Q̄ with multiplication by Q( n

√
1).

Example 2. f (x) = xn − x − x − 1 is an irreducible, with doubly
transitive Gal(f /Q) = Sn (E.S. Selmer 1956, Nart/Vila 1979, H.
Osada 1987),
It is known (Z, 2000) that J(Cf ) is absolutely simple and
End0(J(Cf )) = Q. Thus it is not of CM type.

Take any h(x), reducible over Q, same degree, no repeated roots
(e.g., h(x) = xn − 1 ).
By Theorem 1,

J(Cf ) 6∼ J(Ch).
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Theorem 2 (Z, 2021)

Suppose that char(K ) 6= 2 and

f (x), h(x) ∈ K [x ] - degree n polynomials, no repeated roots;

n = 2g + 1 is odd prime, 2 mod n - primitive root;

both f (x) and h(x) are irreducible over K ;

their splitting fields are linearly disjoint over K .

Gal(f ) is doubly transitive.

Then either Hom(J(Cf ), J(Ch)) = 0, Hom(J(Ch), J(Cf )) = 0
(and J(Cf ) 6∼ J(Ch) ) or the following hold.

(i) p = char(K ) > 0 and p 6≡ 1 mod n.

(ii) Both J(Cf ) and J(Ch) are supersingular abelian varieties.

Reminder: AV is supersingular if it is isogenuos to E n, where E is an
elliptic curve s.t. End0(C ) is a quaternion Q−algebra.
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Gal(f ) is doubly transitive.

Then either Hom(J(Cf ), J(Ch)) = 0, Hom(J(Ch), J(Cf )) = 0
(and J(Cf ) 6∼ J(Ch) ) or the following hold.

(i) p = char(K ) > 0 and p 6≡ 1 mod n.

(ii) Both J(Cf ) and J(Ch) are supersingular abelian varieties.

Reminder: AV is supersingular if it is isogenuos to E n, where E is an
elliptic curve s.t. End0(C ) is a quaternion Q−algebra.



Remark Propositions 2 and 3 correspond to the case n = 3.

Example 3. Take any K , char(K ) = 0,
n = 2g + 1 - an odd prime such that 2 mod n is a primitive root,
f (x) ∈ K [x ] - an irr. pol. with doubly transitive Gal(f /K ) = Sn,
h(x) ∈ K [x ] an irr. pol.with cyclic Gal(h/K ) = Z/nZ.
Then:

Gal(f /K ) = Sn has no normal subgroups of index n =⇒
Gal(h/K ) is not isomorphic to a quotient of Gal(f /K ) =⇒
K (Rf ) ∩ K (Rh) = K (in K̄ ) =⇒
splitting fields of f (x) and h(x) are linearly disjoint over K .
(It remains true even if Gal(f /K ) is just doubly transitive.)

By Theorem 2, J(Cf ) 6∼ J(Ch).

E.g., take K = Q, g = 2, n = 5, f (x) = x5 − x − 1 (with
Gal(f /K ) = S5) and h(x) = x5 − 110x3 − 55x2 + 2310x + 979
(with Gal(h/K ) = Z/5Z, D.S. Dummit, 1991).
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Main Idea of the proof of Theorem 1. Assumptions of the
theorem imply that

any isogeny φ : J(Cf )→ J(Ch) is not defined over K .

The Galois action on the isogeny φ gives (as a “ratio” of two
isogenies) an element in End0(Ch) of multiplicative order n.

Main Idea of the proof of Theorem 2. Take
X = Cf ,Y = Cg , dimX = dimY = g , n = 2g + 1. We have:

Hom(X ,Y )/2 ⊂ Hom(X [2],Y [2]).

If the Galois module X [2] is absolutely simple, and the Galois
module Y [2] is simple, and the corresponding field extensions
are linearly disjoint, then Hom(X [2],Y [2]) is simple.

Thus either Hom(X ,Y )/2 = {0} (i.e., Hom(X ,Y ) = 0) or
dimF2 Hom(X ,Y )/2 = 4g2 (i.e., rkHom(X ,Y ) = 4g2).

The latter can happen iff char(K ) > 0 and both X and Y are
supersingular abelian varieties (Z, 2003).
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module Y [2] is simple, and the corresponding field extensions
are linearly disjoint, then Hom(X [2],Y [2]) is simple.

Thus either Hom(X ,Y )/2 = {0} (i.e., Hom(X ,Y ) = 0) or
dimF2 Hom(X ,Y )/2 = 4g2 (i.e., rkHom(X ,Y ) = 4g2).

The latter can happen iff char(K ) > 0 and both X and Y are
supersingular abelian varieties (Z, 2003).
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Towards proofs of Theorems 1,2

The main ingredients of the proofs are Key Lemma, Special
Case of Theorem 1, and Useful Lemma.

Notation and assumptions
X - an AV of dimension g over a field K , char(K ) 6= 2.
d - positive integer that is not divisible by char(K ),
X [d ] - the kernel of multiplication by d in X (K̄ ).

Facts

(i) X [d ] is a free Z/dZ-submodule of rank 2g and the
Gal(K )-submodule of X (K̄ ).

(ii) Kd ,X ⊂ K̄ - the (sub)field of definition of all points from X [d ]
is a finite Galois extension of K .
G̃d ,X = Gal(Kd ,X/K ) stands for the Galois group of this
extension.
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dim(X ) = g ≥ 1 n := 2g + 1

(iv) X [2] - 2g -dimensional vector space over F2.

(v) (P. Goodman, 2021) The Gal(K )-module X [2] is simple if

(a) n is a prime such that 2 mod n is a primitive root;
(b) #(G̃2,X ) is divisible by n.

(vi) K2,X ⊂ K4,X ; either the equality holds or Gal(K4,X/K2,X ) -
finite commutative group of exponent 2.

(vii) Our main tool: all endomorphisms of X are defined over
K4,X (A. Silverberg, 1992).
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X [2] and Y [2] for hyperelliptic jacobians

X = J(Cf ),Y = J(Ch) where f (x), h(x) ∈ K [x ] - odd degree
polynomials without repeated roots. ⇒
K (X [2]) = K (Rf ), G̃2,X = Gal(f /K );

K (Y [2]) = K (Rh), G̃2,Y = Gal(h/K ).

⇒ K (Y [2]) = K iff h(x) splits completely over K .

Remark Gal(f /K ) is doubly transitive iff the centralizer of G̃2,X

in EndF2(X [2]) is F2 (S. Mori, 1977).
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Key Lemma

Suppose that

char(K ) 6= 2;

n = 2g + 1 is a prime such that 2 mod n a primitive root; X
and Y are g -dimensional abelian varieties over K that are
isogenous over K̄ ;

K2,Y = K (i.e. all order 2 points on Y are defined over K );

degree [K2,X : K ] is divisible by n.

Then both X and Y are abelian varieties of CM type over K̄ with
multiplication by the nth cyclotomic field Q(ζn).
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Application
n = deg(f ) = deg(h) - odd prime, 2 mod n - prim. root, f (x), h(x) ∈ K [x ] - polynomials
with simple roots, char(K) 6= 2.

Special case of Theorem 1 Assume that f (x) ∈ K [x ] is irreducible,
h(x) ∈ K [x ] completely splits. Then either J(Cf ) 6∼ J(Ch) or both
jacobians are AV of CM type over K̄ with multiplication by the
nth cyclotomic field Q(ζn).
Proof X = J(Cf ),Y = J(Ch). h splits ⇒ G̃2,Y = Gal(h/K ) = {1}
⇒ Y [2] ⊂ Y (K ) is the trivial Gal(K )-module.

n = deg(f ) is a prime + f (x) irreducible ⇒ #(Gal(f /K )) is

divisible by n, i.e., #(G̃2,X ) is divisible by n
Goodman

=⇒
the Gal(K )-module X [2] is simple.

By Key Lemma, either J(Cf ) = X 6∼ Y = J(Ch) or both J(Cf )
and J(Ch) are AV of CM type over K̄ with multiplication by Q(ζn).
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Idea of the proof of Key Lemma
char(K) 6= 2, n = 2g + 1 prime, 2 mod n a primitive root

We have: X ∼ Y , K2,Y = K , n | [K2,X : K ].
We want : End0(Y ) ⊃ Q(ζn). Let φ : X → Y be isogeny.
Case 1. φ is defined over K .
By Goodman, X [2] is simple =⇒φ |X [2]= 0 =⇒ φ = 2φ1 =⇒
similar: φ1 = 2φ2, φ2 = 2φ3 . . . =⇒φ = 2mφm for any m.
Hom(X ,Y ) ∼= Zr=⇒ φ = 0 is NOT an isogeny. Contradiction.

Case 2. φ is not defined over K but defined over K4,X×Y
(Silverberg). We prove

1 There exists H ⊂ Gal(K4,X×Y /K ), H ∼= Z/nZ and a group
homomorphism c : H → End0(Y )∗ defined by
σ(φ) = c(σ) ◦ φ for all σ ∈ H.

2 ∀ non-trivial σ ∈ H, c(σ) has multiplicative order n =⇒
End0(Y ) contains the nth cyclotomic field Q(ζn) .
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By Goodman, X [2] is simple =⇒φ |X [2]= 0 =⇒ φ = 2φ1 =⇒
similar: φ1 = 2φ2, φ2 = 2φ3 . . . =⇒φ = 2mφm for any m.
Hom(X ,Y ) ∼= Zr=⇒ φ = 0 is NOT an isogeny. Contradiction.

Case 2. φ is not defined over K but defined over K4,X×Y
(Silverberg). We prove

1 There exists H ⊂ Gal(K4,X×Y /K ), H ∼= Z/nZ and a group
homomorphism c : H → End0(Y )∗ defined by
σ(φ) = c(σ) ◦ φ for all σ ∈ H.

2 ∀ non-trivial σ ∈ H, c(σ) has multiplicative order n =⇒
End0(Y ) contains the nth cyclotomic field Q(ζn) .
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Constructing non-trivial c : H → End0(Y )∗

Step 1. Change K to K̃ = K4,Y . =⇒ [K̃ : K ] is a power of 2.
Since n is an odd prime, n | [K̃2,X : K̃ ] still holds =⇒ there is a
subgroup H ⊂ Gal(K̃4,X/K̃ ), H ∼= Z/nZ.
Taking L = K̃4,X and M = K̃H

4,X , we get

M4,Y = M, Gal(L/M) ∼= Z/nZ and M2,X = M4,X = L;
all endomorphisms of Y are defined over M;
all homomorphisns X → Y are defined over L.

Step 2. The Gal(M)-module X [2] is simple, Gal(M)-module Y [2]
is trivial =⇒ similar to Case 1 every isogeny X → Y is not
defined over M. =⇒ ∃ an L-isogeny u : X → Y that is not
defined over M. =⇒ ∃σ ∈ Gal(L/M) such that σu 6= u.

Then the cocycle c : Z/nZ = Gal(L/M)→ End0L(Y )∗ defined by
σ(u) = c(σ)u ∀σ ∈ Gal(L/M)
is a nontrivial group homomorphism =⇒ has order n.
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Useful Lemma

Lemma, (Z, 2003)

Let X and Y are positive-dimensional abelian varieties over K that
enjoys the following properties.

(i) The Gal(K )-module X [2] is absolutely simple.

(ii) The Gal(K )-module Y [2] is simple.

(iii) The fields K (X [2]) and K (Y [2]) are linearly disjoint over K .

Then:

1 The Gal(K )-module HomF2(X [2],Y [2]) is simple.

2 Either
Hom(X ,Y ) = {0}, Hom(Y ,X ) = {0}
or char(K ) > 0 and both X and Y are supersingular abelian
varieties.
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