ManinFest (Algebra, Geometry and Physics: a mathematical mosaic)

Non-isogenous elliptic curves and hyperelliptic jacobians

Yuri Zarhin (Penn State/MPIM)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

A vague question:

A vague question: Given two abelian varieties X, Y of the same dimension over an algebraically closed field,

A vague question: Given two abelian varieties X, Y of the same dimension over an algebraically closed field,

find an easy "purely algebraic" way (under natural additional conditions) to decide whether they are **non**-isogenous $(X \not\sim Y)$.

くぼう くほう くほう

э

A vague question: Given two abelian varieties X, Y of the same dimension over an algebraically closed field,

find an easy "purely algebraic" way (under natural additional conditions) to decide whether they are **non**-isogenous $(X \not\sim Y)$.

We deal with hyperelliptic jacobians $X = J(C_f), Y = J(C_h)$, where

A vague question: Given two abelian varieties X, Y of the same dimension over an algebraically closed field,

find an easy "purely algebraic" way (under natural additional conditions) to decide whether they are **non**-isogenous $(X \not\sim Y)$.

We deal with hyperelliptic jacobians $X = J(C_f), Y = J(C_h)$, where

f(x), h(x) are polynomials of the same degree n ≥ 3 without repeated roots;

A vague question: Given two abelian varieties X, Y of the same dimension over an algebraically closed field,

find an easy "purely algebraic" way (under natural additional conditions) to decide whether they are **non**-isogenous $(X \not\sim Y)$.

We deal with hyperelliptic jacobians $X = J(C_f), Y = J(C_h)$, where

- f(x), h(x) are polynomials of the same degree n ≥ 3 without repeated roots;
- C_f and C_h are smooth projective models of plane affine curves $y^2 = f(x), y^2 = h(x)$, respectively.

A vague question: Given two abelian varieties X, Y of the same dimension over an algebraically closed field,

find an easy "purely algebraic" way (under natural additional conditions) to decide whether they are **non**-isogenous $(X \not\sim Y)$.

We deal with hyperelliptic jacobians $X = J(C_f), Y = J(C_h)$, where

- f(x), h(x) are polynomials of the same degree n ≥ 3 without repeated roots;
- C_f and C_h are smooth projective models of plane affine curves $y^2 = f(x), y^2 = h(x)$, respectively.

Wanted: easy to check conditions on *f* and *h* that give:

$$J(C_f) \not\sim J(C_h).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○○○

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへぐ

 $f(x), h(x) \in \mathbb{C}[x]$ are two cubic polynomials. When $C_f \not\sim C_h$?

 $f(x), h(x) \in \mathbb{C}[x]$ are two cubic polynomials. When $C_f \not\sim C_h$?

Guess: The polynomials should be very different (?).

▲口 > ▲母 > ▲目 > ▲目 > ▲目 > ● ●

 $f(x), h(x) \in \mathbb{C}[x]$ are two cubic polynomials. When $C_f \not\sim C_h$?

Guess: The polynomials should be very different (?).

Example: Assume that there is a subfield $K \subset \mathbb{C}$ such that

< 回 > < 三 > < 三 >

э.

 $f(x), h(x) \in \mathbb{C}[x]$ are two cubic polynomials. When $C_f \not\sim C_h$?

Guess: The polynomials should be very different (?).

Example: Assume that there is a subfield $K \subset \mathbb{C}$ such that **A**: $f(x), h(x) \in K[x]$;

- $f(x), h(x) \in \mathbb{C}[x]$ are two cubic polynomials. When $C_f \not\sim C_h$?
- Guess: The polynomials should be very different (?).
- Example: Assume that there is a subfield $K \subset \mathbb{C}$ such that **A**: $f(x), h(x) \in K[x];$
 - **B:** f(x) is irreducible over K, h(x) is reducible over K.

 $f(x), h(x) \in \mathbb{C}[x]$ are two cubic polynomials. When $C_f \not\sim C_h$?

Guess: The polynomials should be very different (?).

Example: Assume that there is a subfield $K \subset \mathbb{C}$ such that **A**: $f(x), h(x) \in K[x]$; **B**: f(x) is irreducible over K, h(x) is reducible over K. May be, then $C_f \not\sim C_h$?

 $f(x), h(x) \in \mathbb{C}[x]$ are two cubic polynomials. When $C_f \not\sim C_h$?

Guess: The polynomials should be very different (?).

Example: Assume that there is a subfield $K \subset \mathbb{C}$ such that

A: $f(x), h(x) \in K[x];$

B: f(x) is irreducible over K, h(x) is reducible over K. May be, then $C_f \not\sim C_h$?

Not always:

 $f(x), h(x) \in \mathbb{C}[x]$ are two cubic polynomials. When $C_f \not\sim C_h$?

Guess: The polynomials should be very different (?).

Example: Assume that there is a subfield $K \subset \mathbb{C}$ such that

A: $f(x), h(x) \in K[x];$

B: f(x) is irreducible over K, h(x) is reducible over K.

May be, then $C_f \not\sim C_h$?

Not always: Counterexample:

 $f(x), h(x) \in \mathbb{C}[x]$ are two cubic polynomials. When $C_f \not\sim C_h$?

Guess: The polynomials should be very different (?).

Example: Assume that there is a subfield $K \subset \mathbb{C}$ such that

A: $f(x), h(x) \in K[x];$

B: f(x) is irreducible over K, h(x) is reducible over K.

May be, then $C_f \not\sim C_h$?

Not always: Counterexample: $K = \mathbb{Q}$:

 $f(x), h(x) \in \mathbb{C}[x]$ are two cubic polynomials. When $C_f \not\sim C_h$?

Guess: The polynomials should be very different (?).

Example: Assume that there is a subfield $K \subset \mathbb{C}$ such that

A: $f(x), h(x) \in K[x];$

B: f(x) is irreducible over K, h(x) is reducible over K.

May be, then $C_f \not\sim C_h$?

Not always: Counterexample: $K = \mathbb{Q}$: $f(x) = x^3 - 2$ irreducible,

 $f(x), h(x) \in \mathbb{C}[x]$ are two cubic polynomials. When $C_f \not\sim C_h$?

Guess: The polynomials should be very different (?).

Example: Assume that there is a subfield $K \subset \mathbb{C}$ such that

A: $f(x), h(x) \in K[x];$

B: f(x) is irreducible over K, h(x) is reducible over K. May be, then $C_f \not\sim C_h$?

Not always: Counterexample: $K = \mathbb{Q}$: $f(x) = x^3 - 2$ irreducible, $h(x) = x^3 - 1$ reducible.

 $f(x), h(x) \in \mathbb{C}[x]$ are two cubic polynomials. When $C_f \not\sim C_h$?

Guess: The polynomials should be very different (?).

Example: Assume that there is a subfield $K \subset \mathbb{C}$ such that

A: $f(x), h(x) \in K[x];$

B: f(x) is irreducible over K, h(x) is reducible over K. May be, then $C_f \not\sim C_h$?

Not always: Counterexample: $K = \mathbb{Q}$: $f(x) = x^3 - 2$ irreducible, $h(x) = x^3 - 1$ reducible. Curves $C_f : y^2 = x^3 - 2$ and $C_h : y^2 = x^3 - 1$ are even isomorphic over \mathbb{C} .

= 990

Proposition 1 (Z, 2021).

Proposition 1 (Z, 2021).

Let f, h, K be such that

Proposition 1 (Z, 2021).

Let f, h, K be such that

A: $f(x), h(x) \in K[x];$

3

Proposition 1 (Z, 2021).

Let f, h, K be such that

- **A**: $f(x), h(x) \in K[x];$
- **B:** f(x) is irreducible over K,

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

Proposition 1 (Z, 2021).

Let f, h, K be such that

- **A**: $f(x), h(x) \in K[x];$
- **B:** f(x) is irreducible over K, h(x) is reducible over K.

Proposition 1 (Z, 2021).

Let f, h, K be such that

- **A**: $f(x), h(x) \in K[x];$
- **B:** f(x) is irreducible over K, h(x) is reducible over K.

If the elliptic curves C_f and C_h are isogenous then they both are isogenous to $y^2 = x^3 - 1$.

イロト イロト イヨト イヨト

3

Idea of proof

Proposition 1 (Z, 2021).

Let f, h, K be such that

- **A**: $f(x), h(x) \in K[x];$
- **B:** f(x) is irreducible over K, h(x) is reducible over K.

If the elliptic curves C_f and C_h are isogenous then they both are isogenous to $y^2 = x^3 - 1$.

イロン イロン イヨン イヨン

3

Idea of proof Isogeny exists $\stackrel{Assumptions}{\Longrightarrow}$

Proposition 1 (Z, 2021).

Let f, h, K be such that

- **A**: $f(x), h(x) \in K[x];$
- **B:** f(x) is irreducible over K, h(x) is reducible over K.

If the elliptic curves C_f and C_h are isogenous then they both are isogenous to $y^2 = x^3 - 1$.

(4回) (4 注) (4 注)

3

Idea of proof Isogeny exists $\xrightarrow{\text{Assumptions}}$ \exists isogeny ϕ not defined over $K \xrightarrow{\text{Galois}}$

Proposition 1 (Z, 2021).

Let f, h, K be such that

- **A**: $f(x), h(x) \in K[x];$
- **B:** f(x) is irreducible over K, h(x) is reducible over K.

If the elliptic curves C_f and C_h are isogenous then they both are isogenous to $y^2 = x^3 - 1$.

Idea of proof Isogeny exists $\xrightarrow{\text{Assumptions}}$ \exists isogeny ϕ not defined over $K \xrightarrow{\text{Galois}}$ \exists another isogeny $\psi : C_f \to C_h$ that is a **Galois conjugate** of ϕ such that $\phi = c \circ \psi$, where $c \in \text{End}^0(C_h)^*$ has order 3

Proposition 1 (Z, 2021).

Let f, h, K be such that

- **A**: $f(x), h(x) \in K[x];$
- **B:** f(x) is irreducible over K, h(x) is reducible over K.

If the elliptic curves C_f and C_h are isogenous then they both are isogenous to $y^2 = x^3 - 1$.

Idea of proof Isogeny exists $\stackrel{Assumptions}{\Longrightarrow}$ \exists isogeny ϕ not defined over $K \stackrel{Galois}{\Longrightarrow}$ \exists another isogeny $\psi : C_f \to C_h$ that is a Galois conjugate of ϕ such that $\phi = c \circ \psi$, where $c \in \text{End}^0(C_h)^*$ has order $3 \Longrightarrow$ $\text{End}^0(C_h) \supset \mathbb{Q}(c) \cong \mathbb{Q}(\sqrt{-3}).$ When irreducible polynomials are very different?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

When irreducible polynomials are very different?

Proposition 2, (Z, 2021).

When irreducible polynomials are very different?

Proposition 2, (Z, 2021).

Let $f, h, K \subset \mathbb{C}$ be such that both $f(x), h(x) \in K[x]$ are irreducible cubic polynomials with **non-isomorphic** Galois groups.

イロト イヨト イヨト イヨト

3
Proposition 2, (Z, 2021).

Let $f, h, K \subset \mathbb{C}$ be such that both $f(x), h(x) \in K[x]$ are irreducible cubic polynomials with **non-isomorphic** Galois groups.

イロン イ団 と イヨン イヨン

= nav

Then $C_f \not\sim C_h$.

Proposition 2, (Z, 2021).

Let $f, h, K \subset \mathbb{C}$ be such that both $f(x), h(x) \in K[x]$ are irreducible cubic polynomials with **non-isomorphic** Galois groups. Then $C_f \not\sim C_h$.

イロン イ団 と イヨン イヨン

= nav

Remark.

Proposition 2, (Z, 2021).

Let $f, h, K \subset \mathbb{C}$ be such that both $f(x), h(x) \in K[x]$ are irreducible cubic polynomials with **non-isomorphic** Galois groups. Then $C_f \not\sim C_h$.

Remark. Since both f, h are cubic, we may assume that $Gal(f/K) = S_3$, $Gal(h/K) = A_3$.

Proposition 2, (Z, 2021).

Let $f, h, K \subset \mathbb{C}$ be such that both $f(x), h(x) \in K[x]$ are irreducible cubic polynomials with **non-isomorphic** Galois groups. Then $C_f \not\sim C_h$.

Remark. Since both f, h are cubic, we may assume that $Gal(f/K) = S_3$, $Gal(h/K) = A_3$.

Proposition 3, (Z, 2021).

Proposition 2, (Z, 2021).

Let $f, h, K \subset \mathbb{C}$ be such that both $f(x), h(x) \in K[x]$ are irreducible cubic polynomials with **non-isomorphic** Galois groups. Then $C_f \not\sim C_h$.

Remark. Since both f, h are cubic, we may assume that $Gal(f/K) = S_3$, $Gal(h/K) = A_3$.

Proposition 3, (Z, 2021).

Let $f, h, K \subset \mathbb{C}$ be such that both $f(x), h(x) \in K[x]$ are irreducible cubic polynomials with both Galois groups $\cong \mathbf{S}_3$.

Proposition 2, (Z, 2021).

Let $f, h, K \subset \mathbb{C}$ be such that both $f(x), h(x) \in K[x]$ are irreducible cubic polynomials with **non-isomorphic** Galois groups. Then $C_f \not\sim C_h$.

Remark. Since both f, h are cubic, we may assume that $Gal(f/K) = S_3$, $Gal(h/K) = A_3$.

Proposition 3, (Z, 2021).

Let $f, h, K \subset \mathbb{C}$ be such that both $f(x), h(x) \in K[x]$ are irreducible cubic polynomials with both Galois groups $\cong \mathbf{S}_3$. If the splitting fields of f(x) and h(x) are linearly disjoint over K

Proposition 2, (Z, 2021).

Let $f, h, K \subset \mathbb{C}$ be such that both $f(x), h(x) \in K[x]$ are irreducible cubic polynomials with **non-isomorphic** Galois groups. Then $C_f \not\sim C_h$.

Remark. Since both f, h are cubic, we may assume that $Gal(f/K) = S_3$, $Gal(h/K) = A_3$.

Proposition 3, (Z, 2021).

Let $f, h, K \subset \mathbb{C}$ be such that both $f(x), h(x) \in K[x]$ are irreducible cubic polynomials with both Galois groups $\cong \mathbf{S}_3$. If the splitting fields of f(x) and h(x) are linearly disjoint over Kthen $C_f \not\sim C_h$.

Example 1. $K = \mathbb{Q}$,

Example 1.
$$K = \mathbb{Q}$$
,
 $g(x) = x^3 - 1$;

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Example 1.
$$K = \mathbb{Q}$$
,
 $g(x) = x^3 - 1$;
 $f(x) = x^3 - 2$,

Example 1. $K = \mathbb{Q}$,

•
$$g(x) = x^3 - 1;$$

•
$$f(x) = x^3 - 2$$
, irreducible with $Gal(f/\mathbb{Q}) = S_3$;

<ロ> <四> <ヨ> <ヨ>

æ -

Example 1. $K = \mathbb{Q}$,

•
$$g(x) = x^3 - 1;$$

• $f(x) = x^3 - 2$, irreducible with $Gal(f/\mathbb{Q}) = S_3$;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

• $h(x) = x^3 - 15x + 22 = (x - 2)(x^2 + 2x - 11)$

Example 1. $K = \mathbb{Q}$,

•
$$g(x) = x^3 - 1;$$

- $f(x) = x^3 2$, irreducible with $Gal(f/\mathbb{Q}) = S_3$;
- $h(x) = x^3 15x + 22 = (x 2)(x^2 + 2x 11)$ reducible;

Example 1. $K = \mathbb{Q}$,

•
$$g(x) = x^3 - 1;$$

- $f(x) = x^3 2$, irreducible with $Gal(f/\mathbb{Q}) = S_3$;
- $h(x) = x^3 15x + 22 = (x 2)(x^2 + 2x 11)$ reducible;

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• C_f is isomorphic to C_g ;

Example 1. $K = \mathbb{Q}$,

•
$$g(x) = x^3 - 1;$$

- $f(x) = x^3 2$, irreducible with $Gal(f/\mathbb{Q}) = S_3$;
- $h(x) = x^3 15x + 22 = (x 2)(x^2 + 2x 11)$ reducible;
- C_f is isomorphic to C_g ;
- C_f is not isomorphic to C_h :

Example 1. $K = \mathbb{Q}$,

•
$$g(x) = x^3 - 1;$$

• $f(x) = x^3 - 2$, irreducible with $Gal(f/\mathbb{Q}) = S_3$;

- $h(x) = x^3 15x + 22 = (x 2)(x^2 + 2x 11)$ reducible;
- C_f is isomorphic to C_g ;
- C_f is not isomorphic to C_h:
 the Endomorphisms Rings are different :

Example 1. $K = \mathbb{Q}$,

•
$$g(x) = x^3 - 1;$$

• $f(x) = x^3 - 2$, irreducible with $Gal(f/\mathbb{Q}) = S_3$;

- $h(x) = x^3 15x + 22 = (x 2)(x^2 + 2x 11)$ reducible;
- C_f is isomorphic to C_g ;

 C_f is not isomorphic to C_h: the Endomorphisms Rings are different : End(C_f) = ℤ[^{-1+√-3}/₂], End(C_h) = ℤ[√-3] (see Silverman's book "Advanced topics on Ell. Curves");

Example 1. $K = \mathbb{Q}$,

•
$$g(x) = x^3 - 1;$$

• $f(x) = x^3 - 2$, irreducible with $Gal(f/\mathbb{Q}) = S_3$;

•
$$h(x) = x^3 - 15x + 22 = (x - 2)(x^2 + 2x - 11)$$
 reducible;

• C_f is isomorphic to C_g ;

• C_f is not isomorphic to C_h : the Endomorphisms Rings are different : $End(C_f) = \mathbb{Z}[\frac{-1+\sqrt{-3}}{2}], End(C_h) = \mathbb{Z}[\sqrt{-3}]$ (see Silverman's book "Advanced topics on Ell. Curves");

By Prop. 1, either $C_f \not\sim C_h$ or $C_f \sim C_h \sim C_g$

Example 1. $K = \mathbb{Q}$,

•
$$g(x) = x^3 - 1;$$

• $f(x) = x^3 - 2$, irreducible with $Gal(f/\mathbb{Q}) = S_3$;

•
$$h(x) = x^3 - 15x + 22 = (x - 2)(x^2 + 2x - 11)$$
 reducible;

• C_f is isomorphic to C_g ;

• C_f is not isomorphic to C_h : the Endomorphisms Rings are different : $End(C_f) = \mathbb{Z}[\frac{-1+\sqrt{-3}}{2}], End(C_h) = \mathbb{Z}[\sqrt{-3}]$ (see Silverman's book "Advanced topics on Ell. Curves");

By Prop. 1, either $C_f \not\sim C_h$ or $C_f \sim C_h \sim C_g$ The latter is true, because

Example 1. $K = \mathbb{Q}$,

•
$$g(x) = x^3 - 1;$$

• $f(x) = x^3 - 2$, irreducible with $Gal(f/\mathbb{Q}) = S_3$;

•
$$h(x) = x^3 - 15x + 22 = (x - 2)(x^2 + 2x - 11)$$
 reducible;

• C_f is isomorphic to C_g ;

• C_f is not isomorphic to C_h : the Endomorphisms Rings are different : $End(C_f) = \mathbb{Z}[\frac{-1+\sqrt{-3}}{2}], End(C_h) = \mathbb{Z}[\sqrt{-3}]$ (see Silverman's book "Advanced topics on Ell. Curves");

By Prop. 1, either $C_f \not\sim C_h$ or $C_f \sim C_h \sim C_g$

The latter is true, because the End. Algebras are the same: $\operatorname{End}^{0}(C_{h}) = \operatorname{End}(C_{h}) \otimes \mathbb{Q} = \operatorname{End}^{0}(C_{f}) = \operatorname{End}(C_{f}) \otimes \mathbb{Q} = \mathbb{Q}(\sqrt{-3}).$

Example 1. $K = \mathbb{Q}$,

•
$$g(x) = x^3 - 1;$$

• $f(x) = x^3 - 2$, irreducible with $Gal(f/\mathbb{Q}) = S_3$;

•
$$h(x) = x^3 - 15x + 22 = (x - 2)(x^2 + 2x - 11)$$
 reducible;

• C_f is isomorphic to C_g ;

• C_f is not isomorphic to C_h : the Endomorphisms Rings are different : $End(C_f) = \mathbb{Z}[\frac{-1+\sqrt{-3}}{2}], End(C_h) = \mathbb{Z}[\sqrt{-3}]$ (see Silverman's book "Advanced topics on Ell. Curves");

By Prop. 1, either $C_f \not\sim C_h$ or $C_f \sim C_h \sim C_g$

The latter is true, because the End. Algebras are the same: $\operatorname{End}^{0}(C_{h}) = \operatorname{End}(C_{h}) \otimes \mathbb{Q} = \operatorname{End}^{0}(C_{f}) = \operatorname{End}(C_{f}) \otimes \mathbb{Q} = \mathbb{Q}(\sqrt{-3}).$

Example 2.

・ロト・日本・モート モー シック

Example 2. $K = \mathbb{Q}, a \in \mathbb{Z},$

Example 2.
$$K = \mathbb{Q}$$
, $a \in \mathbb{Z}$,
 $h_a(x) = x^3 - ax^2 - (a+3)x - 1 \in \mathbb{Q}[x]$.

Example 2.
$$K = \mathbb{Q}, a \in \mathbb{Z},$$

 $h_a(x) = x^3 - ax^2 - (a+3)x - 1 \in \mathbb{Q}[x].$

• $h_a(x)$ is irreducible and $Gal(h_a/\mathbb{Q}) = A_3$ (D. Shanks, 1974).

• $h_a(x)$ is irreducible and $Gal(h_a/\mathbb{Q}) = A_3$ (D. Shanks, 1974).

By Prop. 2, if f(x) ∈ Q[x] is any cubic irreducible polynomial with Gal(f/Q) = S₃

• $h_a(x)$ is irreducible and $Gal(h_a/\mathbb{Q}) = A_3$ (D. Shanks, 1974).

By Prop. 2, if $f(x) \in \mathbb{Q}[x]$ is any cubic irreducible polynomial with $Gal(f/\mathbb{Q}) = S_3$ then $C_f \not\sim C_{h_a}$.

• $h_a(x)$ is irreducible and $Gal(h_a/\mathbb{Q}) = A_3$ (D. Shanks, 1974).

By Prop. 2, if $f(x) \in \mathbb{Q}[x]$ is any cubic irreducible polynomial with $Gal(f/\mathbb{Q}) = S_3$ then $C_f \not\sim C_{h_a}$.

In particular, one may take $f(x) = x^3 - 2$ or $x^3 - x - 1$

• $h_a(x)$ is irreducible and $Gal(h_a/\mathbb{Q}) = A_3$ (D. Shanks, 1974).

By Prop. 2, if f(x) ∈ Q[x] is any cubic irreducible polynomial with Gal(f/Q) = S₃ then C_f ≁ C_{ha}.

In particular, one may take $f(x) = x^3 - 2$ or $x^3 - x - 1$

■ Since C_{h_a} is **not** isogenous to y² = x³ - 2, it is **not** isogenous to y² = x³ - 1 as well.

• $h_a(x)$ is irreducible and $Gal(h_a/\mathbb{Q}) = A_3$ (D. Shanks, 1974).

By Prop. 2, if f(x) ∈ Q[x] is any cubic irreducible polynomial with Gal(f/Q) = S₃ then C_f ≁ C_{ha}.

In particular, one may take $f(x) = x^3 - 2$ or $x^3 - x - 1$

- Since C_{h_a} is **not** isogenous to y² = x³ 2, it is **not** isogenous to y² = x³ 1 as well.
- By Prop. 1, $C_{h_a} \not\sim C_u$ for any cubic reducible polynomial $u(x) \in \mathbb{Q}[x]$ without repeated roots.

• n = 2g + 1 - an **odd prime** such that 2 mod *n* is a primitive root.

• n = 2g + 1 - an **odd prime** such that 2 mod *n* is a primitive root. (E.g., $g = 1, 2, 5, 6, 9, 14, \dots, n = 3, 5, 11, 13, 19, 29, \dots$)

n = 2g + 1 - an odd prime such that
 2 mod n is a primitive root.
 (E.g., g = 1, 2, 5, 6, 9, 14, ..., n = 3, 5, 11, 13, 19, 29,)

• K - a field with $char(K) \neq 2$;

n = 2g + 1 - an odd prime such that
 2 mod n is a primitive root.
 (E.g., g = 1, 2, 5, 6, 9, 14, ..., n = 3, 5, 11, 13, 19, 29,)

•
$$K$$
 - a field with $char(K) \neq 2$;

•
$$\overline{K}$$
 - an algebraic closure of K ;

- n = 2g + 1 an odd prime such that 2 mod n is a primitive root. (E.g., g = 1, 2, 5, 6, 9, 14, ..., n = 3, 5, 11, 13, 19, 29,)
- K a field with char(K) \neq 2;
- \overline{K} an algebraic closure of K;
- $Gal(K) = Aut(\overline{K}/K)$ the absolute Galois group of K.

- n = 2g + 1 an odd prime such that
 2 mod n is a primitive root.
 (E.g., g = 1, 2, 5, 6, 9, 14, ..., n = 3, 5, 11, 13, 19, 29,)
- K a field with char(K) \neq 2;
- \overline{K} an algebraic closure of K;
- $Gal(K) = Aut(\overline{K}/K)$ the absolute Galois group of K.
- f(x), h(x) ∈ K[x] degree n polynomials without repeated roots.
Generalizations. Data/Notation

- n = 2g + 1 an odd prime such that
 2 mod n is a primitive root.
 (E.g., g = 1, 2, 5, 6, 9, 14, ..., n = 3, 5, 11, 13, 19, 29,)
- K a field with char(K) \neq 2;

- $Gal(K) = Aut(\overline{K}/K)$ the absolute Galois group of K.
- f(x), h(x) ∈ K[x] degree n polynomials without repeated roots.
- *R_f*, *R_h* ⊂ *K̄* the *n*-element sets of roots of *f*(*x*) and *h*(*x*) respectively.
- K(R_f) and K(R_h) the splitting fields of f(x) and h(x) respectively.

Generalizations. Data/Notation

- n = 2g + 1 an odd prime such that
 2 mod n is a primitive root.
 (E.g., g = 1, 2, 5, 6, 9, 14, ..., n = 3, 5, 11, 13, 19, 29,)
- K a field with char(K) \neq 2;

- $Gal(K) = Aut(\overline{K}/K)$ the absolute Galois group of K.
- f(x), h(x) ∈ K[x] degree n polynomials without repeated roots.
- *R_f*, *R_h* ⊂ *K̄* the *n*-element sets of roots of *f*(*x*) and *h*(*x*) respectively.
- K(R_f) and K(R_h) the splitting fields of f(x) and h(x) respectively.

 $n = \deg(f) = \deg(h)$ - odd prime, 2 mod n - primitive root $f(x), h(x) \in K[x]$ - degree n polynomials no repeated roots.

 $n = \deg(f) = \deg(h)$ - odd prime, 2 mod n - primitive root $f(x), h(x) \in K[x]$ - degree n polynomials no repeated roots.

イロト イヨト イヨト イヨト

E 990

•
$$\operatorname{Gal}(f/K) = \operatorname{Gal}(K(\mathcal{R}_f)/K) \subset \operatorname{Perm}(\mathcal{R}_f)$$

 $n = \deg(f) = \deg(h)$ - odd prime, 2 mod n - primitive root $f(x), h(x) \in K[x]$ - degree n polynomials no repeated roots.

■
$$Gal(f/K) = Gal(K(\mathcal{R}_f)/K) \subset Perm(\mathcal{R}_f)$$

 $Gal(h/K) = Gal(K\mathcal{R}_h)/K) \subset Perm(\mathcal{R}_h)$ -
the Galois groups of $f(x)$ and $h(x)$ viewed as permutation
groups.

イロト イヨト イヨト イヨト

E 990

 $n = \deg(f) = \deg(h)$ - odd prime, 2 mod n - primitive root $f(x), h(x) \in K[x]$ - degree n polynomials no repeated roots.

- $Gal(f/K) = Gal(K(\mathcal{R}_f)/K) \subset Perm(\mathcal{R}_f)$ $Gal(h/K) = Gal(K\mathcal{R}_h)/K) \subset Perm(\mathcal{R}_h)$ the Galois groups of f(x) and h(x) viewed as permutation groups.
- The hyperelliptic jacobians J(C_f) and J(C_h) are g-dimensional abelian varieties over K.

 $n = \deg(f) = \deg(h)$ - odd prime, 2 mod n - primitive root $f(x), h(x) \in K[x]$ - degree n polynomials no repeated roots.

- $Gal(f/K) = Gal(K(\mathcal{R}_f)/K) \subset Perm(\mathcal{R}_f)$ $Gal(h/K) = Gal(K\mathcal{R}_h)/K) \subset Perm(\mathcal{R}_h)$ the Galois groups of f(x) and h(x) viewed as permutation groups.
- The hyperelliptic jacobians J(C_f) and J(C_h) are g-dimensional abelian varieties over K.

We are interested in their endomorphisms, homomorphisms, isogenies that are defined over \overline{K} .

 $n = \deg(f) = \deg(h)$ - odd prime, 2 mod n - prim.root, $f(x), h(x) \in K[x]$ - deg.n polynomials with simple roots, $\operatorname{char}(K) \neq 2$.

 $n = \deg(f) = \deg(h)$ - odd prime, 2 mod n - prim.root, $f(x), h(x) \in K[x]$ - deg.n polynomials with simple roots, $char(K) \neq 2$.

From elliptic curves to hyperelliptic jacobians of arbitrary dimensions;

 $n = \deg(f) = \deg(h)$ - odd prime, 2 mod n - prim.root, $f(x), h(x) \in K[x]$ - deg.n polynomials with simple roots, $char(K) \neq 2$.

From elliptic curves to hyperelliptic jacobians of arbitrary dimensions; from $\mathbb C$ to fields of arbitrary characteristic $\neq 2$.

イロト イポト イヨト イヨト

3

 $n = \deg(f) = \deg(h)$ - odd prime, 2 mod n - prim.root, $f(x), h(x) \in K[x]$ - deg.n polynomials with simple roots, $char(K) \neq 2$.

From elliptic curves to hyperelliptic jacobians of arbitrary dimensions; from $\mathbb C$ to fields of arbitrary characteristic $\neq 2$.

イロト イポト イヨト イヨト

3

 $n = \deg(f) = \deg(h)$ - odd prime, 2 mod n - prim.root, $f(x), h(x) \in K[x]$ - deg.n polynomials with simple roots, $char(K) \neq 2$.

From elliptic curves to hyperelliptic jacobians of arbitrary dimensions; from \mathbb{C} to fields of arbitrary characteristic $\neq 2$.

Theorem 1 (Z, 2021)

Let f(x) be irreducible over K and h(x) reducible over K.

 $n = \deg(f) = \deg(h)$ - odd prime, 2 mod n - prim.root, $f(x), h(x) \in K[x]$ - deg.n polynomials with simple roots, $char(K) \neq 2$.

From elliptic curves to hyperelliptic jacobians of arbitrary dimensions; from \mathbb{C} to fields of arbitrary characteristic $\neq 2$.

Theorem 1 (Z, 2021)

Let f(x) be irreducible over K and h(x) reducible over K. Then either $J(C_f) \not\sim J(C_h)$

・ロト ・四ト ・ヨト ・ヨト

3

 $n = \deg(f) = \deg(h)$ - odd prime, 2 mod n - prim.root, $f(x), h(x) \in K[x]$ - deg.n polynomials with simple roots, $\operatorname{char}(K) \neq 2$.

From elliptic curves to hyperelliptic jacobians of arbitrary dimensions; from \mathbb{C} to fields of arbitrary characteristic $\neq 2$.

Theorem 1 (Z, 2021)

Let f(x) be irreducible over K and h(x) reducible over K. Then either $J(C_f) \not\sim J(C_h)$ or they both are abelian varieties of CM type over \overline{K}

 $n = \deg(f) = \deg(h)$ - odd prime, 2 mod n - prim.root, $f(x), h(x) \in K[x]$ - deg.n polynomials with simple roots, $char(K) \neq 2$.

From elliptic curves to hyperelliptic jacobians of arbitrary dimensions; from \mathbb{C} to fields of arbitrary characteristic $\neq 2$.

Theorem 1 (Z, 2021)

Let f(x) be irreducible over K and h(x) reducible over K. Then either $J(C_f) \not\sim J(C_h)$ or they both are abelian varieties of CM type over \overline{K} with multiplication by the *n*th cyclotomic field $\mathbb{Q}(\sqrt[n]{1})$.

 $n = \deg(f) = \deg(h)$ - odd prime, 2 mod n - prim.root, $f(x), h(x) \in K[x]$ - deg.n polynomials with simple roots, $char(K) \neq 2$.

From elliptic curves to hyperelliptic jacobians of arbitrary dimensions; from \mathbb{C} to fields of arbitrary characteristic $\neq 2$.

Theorem 1 (Z, 2021)

Let f(x) be irreducible over K and h(x) reducible over K. Then either $J(C_f) \not\sim J(C_h)$ or they both are abelian varieties of CM type over \overline{K} with multiplication by the *n*th cyclotomic field $\mathbb{Q}(\sqrt[n]{1})$.

Remark Proposition 1 is the case n = 3 of Theorem 1.

 $n = \deg(f) = \deg(h)$ - odd prime, 2 mod n - prim.root, $f(x), h(x) \in K[x]$ - deg.n polynomials with simple roots, $char(K) \neq 2$.

From elliptic curves to hyperelliptic jacobians of arbitrary dimensions; from \mathbb{C} to fields of arbitrary characteristic $\neq 2$.

Theorem 1 (Z, 2021)

Let f(x) be irreducible over K and h(x) reducible over K. Then either $J(C_f) \not\sim J(C_h)$ or they both are abelian varieties of CM type over \overline{K} with multiplication by the *n*th cyclotomic field $\mathbb{Q}(\sqrt[n]{1})$.

Remark Proposition 1 is the case n = 3 of Theorem 1.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Example 1.

Example 1. $f(x) = x^n - 2$ - irreducible polynomial,

Example 1. $f(x) = x^n - 2$ - irreducible polynomial, $h(x) = x^n - 1$ - a reducible polynomial.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○○○

Example 1. $f(x) = x^n - 2$ - irreducible polynomial, $h(x) = x^n - 1$ - a reducible polynomial. The hyperelliptic curves C_f and C_h are isomorphic over $\overline{\mathbb{Q}}$.

Example 1. $f(x) = x^n - 2$ - irreducible polynomial, $h(x) = x^n - 1$ - a reducible polynomial. The hyperelliptic curves C_f and C_h are isomorphic over $\overline{\mathbb{Q}}$. \Longrightarrow $J(C_f)$ and $J(C_h)$ are isomorphic over $\overline{\mathbb{Q}}$ abelian varieties of CM type over $\overline{\mathbb{Q}}$ with multiplication by $\mathbb{Q}(\sqrt[n]{1})$.

< ロ > < 同 > < 三 > < 三 > 、

3

Example 1. $f(x) = x^n - 2$ - irreducible polynomial, $h(x) = x^n - 1$ - a reducible polynomial. The hyperelliptic curves C_f and C_h are isomorphic over $\overline{\mathbb{Q}}$. \Longrightarrow $J(C_f)$ and $J(C_h)$ are isomorphic over $\overline{\mathbb{Q}}$ abelian varieties of CM type over $\overline{\mathbb{Q}}$ with multiplication by $\mathbb{Q}(\sqrt[n]{1})$.

Example 2.

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQの

Example 1. $f(x) = x^n - 2$ - irreducible polynomial, $h(x) = x^n - 1$ - a reducible polynomial. The hyperelliptic curves C_f and C_h are isomorphic over $\overline{\mathbb{Q}}$. \Longrightarrow $J(C_f)$ and $J(C_h)$ are isomorphic over $\overline{\mathbb{Q}}$ abelian varieties of CM type over $\overline{\mathbb{Q}}$ with multiplication by $\mathbb{Q}(\sqrt[n]{1})$.

Example 2. $f(x) = x^n - x - x - 1$ is an irreducible, with doubly transitive Gal $(f/\mathbb{Q}) = \mathbf{S}_n$ (E.S. Selmer 1956, Nart/Vila 1979, H. Osada 1987),

Example 1. $f(x) = x^n - 2$ - irreducible polynomial, $h(x) = x^n - 1$ - a reducible polynomial. The hyperelliptic curves C_f and C_h are isomorphic over $\overline{\mathbb{Q}}$. \Longrightarrow $J(C_f)$ and $J(C_h)$ are isomorphic over $\overline{\mathbb{Q}}$ abelian varieties of CM type over $\overline{\mathbb{Q}}$ with multiplication by $\mathbb{Q}(\sqrt[n]{1})$.

Example 2. $f(x) = x^n - x - x - 1$ is an irreducible, with doubly transitive Gal $(f/\mathbb{Q}) = \mathbf{S}_n$ (E.S. Selmer 1956, Nart/Vila 1979, H. Osada 1987), It is known (Z, 2000) that $J(C_f)$ is absolutely simple and $\operatorname{End}^0(J(C_f)) = \mathbb{Q}$.

Example 1. $f(x) = x^n - 2$ - irreducible polynomial, $h(x) = x^n - 1$ - a reducible polynomial. The hyperelliptic curves C_f and C_h are isomorphic over $\overline{\mathbb{Q}}$. \Longrightarrow $J(C_f)$ and $J(C_h)$ are isomorphic over $\overline{\mathbb{Q}}$ abelian varieties of CM

type over $\overline{\mathbb{Q}}$ with multiplication by $\mathbb{Q}(\sqrt[n]{1})$.

Example 2. $f(x) = x^n - x - x - 1$ is an irreducible, with doubly transitive Gal $(f/\mathbb{Q}) = \mathbf{S}_n$ (E.S. Selmer 1956, Nart/Vila 1979, H. Osada 1987), It is known (Z, 2000) that $J(C_f)$ is absolutely simple and

 $\operatorname{End}^{0}(J(C_{f})) = \mathbb{Q}$. Thus it is **not** of CM type.

Example 1. $f(x) = x^n - 2$ - irreducible polynomial, $h(x) = x^n - 1$ - a reducible polynomial.

The hyperelliptic curves C_f and C_h are isomorphic over $\overline{\mathbb{Q}}$. \Longrightarrow $J(C_f)$ and $J(C_h)$ are isomorphic over $\overline{\mathbb{Q}}$ abelian varieties of CM type over $\overline{\mathbb{Q}}$ with multiplication by $\mathbb{Q}(\sqrt[n]{1})$.

Example 2. $f(x) = x^n - x - x - 1$ is an irreducible, with doubly transitive Gal $(f/\mathbb{Q}) = \mathbf{S}_n$ (E.S. Selmer 1956, Nart/Vila 1979, H. Osada 1987),

It is known (Z, 2000) that $J(C_f)$ is absolutely simple and $\operatorname{End}^0(J(C_f)) = \mathbb{Q}$. Thus it is **not** of CM type.

Take any h(x), reducible over \mathbb{Q} , same degree, no repeated roots

Example 1. $f(x) = x^n - 2$ - irreducible polynomial, $h(x) = x^n - 1$ - a reducible polynomial.

The hyperelliptic curves C_f and C_h are isomorphic over $\overline{\mathbb{Q}}$. \Longrightarrow $J(C_f)$ and $J(C_h)$ are isomorphic over $\overline{\mathbb{Q}}$ abelian varieties of CM type over $\overline{\mathbb{Q}}$ with multiplication by $\mathbb{Q}(\sqrt[n]{1})$.

Example 2. $f(x) = x^n - x - x - 1$ is an irreducible, with doubly transitive Gal $(f/\mathbb{Q}) = \mathbf{S}_n$ (E.S. Selmer 1956, Nart/Vila 1979, H. Osada 1987),

It is known (Z, 2000) that $J(C_f)$ is absolutely simple and $\operatorname{End}^0(J(C_f)) = \mathbb{Q}$. Thus it is **not** of CM type.

Take any h(x), reducible over \mathbb{Q} , same degree, no repeated roots (e.g., $h(x) = x^n - 1$). By Theorem 1,

Example 1. $f(x) = x^n - 2$ - irreducible polynomial, $h(x) = x^n - 1$ - a reducible polynomial.

The hyperelliptic curves C_f and C_h are isomorphic over $\overline{\mathbb{Q}}$. \Longrightarrow $J(C_f)$ and $J(C_h)$ are isomorphic over $\overline{\mathbb{Q}}$ abelian varieties of CM type over $\overline{\mathbb{Q}}$ with multiplication by $\mathbb{Q}(\sqrt[n]{1})$.

Example 2. $f(x) = x^n - x - x - 1$ is an irreducible, with doubly transitive Gal $(f/\mathbb{Q}) = \mathbf{S}_n$ (E.S. Selmer 1956, Nart/Vila 1979, H. Osada 1987),

It is known (Z, 2000) that $J(C_f)$ is absolutely simple and $\operatorname{End}^0(J(C_f)) = \mathbb{Q}$. Thus it is **not** of CM type.

Take any h(x), reducible over \mathbb{Q} , same degree, no repeated roots (e.g., $h(x) = x^n - 1$). By Theorem 1,

Suppose that $char(K) \neq 2$ and

- $f(x), h(x) \in K[x]$ degree *n* polynomials, no repeated roots;
- n = 2g + 1 is odd prime, 2 mod n primitive root;
- both f(x) and h(x) are irreducible over K;

Suppose that $char(K) \neq 2$ and

- $f(x), h(x) \in K[x]$ degree *n* polynomials, no repeated roots;
- n = 2g + 1 is odd prime, 2 mod n primitive root;
- both f(x) and h(x) are irreducible over K;
- their splitting fields are linearly disjoint over K.

Suppose that $char(K) \neq 2$ and

- $f(x), h(x) \in K[x]$ degree *n* polynomials, no repeated roots;
- n = 2g + 1 is odd prime, 2 mod n primitive root;
- both f(x) and h(x) are irreducible over K;
- their splitting fields are linearly disjoint over K.
- Gal(f) is doubly transitive.

Suppose that $char(K) \neq 2$ and

- $f(x), h(x) \in K[x]$ degree *n* polynomials, no repeated roots;
- n = 2g + 1 is odd prime, 2 mod n primitive root;
- both f(x) and h(x) are irreducible over K;
- their splitting fields are linearly disjoint over K.

■ Gal(f) is doubly transitive.

Then either $\operatorname{Hom}(J(C_f), J(C_h)) = 0$, $\operatorname{Hom}(J(C_h), J(C_f)) = 0$

Suppose that $char(K) \neq 2$ and

- $f(x), h(x) \in K[x]$ degree *n* polynomials, no repeated roots;
- n = 2g + 1 is odd prime, 2 mod n primitive root;
- both f(x) and h(x) are irreducible over K;
- their splitting fields are linearly disjoint over K.

■ Gal(f) is doubly transitive.

Then either Hom $(J(C_f), J(C_h)) = 0$, Hom $(J(C_h), J(C_f)) = 0$ (and $J(C_f) \not\sim J(C_h)$)
Suppose that $char(K) \neq 2$ and

- $f(x), h(x) \in K[x]$ degree *n* polynomials, no repeated roots;
- n = 2g + 1 is odd prime, 2 mod n primitive root;
- both f(x) and h(x) are irreducible over K;
- their splitting fields are linearly disjoint over K.

■ Gal(f) is doubly transitive.

Then either Hom $(J(C_f), J(C_h)) = 0$, Hom $(J(C_h), J(C_f)) = 0$ (and $J(C_f) \not\sim J(C_h)$) or the following hold.

Suppose that $char(K) \neq 2$ and

- $f(x), h(x) \in K[x]$ degree *n* polynomials, no repeated roots;
- n = 2g + 1 is odd prime, 2 mod n primitive root;
- both f(x) and h(x) are irreducible over K;
- their splitting fields are linearly disjoint over K.
- Gal(f) is doubly transitive.

Then either Hom $(J(C_f), J(C_h)) = 0$, Hom $(J(C_h), J(C_f)) = 0$ (and $J(C_f) \not\sim J(C_h)$) or the following hold.

(i) p = char(K) > 0 and $p \not\equiv 1 \mod n$.

Suppose that $char(K) \neq 2$ and

- $f(x), h(x) \in K[x]$ degree *n* polynomials, no repeated roots;
- n = 2g + 1 is odd prime, 2 mod n primitive root;
- both f(x) and h(x) are irreducible over K;
- their splitting fields are linearly disjoint over K.
- Gal(f) is doubly transitive.

Then either Hom $(J(C_f), J(C_h)) = 0$, Hom $(J(C_h), J(C_f)) = 0$ (and $J(C_f) \not\sim J(C_h)$) or the following hold.

(i) p = char(K) > 0 and $p \not\equiv 1 \mod n$.

(ii) Both $J(C_f)$ and $J(C_h)$ are supersingular abelian varieties.

Suppose that $char(K) \neq 2$ and

- $f(x), h(x) \in K[x]$ degree *n* polynomials, no repeated roots;
- n = 2g + 1 is odd prime, 2 mod n primitive root;
- both f(x) and h(x) are irreducible over K;
- their splitting fields are linearly disjoint over K.
- Gal(f) is doubly transitive.

Then either Hom $(J(C_f), J(C_h)) = 0$, Hom $(J(C_h), J(C_f)) = 0$ (and $J(C_f) \not\sim J(C_h)$) or the following hold.

- (i) p = char(K) > 0 and $p \not\equiv 1 \mod n$.
- (ii) Both $J(C_f)$ and $J(C_h)$ are supersingular abelian varieties.

Reminder: AV is **supersingular** if it is isogenuos to E^n , where E is an elliptic curve s.t. End⁰(C) is a quaternion \mathbb{Q} -algebra.

Suppose that $char(K) \neq 2$ and

- $f(x), h(x) \in K[x]$ degree *n* polynomials, no repeated roots;
- n = 2g + 1 is odd prime, 2 mod n primitive root;
- both f(x) and h(x) are irreducible over K;
- their splitting fields are linearly disjoint over K.
- Gal(f) is doubly transitive.

Then either Hom $(J(C_f), J(C_h)) = 0$, Hom $(J(C_h), J(C_f)) = 0$ (and $J(C_f) \not\sim J(C_h)$) or the following hold.

- (i) p = char(K) > 0 and $p \not\equiv 1 \mod n$.
- (ii) Both $J(C_f)$ and $J(C_h)$ are supersingular abelian varieties.

Reminder: AV is **supersingular** if it is isogenuos to E^n , where E is an elliptic curve s.t. End⁰(C) is a quaternion \mathbb{Q} -algebra.

Remark Propositions 2 and 3 correspond to the case n = 3.

Remark Propositions 2 and 3 correspond to the case n = 3. Example 3. Take any K, char(K) = 0, Remark Propositions 2 and 3 correspond to the case n = 3. Example 3. Take any K, char(K) = 0,

n = 2g + 1 - an odd prime such that 2 mod n is a primitive root,

Remark Propositions 2 and 3 correspond to the case n = 3. Example 3. Take any K, char(K) = 0,

n = 2g + 1 - an odd prime such that 2 mod n is a primitive root, $f(x) \in K[x]$ - an irr. pol. with doubly transitive $Gal(f/K) = \mathbf{S}_n$,

Remark Propositions 2 and 3 correspond to the case n = 3. Example 3. Take any K, char(K) = 0, n = 2g + 1 - an odd prime such that 2 mod n is a primitive root,

 $f(x) \in K[x]$ - an irr. pol. with doubly transitive $Gal(f/K) = \mathbf{S}_n$, $h(x) \in K[x]$ an irr. pol.with cyclic $Gal(h/K) = \mathbb{Z}/n\mathbb{Z}$.

• $Gal(f/K) = S_n$ has no normal subgroups of index n \Longrightarrow

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

- $Gal(f/K) = S_n$ has no normal subgroups of index n \Longrightarrow
- Gal(h/K) is **not** isomorphic to a quotient of $Gal(f/K) \Longrightarrow$

- $Gal(f/K) = S_n$ has no normal subgroups of index n \Longrightarrow
- Gal(h/K) is **not** isomorphic to a quotient of $Gal(f/K) \Longrightarrow$

• $K(\mathcal{R}_f) \cap K(\mathcal{R}_h) = K \quad (\text{in } \bar{K}) \Longrightarrow$

- $Gal(f/K) = S_n$ has no normal subgroups of index n \Longrightarrow
- Gal(h/K) is **not** isomorphic to a quotient of $Gal(f/K) \Longrightarrow$

• $K(\mathcal{R}_f) \cap K(\mathcal{R}_h) = K$ (in \overline{K}) \Longrightarrow

splitting fields of f(x) and h(x) are **linearly disjoint** over K.

- $Gal(f/K) = S_n$ has no normal subgroups of index n \Longrightarrow
- Gal(h/K) is **not** isomorphic to a quotient of $Gal(f/K) \Longrightarrow$
- $K(\mathcal{R}_f) \cap K(\mathcal{R}_h) = K$ (in \overline{K}) \Longrightarrow
- splitting fields of f(x) and h(x) are linearly disjoint over K.
 (It remains true even if Gal(f/K) is just doubly transitive.)

- $Gal(f/K) = S_n$ has no normal subgroups of index n \Longrightarrow
- Gal(h/K) is **not** isomorphic to a quotient of $Gal(f/K) \Longrightarrow$
- $K(\mathcal{R}_f) \cap K(\mathcal{R}_h) = K$ (in \overline{K}) \Longrightarrow
- splitting fields of f(x) and h(x) are linearly disjoint over K.
 (It remains true even if Gal(f/K) is just doubly transitive.)

By Theorem 2, $J(C_f) \not\sim J(C_h)$.

- $Gal(f/K) = S_n$ has no normal subgroups of index n \Longrightarrow
- Gal(h/K) is **not** isomorphic to a quotient of $Gal(f/K) \Longrightarrow$

•
$$K(\mathcal{R}_f) \cap K(\mathcal{R}_h) = K \quad (\text{in } \bar{K}) \Longrightarrow$$

splitting fields of f(x) and h(x) are linearly disjoint over K.
 (It remains true even if Gal(f/K) is just doubly transitive.)

By Theorem 2, $J(C_f) \not\sim J(C_h)$.

E.g., take $K = \mathbb{Q}, g = 2, n = 5, f(x) = x^5 - x - 1$ (with $Gal(f/K) = S_5$)

- $Gal(f/K) = S_n$ has no normal subgroups of index n \Longrightarrow
- Gal(h/K) is **not** isomorphic to a quotient of $Gal(f/K) \Longrightarrow$

•
$$K(\mathcal{R}_f) \cap K(\mathcal{R}_h) = K \quad (\text{in } \bar{K}) \Longrightarrow$$

splitting fields of f(x) and h(x) are linearly disjoint over K.
 (It remains true even if Gal(f/K) is just doubly transitive.)

By Theorem 2, $J(C_f) \not\sim J(C_h)$.

E.g., take $K = \mathbb{Q}, g = 2, n = 5, f(x) = x^5 - x - 1$ (with $Gal(f/K) = \mathbf{S}_5$) and $h(x) = x^5 - 110x^3 - 55x^2 + 2310x + 979$ (with $Gal(h/K) = \mathbb{Z}/5\mathbb{Z}$, D.S. Dummit, 1991).

- $Gal(f/K) = S_n$ has no normal subgroups of index n \Longrightarrow
- Gal(h/K) is **not** isomorphic to a quotient of $Gal(f/K) \Longrightarrow$

•
$$K(\mathcal{R}_f) \cap K(\mathcal{R}_h) = K \quad (\text{in } \bar{K}) \Longrightarrow$$

splitting fields of f(x) and h(x) are linearly disjoint over K.
 (It remains true even if Gal(f/K) is just doubly transitive.)

By Theorem 2, $J(C_f) \not\sim J(C_h)$.

E.g., take $K = \mathbb{Q}, g = 2, n = 5, f(x) = x^5 - x - 1$ (with $Gal(f/K) = \mathbf{S}_5$) and $h(x) = x^5 - 110x^3 - 55x^2 + 2310x + 979$ (with $Gal(h/K) = \mathbb{Z}/5\mathbb{Z}$, D.S. Dummit, 1991).

▲□▶ ▲圖▶ ▲重▶ ▲重▶ 三重 - 釣A⊙

Main Idea of the proof of Theorem 1.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

• any isogeny $\phi : J(C_f) \to J(C_h)$ is **not** defined over K.

- any isogeny $\phi : J(C_f) \to J(C_h)$ is **not** defined over K.
- The Galois action on the isogeny ϕ gives (as a "ratio" of two isogenies) an element in End⁰(C_h) of multiplicative order *n*.

- any isogeny $\phi : J(C_f) \to J(C_h)$ is **not** defined over K.
- The Galois action on the isogeny ϕ gives (as a "ratio" of two isogenies) an element in End⁰(C_h) of multiplicative order *n*.

- 4 同 ト 4 ヨ ト 4 ヨ ト

э.

Main Idea of the proof of Theorem 2.

- any isogeny $\phi : J(C_f) \to J(C_h)$ is **not** defined over K.
- The Galois action on the isogeny ϕ gives (as a "ratio" of two isogenies) an element in End⁰(C_h) of multiplicative order *n*.

(ロ) (同) (ヨ) (ヨ) (ヨ) (0)

Main Idea of the proof of Theorem 2. Take $X = C_f, Y = C_g, \dim X = \dim Y = g, n = 2g + 1.$

- any isogeny $\phi : J(C_f) \to J(C_h)$ is **not** defined over K.
- The Galois action on the isogeny ϕ gives (as a "ratio" of two isogenies) an element in End⁰(C_h) of multiplicative order *n*.

(ロ) (同) (ヨ) (ヨ) (ヨ) (0)

Main Idea of the proof of Theorem 2. Take $X = C_f, Y = C_g, \dim X = \dim Y = g, n = 2g + 1$. We have:

- any isogeny $\phi : J(C_f) \to J(C_h)$ is **not** defined over K.
- The Galois action on the isogeny ϕ gives (as a "ratio" of two isogenies) an element in End⁰(*C_h*) of multiplicative order *n*.

(ロ) (同) (ヨ) (ヨ) (ヨ) (0)

Main Idea of the proof of Theorem 2. Take $X = C_f, Y = C_g, \dim X = \dim Y = g, n = 2g + 1$. We have: • Hom $(X, Y)/2 \subset Hom(X[2], Y[2])$.

- any isogeny $\phi : J(C_f) \to J(C_h)$ is **not** defined over K.
- The Galois action on the isogeny ϕ gives (as a "ratio" of two isogenies) an element in End⁰(C_h) of multiplicative order *n*.

Main Idea of the proof of Theorem 2. Take

$$X = C_f, Y = C_g, \dim X = \dim Y = g, \ n = 2g + 1.$$
 We have:

- $\operatorname{Hom}(X, Y)/2 \subset \operatorname{Hom}(X[2], Y[2]).$
- If the Galois module X[2] is absolutely simple, and the Galois module Y[2] is simple, and the corresponding field extensions are linearly disjoint, then Hom(X[2], Y[2]) is simple.

- any isogeny $\phi : J(C_f) \to J(C_h)$ is **not** defined over K.
- The Galois action on the isogeny ϕ gives (as a "ratio" of two isogenies) an element in End⁰(C_h) of multiplicative order *n*.

Main Idea of the proof of Theorem 2. Take

$$X = C_f, Y = C_g, \dim X = \dim Y = g, \ n = 2g + 1.$$
 We have:

- $\operatorname{Hom}(X, Y)/2 \subset \operatorname{Hom}(X[2], Y[2]).$
- If the Galois module X[2] is absolutely simple, and the Galois module Y[2] is simple, and the corresponding field extensions are linearly disjoint, then Hom(X[2], Y[2]) is simple.
- Thus either $\text{Hom}(X, Y)/2 = \{0\}$ (i.e., Hom(X, Y) = 0) or $\dim_{\mathbb{F}_2} \text{Hom}(X, Y)/2 = 4g^2$ (i.e., $\text{rk Hom}(X, Y) = 4g^2$).

- any isogeny $\phi : J(C_f) \to J(C_h)$ is **not** defined over K.
- The Galois action on the isogeny ϕ gives (as a "ratio" of two isogenies) an element in End⁰(C_h) of multiplicative order *n*.

Main Idea of the proof of Theorem 2. Take

$$X = C_f, Y = C_g, \dim X = \dim Y = g, \ n = 2g + 1.$$
 We have:

• $\operatorname{Hom}(X, Y)/2 \subset \operatorname{Hom}(X[2], Y[2]).$

If the Galois module X[2] is absolutely simple, and the Galois module Y[2] is simple, and the corresponding field extensions are linearly disjoint, then Hom(X[2], Y[2]) is simple.

■ Thus either $\text{Hom}(X, Y)/2 = \{0\}$ (i.e., Hom(X, Y) = 0) or $\dim_{\mathbb{F}_2} \text{Hom}(X, Y)/2 = 4g^2$ (i.e., $\text{rk Hom}(X, Y) = 4g^2$).

The latter can happen **iff** char(K) > 0 and both X and Y are supersingular abelian varieties (Z, 2003).

- any isogeny $\phi : J(C_f) \to J(C_h)$ is **not** defined over K.
- The Galois action on the isogeny ϕ gives (as a "ratio" of two isogenies) an element in End⁰(C_h) of multiplicative order *n*.

Main Idea of the proof of Theorem 2. Take

$$X = C_f, Y = C_g, \dim X = \dim Y = g, \ n = 2g + 1.$$
 We have:

• $\operatorname{Hom}(X, Y)/2 \subset \operatorname{Hom}(X[2], Y[2]).$

If the Galois module X[2] is absolutely simple, and the Galois module Y[2] is simple, and the corresponding field extensions are linearly disjoint, then Hom(X[2], Y[2]) is simple.

■ Thus either $\text{Hom}(X, Y)/2 = \{0\}$ (i.e., Hom(X, Y) = 0) or $\dim_{\mathbb{F}_2} \text{Hom}(X, Y)/2 = 4g^2$ (i.e., $\text{rk Hom}(X, Y) = 4g^2$).

The latter can happen **iff** char(K) > 0 and both X and Y are supersingular abelian varieties (Z, 2003).

Towards proofs of Theorems 1,2

The main ingredients of the proofs are Key Lemma, Special Case of Theorem 1, and Useful Lemma.

Towards proofs of Theorems 1,2

The main ingredients of the proofs are Key Lemma, Special Case of Theorem 1, and Useful Lemma.

Notation and assumptions

Towards proofs of Theorems 1,2

The main ingredients of the proofs are **Key Lemma**, **Special Case of Theorem 1**, and **Useful Lemma**.

Notation and assumptions

X - an AV of dimension g over a field K, $char(K) \neq 2$.
The main ingredients of the proofs are **Key Lemma**, **Special Case of Theorem 1**, and **Useful Lemma**.

< (回) > < 三 > <

Notation and assumptions

- X an AV of dimension g over a field K, $char(K) \neq 2$.
- d positive integer that is **not** divisible by char(K),

The main ingredients of the proofs are **Key Lemma**, **Special Case of Theorem 1**, and **Useful Lemma**.

Notation and assumptions

X - an AV of dimension g over a field K, $\operatorname{char}(K) \neq 2$. d - positive integer that is **not** divisible by $\operatorname{char}(K)$, X[d] - the kernel of multiplication by d in $X(\overline{K})$.

The main ingredients of the proofs are **Key Lemma**, **Special Case of Theorem 1**, and **Useful Lemma**.

Notation and assumptions

X - an AV of dimension g over a field K, $char(K) \neq 2$. d - positive integer that is **not** divisible by char(K), X[d] - the kernel of multiplication by d in $X(\overline{K})$.

Facts

The main ingredients of the proofs are **Key Lemma**, **Special Case of Theorem 1**, and **Useful Lemma**.

Notation and assumptions

X - an AV of dimension g over a field K, $char(K) \neq 2$. d - positive integer that is **not** divisible by char(K), X[d] - the kernel of multiplication by d in $X(\overline{K})$.

Facts

 (i) X[d] is a free Z/dZ-submodule of rank 2g and the Gal(K)-submodule of X(K̄).

The main ingredients of the proofs are **Key Lemma**, **Special Case of Theorem 1**, and **Useful Lemma**.

Notation and assumptions

X - an AV of dimension g over a field K, $char(K) \neq 2$. d - positive integer that is **not** divisible by char(K), X[d] - the kernel of multiplication by d in $X(\overline{K})$.

Facts

- (i) X[d] is a free $\mathbb{Z}/d\mathbb{Z}$ -submodule of rank 2g and the Gal(K)-submodule of $X(\overline{K})$.
- (ii) $K_{d,X} \subset \overline{K}$ the (sub)field of definition of all points from X[d] is a finite Galois extension of K.

The main ingredients of the proofs are **Key Lemma**, **Special Case of Theorem 1**, and **Useful Lemma**.

Notation and assumptions

X - an AV of dimension g over a field K, $char(K) \neq 2$. d - positive integer that is **not** divisible by char(K), X[d] - the kernel of multiplication by d in $X(\overline{K})$.

Facts

(i) X[d] is a free $\mathbb{Z}/d\mathbb{Z}$ -submodule of rank 2g and the Gal(K)-submodule of $X(\overline{K})$.

(ii) $K_{d,X} \subset \overline{K}$ - the (sub)field of definition of all points from X[d]is a finite Galois extension of K. $\tilde{G}_{d,X} = \text{Gal}(K_{d,X}/K)$ stands for the Galois group of this extension.

$\overline{\dim(X)} = g \ge 1 \quad n := 2g + 1$

(iv) X[2] - 2g-dimensional vector space over \mathbb{F}_2 .

(iv) X[2] - 2g-dimensional vector space over 𝔽₂.
(v) (P. Goodman, 2021) The Gal(K)-module X[2] is simple

(iv) X[2] - 2g-dimensional vector space over 𝔽₂.
(v) (P. Goodman, 2021) The Gal(K)-module X[2] is simple if

(a) n is a prime such that

(iv) X[2] - 2g-dimensional vector space over F₂.
(v) (P. Goodman, 2021) The Gal(K)-module X[2] is simple if

(a) n is a prime such that 2 mod n is a primitive root;

(iv) X[2] - 2g-dimensional vector space over \mathbb{F}_2 .

- (v) (P. Goodman, 2021) The Gal(K)-module X[2] is simple if
 - (a) *n* is a prime such that 2 mod *n* is a primitive root;
 - (b) $\#(\ddot{G}_{2,X})$ is divisible by *n*.

(iv) X[2] - 2g-dimensional vector space over F₂.
(v) (P. Goodman, 2021) The Gal(K)-module X[2] is simple if

(a) n is a prime such that 2 mod n is a primitive root;

(b) $\#(\ddot{G}_{2,X})$ is divisible by *n*.

(vi) $K_{2,X} \subset K_{4,X};$

(iv) X[2] - 2g-dimensional vector space over \mathbb{F}_2 .

(v) (P. Goodman, 2021) The Gal(K)-module X[2] is simple if

(a) n is a prime such that 2 mod n is a primitive root;

(b) $\#(\ddot{G}_{2,X})$ is divisible by *n*.

(vi) $K_{2,X} \subset K_{4,X}$; either the equality holds or $Gal(K_{4,X}/K_{2,X})$ - finite commutative group of exponent 2.

- (iv) X[2] 2g-dimensional vector space over \mathbb{F}_2 .
- (v) (P. Goodman, 2021) The Gal(K)-module X[2] is simple if
 (a) n is a prime such that 2 mod n is a primitive root;
 (b) #(G̃_{2,X}) is divisible by n.
- (vi) $K_{2,X} \subset K_{4,X}$; either the equality holds or $Gal(K_{4,X}/K_{2,X})$ finite commutative group of exponent 2.
- (vii) Our main tool: all endomorphisms of X are defined over $K_{4,X}$ (A. Silverberg, 1992).

- (iv) X[2] 2g-dimensional vector space over \mathbb{F}_2 .
- (v) (P. Goodman, 2021) The Gal(K)-module X[2] is simple if
 (a) n is a prime such that 2 mod n is a primitive root;
 (b) #(G̃_{2,X}) is divisible by n.
- (vi) $K_{2,X} \subset K_{4,X}$; either the equality holds or $Gal(K_{4,X}/K_{2,X})$ finite commutative group of exponent 2.
- (vii) Our main tool: all endomorphisms of X are defined over $K_{4,X}$ (A. Silverberg, 1992).

・ロト ・回 ト ・ヨト ・ヨト ・ヨー うへの

 $X = J(C_f), Y = J(C_h)$ where $f(x), h(x) \in K[x]$ - odd degree polynomials without repeated roots.

▲口 > ▲母 > ▲臣 > ▲臣 > ― 臣 … のへの

 $X = J(C_f), Y = J(C_h)$ where $f(x), h(x) \in K[x]$ - odd degree polynomials without repeated roots. \Rightarrow $K(X[2]) = K(\mathcal{R}_f), \quad \tilde{G}_{2,X} = \operatorname{Gal}(f/K);$

▲口 > ▲母 > ▲臣 > ▲臣 > ― 臣 … のへの

$$\begin{split} &X = J(C_f), Y = J(C_h) \text{ where } f(x), h(x) \in K[x] \text{ - odd degree} \\ &\text{polynomials without repeated roots. } \Rightarrow \\ &K(X[2]) = K(\mathcal{R}_f), \ \tilde{G}_{2,X} = \text{Gal}(f/K); \\ &K(Y[2]) = K(\mathcal{R}_h), \ \tilde{G}_{2,Y} = \text{Gal}(h/K). \end{split}$$

▲口 > ▲母 > ▲臣 > ▲臣 > ― 臣 … のへの

 $X = J(C_f), Y = J(C_h)$ where $f(x), h(x) \in K[x]$ - odd degree polynomials without repeated roots. \Rightarrow $K(X[2]) = K(\mathcal{R}_f), \quad \tilde{G}_{2,X} = \operatorname{Gal}(f/K);$ $K(Y[2]) = K(\mathcal{R}_h), \quad \tilde{G}_{2,Y} = \operatorname{Gal}(h/K).$ $\Rightarrow K(Y[2]) = K \text{ iff } h(x) \text{ splits completely over } K.$ Remark $\operatorname{Gal}(f/K)$ is **doubly transitive**

 $X = J(C_f), Y = J(C_h) \text{ where } f(x), h(x) \in K[x] \text{ - odd degree}$ polynomials without repeated roots. \Rightarrow $K(X[2]) = K(\mathcal{R}_f), \quad \tilde{G}_{2,X} = \text{Gal}(f/K);$ $K(Y[2]) = K(\mathcal{R}_h), \quad \tilde{G}_{2,Y} = \text{Gal}(h/K).$ $\Rightarrow K(Y[2]) = K \text{ iff } h(x) \text{ splits completely over } K.$

Remark Gal(f/K) is doubly transitive iff the centralizer of $\hat{G}_{2,X}$ in $\operatorname{End}_{\mathbb{F}_2}(X[2])$ is \mathbb{F}_2 (S. Mori, 1977).

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

Suppose that

Suppose that

•
$$\operatorname{char}(K) \neq 2$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

Suppose that

•
$$\operatorname{char}(K) \neq 2;$$

• n = 2g + 1 is a **prime** such that 2 mod *n* a **primitive root**;

イロト イヨト イヨト イヨト

E 990

Suppose that

- $\operatorname{char}(K) \neq 2;$
- n = 2g + 1 is a prime such that 2 mod n a primitive root; X and Y are g-dimensional abelian varieties over K that are isogenous over K;

A (1) > A (2) > A

3

Suppose that

- $\operatorname{char}(K) \neq 2;$
- n = 2g + 1 is a prime such that 2 mod n a primitive root; X and Y are g-dimensional abelian varieties over K that are isogenous over K;
- $K_{2,Y} = K$ (i.e. all order 2 points on Y are defined over K);

Suppose that

- $\operatorname{char}(K) \neq 2;$
- n = 2g + 1 is a prime such that 2 mod n a primitive root; X and Y are g-dimensional abelian varieties over K that are isogenous over K;
- $K_{2,Y} = K$ (i.e. all order 2 points on Y are defined over K);
- degree $[K_{2,X} : K]$ is divisible by *n*.

Suppose that

- $\operatorname{char}(K) \neq 2;$
- n = 2g + 1 is a prime such that 2 mod n a primitive root; X and Y are g-dimensional abelian varieties over K that are isogenous over K;
- $K_{2,Y} = K$ (i.e. all order 2 points on Y are defined over K);
- degree $[K_{2,X} : K]$ is divisible by *n*.

Then both X and Y are abelian varieties of CM type over \overline{K} with **multiplication by the** *n***th cyclotomic field** $\mathbb{Q}(\zeta_n)$.

 $n = \deg(f) = \deg(h)$ - odd prime, 2 mod n - prim. root, $f(x), h(x) \in K[x]$ - polynomials with simple roots, $\operatorname{char}(K) \neq 2$.

Application $n = \deg(f) = \deg(h) - \operatorname{odd} prime$, $2 \mod n - \operatorname{prim}$. root, $f(x), h(x) \in K[x]$ - polynomials with simple roots, $\operatorname{char}(K) \neq 2$.

Special case of Theorem 1

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ののの

 $n = \deg(f) = \deg(h)$ - odd prime, 2 mod n - prim. root, $f(x), h(x) \in K[x]$ - polynomials with simple roots, $\operatorname{char}(K) \neq 2$.

Special case of Theorem 1 Assume that $f(x) \in K[x]$ is irreducible, $h(x) \in K[x]$ completely splits.

イロト イヨト イヨト イヨト

Ξ.

 $n = \deg(f) = \deg(h)$ - odd prime, 2 mod n - prim. root, $f(x), h(x) \in K[x]$ - polynomials with simple roots, $\operatorname{char}(K) \neq 2$.

Special case of Theorem 1 Assume that $f(x) \in K[x]$ is irreducible, $h(x) \in K[x]$ completely splits. Then either $J(C_f) \not\sim J(C_h)$ or both jacobians are AV of **CM type** over \overline{K} with **multiplication by the** *n***th cyclotomic field** $\mathbb{Q}(\zeta_n)$.

< ロ > < 同 > < 三 > < 三 >

 $n = \deg(f) = \deg(h)$ - odd prime, 2 mod n - prim. root, $f(x), h(x) \in K[x]$ - polynomials with simple roots, $\operatorname{char}(K) \neq 2$.

Special case of Theorem 1 Assume that $f(x) \in K[x]$ is irreducible, $h(x) \in K[x]$ completely splits. Then either $J(C_f) \not\sim J(C_h)$ or both jacobians are AV of **CM type** over \overline{K} with **multiplication by the** *n***th cyclotomic field** $\mathbb{Q}(\zeta_n)$. **Proof**

 $n = \deg(f) = \deg(h)$ - odd prime, 2 mod n - prim. root, $f(x), h(x) \in K[x]$ - polynomials with simple roots, $\operatorname{char}(K) \neq 2$.

Special case of Theorem 1 Assume that $f(x) \in K[x]$ is irreducible, $h(x) \in K[x]$ completely splits. Then either $J(C_f) \not\sim J(C_h)$ or both jacobians are AV of **CM type** over \overline{K} with **multiplication by the** *n***th cyclotomic field** $\mathbb{Q}(\zeta_n)$. Proof $X = J(C_f), Y = J(C_h)$.

< ロ > < 同 > < 三 > < 三 >

э
$n = \deg(f) = \deg(h)$ - odd prime, 2 mod n - prim. root, $f(x), h(x) \in K[x]$ - polynomials with simple roots, $\operatorname{char}(K) \neq 2$.

Special case of Theorem 1 Assume that $f(x) \in K[x]$ is irreducible, $h(x) \in K[x]$ completely splits. Then either $J(C_f) \not\sim J(C_h)$ or both jacobians are AV of **CM type** over \overline{K} with **multiplication by the** *n***th cyclotomic field** $\mathbb{Q}(\zeta_n)$.

Proof $X = J(C_f), Y = J(C_h)$. h splits $\Rightarrow \tilde{G}_{2,Y} = \text{Gal}(h/K) = \{1\}$

 $n = \deg(f) = \deg(h)$ - odd prime, 2 mod n - prim. root, $f(x), h(x) \in K[x]$ - polynomials with simple roots, $\operatorname{char}(K) \neq 2$.

Special case of Theorem 1 Assume that $f(x) \in K[x]$ is irreducible, $h(x) \in K[x]$ completely splits. Then either $J(C_f) \not\sim J(C_h)$ or both jacobians are AV of **CM type** over \overline{K} with **multiplication by the** *n***th cyclotomic field** $\mathbb{Q}(\zeta_n)$.

Proof $X = J(C_f), Y = J(C_h)$. *h* splits $\Rightarrow \tilde{G}_{2,Y} = \text{Gal}(h/K) = \{1\}$ $\Rightarrow Y[2] \subset Y(K)$ is the trivial Gal(K)-module.

 $n = \deg(f) = \deg(h)$ - odd prime, 2 mod n - prim. root, $f(x), h(x) \in K[x]$ - polynomials with simple roots, $\operatorname{char}(K) \neq 2$.

Special case of Theorem 1 Assume that $f(x) \in K[x]$ is irreducible, $h(x) \in K[x]$ completely splits. Then either $J(C_f) \not\sim J(C_h)$ or both jacobians are AV of **CM type** over \overline{K} with **multiplication by the** *n***th cyclotomic field** $\mathbb{Q}(\zeta_n)$. Proof $X = J(C_f), Y = J(C_h)$. *h* splits $\Rightarrow \widetilde{G}_{2,Y} = \text{Gal}(h/K) = \{1\}$

 \Rightarrow Y[2] \subset Y(K) is the trivial Gal(K)-module.

 $n = \deg(f)$ is a prime + f(x) irreducible

 $n = \deg(f) = \deg(h)$ - odd prime, 2 mod n - prim. root, $f(x), h(x) \in K[x]$ - polynomials with simple roots, $\operatorname{char}(K) \neq 2$.

Special case of Theorem 1 Assume that $f(x) \in K[x]$ is irreducible, $h(x) \in K[x]$ completely splits. Then either $J(C_f) \not\sim J(C_h)$ or both jacobians are AV of **CM type** over \overline{K} with **multiplication by the** *n***th cyclotomic field** $\mathbb{Q}(\zeta_n)$. Proof $X = J(C_f), Y = J(C_h)$. *h* splits $\Rightarrow \tilde{G}_{2,Y} = \text{Gal}(h/K) = \{1\}$ $\Rightarrow Y[2] \subset Y(K)$ is the trivial Gal(K)-module. n = deg(f) is a prime + f(x) irreducible $\Rightarrow \#(\text{Gal}(f/K))$ is divisible by *n*, i.e., $\#(\tilde{G}_{2,X})$ is divisible by *n*

 $n = \deg(f) = \deg(h)$ - odd prime, 2 mod n - prim. root, $f(x), h(x) \in K[x]$ - polynomials with simple roots, $\operatorname{char}(K) \neq 2$.

Special case of Theorem 1 Assume that $f(x) \in K[x]$ is irreducible, $h(x) \in K[x]$ completely splits. Then either $J(C_f) \not\sim J(C_h)$ or both jacobians are AV of **CM type** over \bar{K} with **multiplication by the** *n***th cyclotomic field** $\mathbb{Q}(\zeta_n)$. Proof $X = J(C_f), Y = J(C_h)$. *h* splits $\Rightarrow \tilde{G}_{2,Y} = \text{Gal}(h/K) = \{1\}$ $\Rightarrow Y[2] \subset Y(K)$ is the trivial Gal(K)-module. n = deg(f) is a prime + f(x) irreducible $\Rightarrow \#(\text{Gal}(f/K))$ is divisible by *n*, i.e., $\#(\tilde{G}_{2,X})$ is divisible by $n \xrightarrow{\text{Goodman}}$ the Gal(K)-module X[2] is simple.

 $n = \deg(f) = \deg(h)$ - odd prime, 2 mod n - prim. root, $f(x), h(x) \in K[x]$ - polynomials with simple roots, $\operatorname{char}(K) \neq 2$.

Special case of Theorem 1 Assume that $f(x) \in K[x]$ is irreducible, $h(x) \in K[x]$ completely splits. Then either $J(C_f) \not\sim J(C_h)$ or both jacobians are AV of **CM type** over \overline{K} with **multiplication by the** *n***th cyclotomic field** $\mathbb{Q}(\zeta_n)$. Proof $X = J(C_f), Y = J(C_h)$. *h* splits $\Rightarrow \tilde{G}_{2,Y} = \text{Gal}(h/K) = \{1\}$ $\Rightarrow Y[2] \subset Y(K)$ is the trivial Gal(K)-module. n = deg(f) is a prime + f(x) irreducible $\Rightarrow \#(\text{Gal}(f/K))$ is divisible by n, i.e., $\#(\tilde{G}_{2,X})$ is divisible by $n \xrightarrow{\text{Goodman}}$

the Gal(K)-module X[2] is simple.

By **Key Lemma**, either $J(C_f) = X \not\sim Y = J(C_h)$ or both $J(C_f)$ and $J(C_h)$ are AV of CM type over \overline{K} with multiplication by $\mathbb{Q}(\zeta_n)$.

 $n = \deg(f) = \deg(h)$ - odd prime, 2 mod n - prim. root, $f(x), h(x) \in K[x]$ - polynomials with simple roots, $\operatorname{char}(K) \neq 2$.

Special case of Theorem 1 Assume that $f(x) \in K[x]$ is irreducible, $h(x) \in K[x]$ completely splits. Then either $J(C_f) \not\sim J(C_h)$ or both jacobians are AV of **CM type** over \overline{K} with **multiplication by the** *n***th cyclotomic field** $\mathbb{Q}(\zeta_n)$. Proof $X = J(C_f), Y = J(C_h)$. *h* splits $\Rightarrow \tilde{G}_{2,Y} = \text{Gal}(h/K) = \{1\}$ $\Rightarrow Y[2] \subset Y(K)$ is the trivial Gal(K)-module. n = deg(f) is a prime + f(x) irreducible $\Rightarrow \#(\text{Gal}(f/K))$ is divisible by n, i.e., $\#(\tilde{G}_{2,X})$ is divisible by $n \xrightarrow{\text{Goodman}}$

the Gal(K)-module X[2] is simple.

By **Key Lemma**, either $J(C_f) = X \not\sim Y = J(C_h)$ or both $J(C_f)$ and $J(C_h)$ are AV of CM type over \overline{K} with multiplication by $\mathbb{Q}(\zeta_n)$.

Idea of the proof of Key Lemma $char(K) \neq 2, n = 2g + 1$ prime, 2 mod n a primitive root

Idea of the proof of Key Lemma $char(K) \neq 2, n = 2g + 1$ prime, 2 mod n a primitive root

We have: $X \sim Y$, $K_{2,Y} = K$, $n \mid [K_{2,X} : K]$.

Idea of the proof of Key Lemma $char(K) \neq 2, n = 2g + 1$ prime, 2 mod n a primitive root

We have: $X \sim Y$, $K_{2,Y} = K$, $n \mid [K_{2,X} : K]$. We want : $\operatorname{End}^0(Y) \supset \mathbb{Q}(\zeta_n)$. Let $\phi : X \to Y$ be isogeny.

イロト イヨト イヨト イヨト

I naa

Idea of the proof of Key Lemma $char(K) \neq 2, n = 2g + 1$ prime, 2 mod n a primitive root

We have: $X \sim Y$, $K_{2,Y} = K$, $n \mid [K_{2,X} : K]$. We want : End⁰ $(Y) \supset \mathbb{Q}(\zeta_n)$. Let $\phi : X \to Y$ be isogeny. **Case 1.** ϕ is defined over K.

イロト イヨト イヨト イヨト

э.

Idea of the proof of Key Lemma $char(K) \neq 2, n = 2g + 1$ prime, 2 mod *n* a primitive root

We have: $X \sim Y$, $K_{2,Y} = K$, $n \mid [K_{2,X} : K]$. We want : $End^0(Y) \supset \mathbb{Q}(\zeta_n)$. Let $\phi : X \to Y$ be isogeny. **Case 1.** ϕ is defined over K. By Goodman, X[2] is simple \Longrightarrow

< ロ > < 同 > < 三 > < 三 > 、

Idea of the proof of Key Lemma $char(K) \neq 2, n = 2g + 1$ prime, 2 mod *n* a primitive root

We have: $X \sim Y$, $K_{2,Y} = K$, $n \mid [K_{2,X} : K]$. We want : $\text{End}^0(Y) \supset \mathbb{Q}(\zeta_n)$. Let $\phi : X \to Y$ be isogeny. **Case 1.** ϕ is defined over K. By Goodman, X[2] is simple $\Longrightarrow \phi \mid_{X[2]} = 0 \Longrightarrow$

▲口 > ▲母 > ▲臣 > ▲臣 > ―臣 - 少へで

Idea of the proof of Key Lemma $char(K) \neq 2, n = 2g + 1$ prime, 2 mod *n* a primitive root

We have: $X \sim Y$, $K_{2,Y} = K$, $n \mid [K_{2,X} : K]$. We want : $\operatorname{End}^0(Y) \supset \mathbb{Q}(\zeta_n)$. Let $\phi : X \to Y$ be isogeny. **Case 1.** ϕ is defined over K. By Goodman, X[2] is simple $\Longrightarrow \phi \mid_{X[2]} = 0 \Longrightarrow \phi = 2\phi_1 \Longrightarrow$

 $char(K) \neq 2, n = 2g + 1$ prime, 2 mod n a primitive root

We have: $X \sim Y$, $K_{2,Y} = K$, $n \mid [K_{2,X} : K]$. We want : $\operatorname{End}^0(Y) \supset \mathbb{Q}(\zeta_n)$. Let $\phi : X \to Y$ be isogeny. **Case 1.** ϕ is defined over K. By Goodman, X[2] is simple $\Longrightarrow \phi \mid_{X[2]} = 0 \Longrightarrow \phi = 2\phi_1 \Longrightarrow$ similar: $\phi_1 = 2\phi_2, \phi_2 = 2\phi_3 \dots \Longrightarrow$

 $char(K) \neq 2, n = 2g + 1$ prime, 2 mod n a primitive root

We have: $X \sim Y$, $K_{2,Y} = K$, $n \mid [K_{2,X} : K]$. We want : $\operatorname{End}^0(Y) \supset \mathbb{Q}(\zeta_n)$. Let $\phi : X \to Y$ be isogeny. **Case 1.** ϕ is defined over K. By Goodman, X[2] is simple $\Longrightarrow \phi \mid_{X[2]} = 0 \Longrightarrow \phi = 2\phi_1 \Longrightarrow$ similar: $\phi_1 = 2\phi_2, \phi_2 = 2\phi_3 \dots \Longrightarrow \phi = 2^m \phi_m$ for any m.

 $char(K) \neq 2, n = 2g + 1$ prime, 2 mod n a primitive root

We have: $X \sim Y$, $K_{2,Y} = K$, $n \mid [K_{2,X} : K]$. We want : End⁰(Y) $\supset \mathbb{Q}(\zeta_n)$. Let $\phi : X \to Y$ be isogeny. **Case 1.** ϕ is defined over K. By Goodman, X[2] is simple $\Longrightarrow \phi \mid_{X[2]} = 0 \Longrightarrow \phi = 2\phi_1 \Longrightarrow$ similar: $\phi_1 = 2\phi_2, \phi_2 = 2\phi_3 \dots \Longrightarrow \phi = 2^m \phi_m$ for any m. Hom $(X, Y) \cong \mathbb{Z}' \Longrightarrow \phi = 0$ is **NOT** an isogeny.

 $char(K) \neq 2, n = 2g + 1$ prime, 2 mod n a primitive root

We have: $X \sim Y$, $K_{2,Y} = K$, $n \mid [K_{2,X} : K]$. We want : $\operatorname{End}^0(Y) \supset \mathbb{Q}(\zeta_n)$. Let $\phi : X \to Y$ be isogeny. **Case 1.** ϕ is defined over K. By Goodman, X[2] is simple $\Longrightarrow \phi \mid_{X[2]} = 0 \Longrightarrow \phi = 2\phi_1 \Longrightarrow$ similar: $\phi_1 = 2\phi_2, \phi_2 = 2\phi_3 \dots \Longrightarrow \phi = 2^m \phi_m$ for any m. Hom $(X, Y) \cong \mathbb{Z}^r \Longrightarrow \phi = 0$ is **NOT** an isogeny. Contradiction. **Case 2.**

 $char(K) \neq 2, n = 2g + 1$ prime, 2 mod n a primitive root

We have: $X \sim Y$, $K_{2,Y} = K$, $n \mid [K_{2,X} : K]$. We want : End⁰(Y) $\supset \mathbb{Q}(\zeta_n)$. Let $\phi : X \to Y$ be isogeny. **Case 1.** ϕ is defined over K. By Goodman, X[2] is simple $\Longrightarrow \phi \mid_{X[2]} = 0 \Longrightarrow \phi = 2\phi_1 \Longrightarrow$ similar: $\phi_1 = 2\phi_2, \phi_2 = 2\phi_3 \dots \Longrightarrow \phi = 2^m \phi_m$ for any m. Hom(X, Y) $\cong \mathbb{Z}^r \Longrightarrow \phi = 0$ is **NOT** an isogeny. Contradiction. **Case 2.** ϕ is not defined over K but defined over $K_{4,X \times Y}$ (Silverberg).

 $char(K) \neq 2, n = 2g + 1$ prime, 2 mod n a primitive root

We have: $X \sim Y$, $K_{2,Y} = K$, $n \mid [K_{2,X} : K]$. We want : $\operatorname{End}^0(Y) \supset \mathbb{Q}(\zeta_n)$. Let $\phi : X \to Y$ be isogeny. **Case 1.** ϕ is defined over K. By Goodman, X[2] is simple $\Longrightarrow \phi \mid_{X[2]} = 0 \Longrightarrow \phi = 2\phi_1 \Longrightarrow$ similar: $\phi_1 = 2\phi_2, \phi_2 = 2\phi_3 \dots \Longrightarrow \phi = 2^m \phi_m$ for any m. Hom $(X, Y) \cong \mathbb{Z}^r \Longrightarrow \phi = 0$ is **NOT** an isogeny. Contradiction. **Case 2.** ϕ is not defined over K but defined over $K_{4,X \times Y}$ (Silverberg). We prove

 $char(K) \neq 2, n = 2g + 1$ prime, 2 mod n a primitive root

We have: $X \sim Y$, $K_{2,Y} = K$, $n \mid [K_{2,X} : K]$. We want : End⁰(Y) $\supset \mathbb{Q}(\zeta_n)$. Let $\phi : X \to Y$ be isogeny. **Case 1.** ϕ is defined over K. By Goodman, X[2] is simple $\Longrightarrow \phi \mid_{X[2]} = 0 \Longrightarrow \phi = 2\phi_1 \Longrightarrow$ similar: $\phi_1 = 2\phi_2, \phi_2 = 2\phi_3 \dots \Longrightarrow \phi = 2^m \phi_m$ for any m. Hom(X, Y) $\cong \mathbb{Z}^r \Longrightarrow \phi = 0$ is **NOT** an isogeny. Contradiction. **Case 2.** ϕ is not defined over K but defined over $K_{4,X \times Y}$ (Silverberg). We prove

■ There exists $H \subset \text{Gal}(K_{4,X \times Y}/K)$, $H \cong \mathbb{Z}/n\mathbb{Z}$ and a group homomorphism $c : H \to \text{End}^0(Y)^*$ defined by

 $char(K) \neq 2, n = 2g + 1$ prime, 2 mod n a primitive root

We have: $X \sim Y$, $K_{2,Y} = K$, $n \mid [K_{2,X} : K]$. We want : End⁰(Y) $\supset \mathbb{Q}(\zeta_n)$. Let $\phi : X \to Y$ be isogeny. **Case 1.** ϕ is defined over K. By Goodman, X[2] is simple $\Longrightarrow \phi \mid_{X[2]} = 0 \Longrightarrow \phi = 2\phi_1 \Longrightarrow$ similar: $\phi_1 = 2\phi_2, \phi_2 = 2\phi_3 \dots \Longrightarrow \phi = 2^m \phi_m$ for any m. Hom(X, Y) $\cong \mathbb{Z}^r \Longrightarrow \phi = 0$ is **NOT** an isogeny. Contradiction. **Case 2.** ϕ is not defined over K but defined over $K_{4,X \times Y}$ (Silverberg). We prove

There exists H ⊂ Gal(K_{4,X×Y}/K), H ≃ Z/nZ and a group homomorphism c : H → End⁰(Y)* defined by σ(φ) = c(σ) ∘ φ for all σ ∈ H.

 $char(K) \neq 2, n = 2g + 1$ prime, 2 mod n a primitive root

We have: $X \sim Y$, $K_{2,Y} = K$, $n \mid [K_{2,X} : K]$. We want : $\operatorname{End}^0(Y) \supset \mathbb{Q}(\zeta_n)$. Let $\phi : X \to Y$ be isogeny. **Case 1.** ϕ is defined over K. By Goodman, X[2] is simple $\Longrightarrow \phi \mid_{X[2]} = 0 \Longrightarrow \phi = 2\phi_1 \Longrightarrow$ similar: $\phi_1 = 2\phi_2, \phi_2 = 2\phi_3 \dots \Longrightarrow \phi = 2^m \phi_m$ for any m. Hom $(X, Y) \cong \mathbb{Z}^r \Longrightarrow \phi = 0$ is **NOT** an isogeny. Contradiction. **Case 2.** ϕ is not defined over K but defined over $K_{4,X \times Y}$ (Silverberg). We prove

There exists $H \subset \text{Gal}(K_{4,X \times Y}/K), \ H \cong \mathbb{Z}/n\mathbb{Z}$ and a group homomorphism $c : H \to \text{End}^0(Y)^*$ defined by

$$\sigma(\phi) = c(\sigma) \circ \phi$$
 for all $\sigma \in H$.

2 \forall non-trivial $\sigma \in H$,

 $char(K) \neq 2, n = 2g + 1$ prime, 2 mod n a primitive root

We have: $X \sim Y$, $K_{2,Y} = K$, $n \mid [K_{2,X} : K]$. We want : End⁰(Y) $\supset \mathbb{Q}(\zeta_n)$. Let $\phi : X \to Y$ be isogeny. **Case 1.** ϕ is defined over K. By Goodman, X[2] is simple $\Longrightarrow \phi \mid_{X[2]} = 0 \Longrightarrow \phi = 2\phi_1 \Longrightarrow$ similar: $\phi_1 = 2\phi_2, \phi_2 = 2\phi_3 \dots \Longrightarrow \phi = 2^m \phi_m$ for any m. Hom(X, Y) $\cong \mathbb{Z}^r \Longrightarrow \phi = 0$ is **NOT** an isogeny. Contradiction. **Case 2.** ϕ is not defined over K but defined over $K_{4,X \times Y}$ (Silverberg). We prove

- There exists H ⊂ Gal(K_{4,X×Y}/K), H ≃ Z/nZ and a group homomorphism c : H → End⁰(Y)* defined by σ(φ) = c(σ) ∘ φ for all σ ∈ H.
- **2** \forall non-trivial $\sigma \in H$, $c(\sigma)$ has multiplicative order $n \implies$

 $char(K) \neq 2, n = 2g + 1$ prime, 2 mod n a primitive root

We have: $X \sim Y$, $K_{2,Y} = K$, $n \mid [K_{2,X} : K]$. We want : End⁰(Y) $\supset \mathbb{Q}(\zeta_n)$. Let $\phi : X \to Y$ be isogeny. **Case 1.** ϕ is defined over K. By Goodman, X[2] is simple $\Longrightarrow \phi \mid_{X[2]} = 0 \Longrightarrow \phi = 2\phi_1 \Longrightarrow$ similar: $\phi_1 = 2\phi_2, \phi_2 = 2\phi_3 \dots \Longrightarrow \phi = 2^m \phi_m$ for any m. Hom(X, Y) $\cong \mathbb{Z}^r \Longrightarrow \phi = 0$ is **NOT** an isogeny. Contradiction. **Case 2.** ϕ is not defined over K but defined over $K_{4,X \times Y}$ (Silverberg). We prove

- There exists H ⊂ Gal(K_{4,X×Y}/K), H ≃ Z/nZ and a group homomorphism c : H → End⁰(Y)* defined by σ(φ) = c(σ) ∘ φ for all σ ∈ H.

$\overline{\text{Constructing non-trivial } c: H \to \text{End}^0(Y)^*$

▲ロト▲御と▲臣と▲臣と 臣 めの()

Step 1.

Step 1. Change K to $\tilde{K} = K_{4,Y}$.

Step 1. Change K to $\tilde{K} = K_{4,Y} \Longrightarrow [\tilde{K} : K]$ is a power of 2.

Step 1. Change K to $\tilde{K} = K_{4,Y}$. $\Longrightarrow [\tilde{K} : K]$ is a power of 2. Since *n* is an odd prime, $n \mid [\tilde{K}_{2,X} : \tilde{K}]$ still holds

Step 1. Change K to $\tilde{K} = K_{4,Y} \Longrightarrow [\tilde{K} : K]$ is a power of 2. Since n is an odd prime, $n \mid [\tilde{K}_{2,X} : \tilde{K}]$ still holds \Longrightarrow there is a subgroup $H \subset \text{Gal}(\tilde{K}_{4,X}/\tilde{K}), \ H \cong \mathbb{Z}/n\mathbb{Z}$.

Step 1. Change K to $\tilde{K} = K_{4,Y} \Longrightarrow [\tilde{K} : K]$ is a power of 2. Since n is an odd prime, $n \mid [\tilde{K}_{2,X} : \tilde{K}]$ still holds \Longrightarrow there is a subgroup $H \subset \text{Gal}(\tilde{K}_{4,X}/\tilde{K}), H \cong \mathbb{Z}/n\mathbb{Z}$. Taking $L = \tilde{K}_{4,X}$ and $M = \tilde{K}_{4,X}^H$, we get

< ロ > < 同 > < 回 > < 回 > .

Step 1. Change *K* to $\tilde{K} = K_{4,Y}$. \Longrightarrow $[\tilde{K} : K]$ is a power of 2. Since *n* is an odd prime, $n \mid [\tilde{K}_{2,X} : \tilde{K}]$ still holds \Longrightarrow there is a subgroup $H \subset \text{Gal}(\tilde{K}_{4,X}/\tilde{K}), H \cong \mathbb{Z}/n\mathbb{Z}$. Taking $L = \tilde{K}_{4,X}$ and $M = \tilde{K}_{4,X}^H$, we get $\blacksquare M_{4,Y} = M$, $\text{Gal}(L/M) \cong \mathbb{Z}/n\mathbb{Z}$ and $M_{2,X} = M_{4,X} = L$;

Step 1. Change K to $\tilde{K} = K_{4,Y} \Longrightarrow [\tilde{K} : K]$ is a power of 2. Since n is an odd prime, $n \mid [\tilde{K}_{2,X} : \tilde{K}]$ still holds \Longrightarrow there is a subgroup $H \subset \text{Gal}(\tilde{K}_{4,X}/\tilde{K}), H \cong \mathbb{Z}/n\mathbb{Z}$. Taking $L = \tilde{K}_{4,X}$ and $M = \tilde{K}_{4,X}^H$, we get $\blacksquare M_{4,Y} = M$, $\text{Gal}(L/M) \cong \mathbb{Z}/n\mathbb{Z}$ and $M_{2,X} = M_{4,X} = L$;

< ロ > < 同 > < 三 > < 三 >

■ all endomorphisms of *Y* are defined over *M*;

Step 1. Change *K* to $\tilde{K} = K_{4,Y} \Longrightarrow [\tilde{K} : K]$ is a power of 2. Since *n* is an odd prime, $n \mid [\tilde{K}_{2,X} : \tilde{K}]$ still holds \Longrightarrow there is a subgroup $H \subset \text{Gal}(\tilde{K}_{4,X}/\tilde{K}), H \cong \mathbb{Z}/n\mathbb{Z}$. Taking $L = \tilde{K}_{4,X}$ and $M = \tilde{K}_{4,X}^H$, we get

- $M_{4,Y} = M$, $\operatorname{Gal}(L/M) \cong \mathbb{Z}/n\mathbb{Z}$ and $M_{2,X} = M_{4,X} = L$;
- all endomorphisms of *Y* are defined over *M*;
- all homomorphisns $X \rightarrow Y$ are defined over L.

Step 1. Change *K* to $\tilde{K} = K_{4,Y}$. $\Longrightarrow [\tilde{K} : K]$ is a power of 2. Since *n* is an odd prime, $n \mid [\tilde{K}_{2,X} : \tilde{K}]$ still holds \Longrightarrow there is a subgroup $H \subset \text{Gal}(\tilde{K}_{4,X}/\tilde{K}), H \cong \mathbb{Z}/n\mathbb{Z}$. Taking $L = \tilde{K}_{4,X}$ and $M = \tilde{K}_{4,X}^H$, we get $\blacksquare M_{4,Y} = M$, $\text{Gal}(L/M) \cong \mathbb{Z}/n\mathbb{Z}$ and $M_{2,X} = M_{4,X} = L$; \blacksquare all endomorphisms of *Y* are defined over *M*; \blacksquare all homomorphisms $X \to Y$ are defined over *L*.

Step 2.
Step 1. Change K to $\tilde{K} = K_{4,Y} \implies [\tilde{K} : K]$ is a power of 2. Since *n* is an odd prime, $n \mid [\tilde{K}_{2,X} : \tilde{K}]$ still holds \Longrightarrow there is a subgroup $H \subset \text{Gal}(K_{4,X}/K), \ H \cong \mathbb{Z}/n\mathbb{Z}$. Taking $L = \tilde{K}_{4,X}$ and $M = \tilde{K}_{4,X}^H$, we get • $M_{4,Y} = M$, $Gal(L/M) \cong \mathbb{Z}/n\mathbb{Z}$ and $M_{2,X} = M_{4,X} = L$; ■ all endomorphisms of Y are defined over M; • all homomorphisms $X \rightarrow Y$ are defined over L. **Step 2.** The Gal(M)-module X[2] is simple, Gal(M)-module Y[2]is **trivial** \implies similar to **Case 1** every isogeny $X \rightarrow Y$ is **not** defined over M.

Step 1. Change K to $\tilde{K} = K_{4,Y} \implies [\tilde{K} : K]$ is a power of 2. Since *n* is an odd prime, $n \mid [\tilde{K}_{2,X} : \tilde{K}]$ still holds \Longrightarrow there is a subgroup $H \subset \text{Gal}(\tilde{K}_{4,X}/\tilde{K}), \ H \cong \mathbb{Z}/n\mathbb{Z}$. Taking $L = \tilde{K}_{4,X}$ and $M = \tilde{K}_{4,X}^H$, we get • $M_{4,Y} = M$, $Gal(L/M) \cong \mathbb{Z}/n\mathbb{Z}$ and $M_{2,X} = M_{4,X} = L$; ■ all endomorphisms of Y are defined over M; all homomorphisms $X \rightarrow Y$ are defined over L. **Step 2.** The Gal(M)-module X[2] is simple, Gal(M)-module Y[2]is **trivial** \implies similar to **Case 1** every isogeny $X \rightarrow Y$ is **not** defined over M. $\implies \exists$ an *L*-isogeny $u: X \rightarrow Y$ that is **not** defined over M.

Step 1. Change K to $\tilde{K} = K_{4,Y} \implies [\tilde{K} : K]$ is a power of 2. Since *n* is an odd prime, $n \mid [\tilde{K}_{2,X} : \tilde{K}]$ still holds \Longrightarrow there is a subgroup $H \subset \text{Gal}(\tilde{K}_{4,X}/\tilde{K}), \ H \cong \mathbb{Z}/n\mathbb{Z}$. Taking $L = \tilde{K}_{4,X}$ and $M = \tilde{K}_{4,X}^H$, we get • $M_{4,Y} = M$, $Gal(L/M) \cong \mathbb{Z}/n\mathbb{Z}$ and $M_{2,X} = M_{4,X} = L$; ■ all endomorphisms of Y are defined over M; all homomorphisms $X \rightarrow Y$ are defined over L. **Step 2.** The Gal(M)-module X[2] is simple, Gal(M)-module Y[2]is **trivial** \implies similar to **Case 1** every isogeny $X \rightarrow Y$ is **not** defined over M. $\implies \exists$ an L-isogeny $u: X \rightarrow Y$ that is **not** defined over M. $\Longrightarrow \exists \sigma \in Gal(L/M)$ such that $\sigma u \neq u$.

Step 1. Change K to $\tilde{K} = K_{4,Y} \Longrightarrow [\tilde{K} : K]$ is a power of 2. Since *n* is an odd prime, $n \mid [\tilde{K}_{2,X} : \tilde{K}]$ still holds \Longrightarrow there is a subgroup $H \subset \text{Gal}(\tilde{K}_{4,X}/\tilde{K}), \ H \cong \mathbb{Z}/n\mathbb{Z}$. Taking $L = \tilde{K}_{4,X}$ and $M = \tilde{K}_{4,X}^H$, we get • $M_{4,Y} = M$, $Gal(L/M) \cong \mathbb{Z}/n\mathbb{Z}$ and $M_{2,X} = M_{4,X} = L$; ■ all endomorphisms of Y are defined over M; all homomorphisms $X \rightarrow Y$ are defined over L. **Step 2.** The Gal(M)-module X[2] is simple, Gal(M)-module Y[2]is **trivial** \implies similar to **Case 1** every isogeny $X \rightarrow Y$ is **not** defined over M. $\implies \exists$ an L-isogeny $u: X \rightarrow Y$ that is **not** defined over M. $\Longrightarrow \exists \sigma \in Gal(L/M)$ such that $\sigma u \neq u$. Then the cocycle $c : \mathbb{Z}/n\mathbb{Z} = \operatorname{Gal}(L/M) \to \operatorname{End}_{l}^{0}(Y)^{*}$ defined by $\sigma(u) = c(\sigma)u \ \forall \sigma \in \operatorname{Gal}(L/M)$

Step 1. Change K to $\tilde{K} = K_{4,Y} \Longrightarrow [\tilde{K} : K]$ is a power of 2. Since *n* is an odd prime, $n \mid [\tilde{K}_{2,X} : \tilde{K}]$ still holds \Longrightarrow there is a subgroup $H \subset \text{Gal}(\tilde{K}_{4,X}/\tilde{K}), \ H \cong \mathbb{Z}/n\mathbb{Z}$. Taking $L = \tilde{K}_{4,X}$ and $M = \tilde{K}_{4,X}^H$, we get • $M_{4,Y} = M$, $Gal(L/M) \cong \mathbb{Z}/n\mathbb{Z}$ and $M_{2,X} = M_{4,X} = L$; ■ all endomorphisms of Y are defined over M; all homomorphisms $X \rightarrow Y$ are defined over L. **Step 2.** The Gal(M)-module X[2] is simple, Gal(M)-module Y[2]is **trivial** \implies similar to **Case 1** every isogeny $X \rightarrow Y$ is **not** defined over M. $\implies \exists$ an L-isogeny $u: X \rightarrow Y$ that is **not** defined over M. $\Longrightarrow \exists \sigma \in Gal(L/M)$ such that $\sigma u \neq u$. Then the cocycle $c : \mathbb{Z}/n\mathbb{Z} = \operatorname{Gal}(L/M) \to \operatorname{End}_{l}^{0}(Y)^{*}$ defined by $\sigma(u) = c(\sigma)u \ \forall \sigma \in \operatorname{Gal}(L/M)$ is a **nontrivial** group homomorphism イロン イロン イヨン イヨン э

Step 1. Change K to $\tilde{K} = K_{4,Y} \implies [\tilde{K} : K]$ is a power of 2. Since *n* is an odd prime, $n \mid [\tilde{K}_{2,X} : \tilde{K}]$ still holds \Longrightarrow there is a subgroup $H \subset \text{Gal}(\tilde{K}_{4,X}/\tilde{K}), \ H \cong \mathbb{Z}/n\mathbb{Z}$. Taking $L = \tilde{K}_{4,X}$ and $M = \tilde{K}_{4,X}^H$, we get • $M_{4,Y} = M$, $Gal(L/M) \cong \mathbb{Z}/n\mathbb{Z}$ and $M_{2,X} = M_{4,X} = L$; ■ all endomorphisms of Y are defined over M; all homomorphisms $X \rightarrow Y$ are defined over L. **Step 2.** The Gal(M)-module X[2] is simple, Gal(M)-module Y[2]is **trivial** \implies similar to **Case 1** every isogeny $X \rightarrow Y$ is **not** defined over M. $\implies \exists$ an L-isogeny $u: X \rightarrow Y$ that is **not** defined over M. $\Longrightarrow \exists \sigma \in Gal(L/M)$ such that $\sigma u \neq u$. Then the cocycle $c : \mathbb{Z}/n\mathbb{Z} = \operatorname{Gal}(L/M) \to \operatorname{End}_{l}^{0}(Y)^{*}$ defined by $\sigma(u) = c(\sigma)u \ \forall \sigma \in \operatorname{Gal}(L/M)$ is a **nontrivial** group homomorphism \implies has order n.

Lemma, (Z, 2003)

Let X and Y are positive-dimensional abelian varieties over K that enjoys the following properties.

Lemma, (Z, 2003)

Let X and Y are positive-dimensional abelian varieties over K that enjoys the following properties.

(i) The Gal(K)-module X[2] is absolutely simple.

Lemma, (Z, 2003)

Let X and Y are positive-dimensional abelian varieties over K that enjoys the following properties.

- (i) The Gal(K)-module X[2] is absolutely simple.
- (ii) The Gal(K)-module Y[2] is simple.

Lemma, (Z, 2003)

Let X and Y are positive-dimensional abelian varieties over K that enjoys the following properties.

- (i) The Gal(K)-module X[2] is absolutely simple.
- (ii) The Gal(K)-module Y[2] is simple.
- (iii) The fields K(X[2]) and K(Y[2]) are linearly disjoint over K.

Lemma, (Z, 2003)

Let X and Y are positive-dimensional abelian varieties over K that enjoys the following properties.

- (i) The Gal(K)-module X[2] is absolutely simple.
- (ii) The Gal(K)-module Y[2] is simple.

(iii) The fields K(X[2]) and K(Y[2]) are linearly disjoint over K.

Then:

- **1** The Gal(K)-module Hom_{\mathbb{F}_2}(X[2], Y[2]) is simple.
- 2 Either

Hom $(X, Y) = \{0\}$, Hom $(Y, X) = \{0\}$ or char(K) > 0 and both X and Y are supersingular abelian varieties.