Geometric methods in representation theory of supergroups

Vera Serganova University of California, Berkeley

MPIM Bonn, March 10, 2022

イロト 不得 とくほとう ほんし

≣ ∽ < (1 / 65 Let C be some abelian (or triangulated) tensor category. For every object $M \in C$ we want to associate a geometric object (projective variety) X_M satisfying

2 / 65

- $X_{M \oplus N} = X_M \cup X_N;$
- $X_{M\otimes N} = X_N \cap X_N;$
- $\bullet \ X_M*=X_M;$
- M is projective iff $X_M = \emptyset$.

Examples:

- Representations of finite groups in positive characteristic.
- Representations of restricted Lie algebras.
- Finite (super)group schemes.
- Balmer spectrum of triangulated tensor categories.

Let C be some abelian (or triangulated) tensor category. For every object $M \in C$ we want to associate a geometric object (projective variety) X_M satisfying

- $X_{M \oplus N} = X_M \cup X_N;$
- $X_{M\otimes N} = X_N \cap X_N;$
- $X_{M*} = X_M;$
- M is projective iff $X_M = \emptyset$.

Examples:

- Representations of finite groups in positive characteristic.
- Representations of restricted Lie algebras.
- Finite (super)group schemes.
- Balmer spectrum of triangulated tensor categories.

- 1 Homology: $X_{\mathbf{k}} = \operatorname{Spec} \operatorname{Ext}^{\bullet}(\mathbf{k}, \mathbf{k}), X_{M} = \operatorname{Spec} \operatorname{Ext}^{\bullet}(M, M).$
- **2** Rank variety: maps of elementary objects $\pi : \mathbf{k}[t]/(t^p) \to \mathbf{k}[G]$ for finite groups, *p*-nilpotent elements for restricted Lie algebras. Check when restriction is not projective.
- **3** Rank variety and homological support coincide.

Goal: Generalize to supergroups.

- 1 Homology: $X_{\mathbf{k}} = \operatorname{Spec} \operatorname{Ext}^{\bullet}(\mathbf{k}, \mathbf{k}), X_{M} = \operatorname{Spec} \operatorname{Ext}^{\bullet}(M, M).$
- **2** Rank variety: maps of elementary objects $\pi : \mathbf{k}[t]/(t^p) \to \mathbf{k}[G]$ for finite groups, *p*-nilpotent elements for restricted Lie algebras. Check when restriction is not projective.
- **3** Rank variety and homological support coincide.
- Goal: Generalize to supergroups.

Now we switch to the ground field \mathbb{C} . The following three objects are the same (categories are equivalent):

- Affine algebraic supergroup G.
- Pair (\mathfrak{g}, G_0) where \mathfrak{g} is a Lie superalgebra, G_0 an algebraic group with Lie $G_0 = \mathfrak{g}_{\bar{0}}$, representation of G_0 in \mathfrak{g} whose differential is the adjoint representation.
- Commutative finitely generated Hopf superalgebra $\mathbb{C}[G]$.

By Rep G we denote the category of finite-dimensional representations of G and by RepG the category of all representations.

We call G reductive if Rep G is semisimple (any finite-dimensional representation is completely reducible).

Γ heorem

Now we switch to the ground field \mathbb{C} . The following three objects are the same (categories are equivalent):

- Affine algebraic supergroup G.
- Pair (\mathfrak{g}, G_0) where \mathfrak{g} is a Lie superalgebra, G_0 an algebraic group with Lie $G_0 = \mathfrak{g}_{\bar{0}}$, representation of G_0 in \mathfrak{g} whose differential is the adjoint representation.
- Commutative finitely generated Hopf superalgebra $\mathbb{C}[G]$.

By Rep G we denote the category of finite-dimensional representations of G and by RepG the category of all representations.

We call G reductive if Rep G is semisimple (any finite-dimensional representation is completely reducible).

Γ heorem

Now we switch to the ground field \mathbb{C} . The following three objects are the same (categories are equivalent):

- Affine algebraic supergroup G.
- Pair (\mathfrak{g}, G_0) where \mathfrak{g} is a Lie superalgebra, G_0 an algebraic group with Lie $G_0 = \mathfrak{g}_{\bar{0}}$, representation of G_0 in \mathfrak{g} whose differential is the adjoint representation.
- Commutative finitely generated Hopf superalgebra $\mathbb{C}[G]$.

By Rep G we denote the category of finite-dimensional representations of G and by RepG the category of all representations.

We call G reductive if $\operatorname{Rep} G$ is semisimple (any finite-dimensional representation is completely reducible).

Γ heorem

Now we switch to the ground field \mathbb{C} . The following three objects are the same (categories are equivalent):

- Affine algebraic supergroup G.
- Pair (\mathfrak{g}, G_0) where \mathfrak{g} is a Lie superalgebra, G_0 an algebraic group with Lie $G_0 = \mathfrak{g}_{\bar{0}}$, representation of G_0 in \mathfrak{g} whose differential is the adjoint representation.
- Commutative finitely generated Hopf superalgebra $\mathbb{C}[G]$.

By Rep G we denote the category of finite-dimensional representations of G and by RepG the category of all representations.

We call G reductive if $\operatorname{Rep} G$ is semisimple (any finite-dimensional representation is completely reducible).

Theorem

Rep G has many remarkable properties:

- Frobenius category. Enough projective and injective objects, every projective is injective and vice versa.
- $\operatorname{Ind}_{G_0}^G M$ is finite-dimensional if M is finite-dimensional.
- If $K \subset G$ is quasireductive then G/K is affine.
- If $K \subset G$ are both quasireductive then $\operatorname{Ind}_{G}^{K} : \operatorname{\overline{Rep}} K \to \operatorname{\overline{Rep}} G$ is exact maps projective modules to projective modules.

・ロト ・回 ト ・ヨト ・ヨト

10/65

A lot of similarities with finite groups in positive characteristic. Examples. GL(m|n), Q(n). Homological approach.[Boe, Kujawa, Nakano.]

- $\operatorname{Ext}^{\bullet}(\mathbb{C},\mathbb{C}) = \mathbb{C}[\mathfrak{g}_1^{G_0}]$ is a Noetherian (supercommutative) ring.
- Polynomial algebra in most classical examples.

 $\operatorname{Rep} G$ has many remarkable properties:

- Frobenius category. Enough projective and injective objects, every projective is injective and vice versa.
- $\operatorname{Ind}_{G_0}^G M$ is finite-dimensional if M is finite-dimensional.
- If $K \subset G$ is quasireductive then G/K is affine.
- If $K \subset G$ are both quasireductive then $\operatorname{Ind}_{K}^{G} : \overline{\operatorname{Rep}}K \to \overline{\operatorname{Rep}}G$ is exact maps projective modules to projective modules.

イロト 不通 と 不良 と 不良 とうほう

11/65

A lot of similarities with finite groups in positive characteristic. Examples. GL(m|n), Q(n). Homological approach.[Boe, Kujawa, Nakano.]

- $\operatorname{Ext}^{\bullet}(\mathbb{C},\mathbb{C}) = \mathbb{C}[\mathfrak{g}_1^{G_0}]$ is a Noetherian (supercommutative) ring.
- Polynomial algebra in most classical examples.

 $\operatorname{Rep} G$ has many remarkable properties:

- Frobenius category. Enough projective and injective objects, every projective is injective and vice versa.
- $\operatorname{Ind}_{G_0}^G M$ is finite-dimensional if M is finite-dimensional.
- If $K \subset G$ is quasireductive then G/K is affine.
- If $K \subset G$ are both quasireductive then $\operatorname{Ind}_{K}^{G} : \overline{\operatorname{Rep}} K \to \overline{\operatorname{Rep}} G$ is exact maps projective modules to projective modules.

12/65

A lot of similarities with finite groups in positive characteristic. Examples: GL(m|n), Q(n).

Homological approach.[Boe, Kujawa, Nakano.]

- $\operatorname{Ext}^{\bullet}(\mathbb{C},\mathbb{C}) = \mathbb{C}[\mathfrak{g}_1^{G_0}]$ is a Noetherian (supercommutative) ring.
- Polynomial algebra in most classical examples.

 $\operatorname{Rep} G$ has many remarkable properties:

- Frobenius category. Enough projective and injective objects, every projective is injective and vice versa.
- $\operatorname{Ind}_{G_0}^G M$ is finite-dimensional if M is finite-dimensional.
- If $K \subset G$ is quasireductive then G/K is affine.
- If $K \subset G$ are both quasireductive then $\operatorname{Ind}_{K}^{G} : \overline{\operatorname{Rep}} K \to \overline{\operatorname{Rep}} G$ is exact maps projective modules to projective modules.

13/65

A lot of similarities with finite groups in positive characteristic. Examples. GL(m|n), Q(n).

Homological approach. [Boe, Kujawa, Nakano.]

- $\operatorname{Ext}^{\bullet}(\mathbb{C},\mathbb{C}) = \mathbb{C}[\mathfrak{g}_1^{G_0}]$ is a Noetherian (supercommutative) ring.
- Polynomial algebra in most classical examples.

 $\operatorname{Rep} G$ has many remarkable properties:

- Frobenius category. Enough projective and injective objects, every projective is injective and vice versa.
- $\operatorname{Ind}_{G_0}^G M$ is finite-dimensional if M is finite-dimensional.
- If $K \subset G$ is quasireductive then G/K is affine.
- If $K \subset G$ are both quasireductive then $\operatorname{Ind}_{K}^{G} : \overline{\operatorname{Rep}} K \to \overline{\operatorname{Rep}} G$ is exact maps projective modules to projective modules.

A lot of similarities with finite groups in positive characteristic. Examples. GL(m|n), Q(n). Homological approach.[Boe, Kujawa, Nakano.]

- $\operatorname{Ext}^{\bullet}(\mathbb{C}, \mathbb{C}) = \mathbb{C}[\mathfrak{g}_1^{G_0}]$ is a Noetherian (supercommutative) ring.
- Polynomial algebra in most classical examples.

Let $\mathfrak{g} = \text{Lie } G$. We call $x \in \mathfrak{g}$ semisimple if $[x, x] \in \mathfrak{g}_0$ is semisimple. By Q_x we denote the quasireductive subgroup of G generated by x. Denote by \mathfrak{g}_1^{ss} the set of all odd semisimple elements of \mathfrak{g} .

A functor $S_x : \operatorname{Rep} G \to \operatorname{Svect}$ as the composition

 $\operatorname{Rep} G \xrightarrow{Res} \operatorname{Rep} Q_x \xrightarrow{S} \operatorname{Svect},$

where S is the semisimplification functor. Equivalently,

 $S_x M := \operatorname{Ker} x_M / (xM \cap \operatorname{Ker} x_M).$

 S_x is a symmetric monoidal functor although it is not exact!

Let M be a G-module. We define the support \mathcal{X}_M as

 $\mathcal{X}_M = \{ x \in \mathfrak{g}_1^{ss} \mid S_x M \neq 0 \}.$

Immediate: $\mathcal{X}_{M\otimes N} = \mathcal{X}_M \cap \mathcal{X}_N, \ \mathcal{X}_{M\oplus N} = \mathcal{X}_M \cup \mathcal{X}_N, \ \mathcal{X}_{M*} = \mathcal{X}_M.$ Need: projectivity detection.

Although $\mathfrak{g}_1^{s^*}$ and \mathcal{X}_M are not closed in \mathfrak{g}_1 , we should pass to the quotient \mathfrak{g}_1/G_0 using G_0 -equivariance.

Let $\mathfrak{g} = \text{Lie } G$. We call $x \in \mathfrak{g}$ semisimple if $[x, x] \in \mathfrak{g}_0$ is semisimple. By Q_x we denote the quasireductive subgroup of G generated by x. Denote by \mathfrak{g}_1^{ss} the set of all odd semisimple elements of \mathfrak{g} .

A functor $S_x : \operatorname{Rep} G \to \operatorname{Svect}$ as the composition

$$\operatorname{Rep} G \xrightarrow{Res} \operatorname{Rep} Q_x \xrightarrow{S} \operatorname{Svect},$$

where S is the semisimplification functor. Equivalently,

$$S_x M := \operatorname{Ker} x_M / (xM \cap \operatorname{Ker} x_M).$$

 S_x is a symmetric monoidal functor although it is not exact!

Let M be a G-module. We define the support \mathcal{X}_M as

$$\mathcal{X}_M = \{ x \in \mathfrak{g}_1^{ss} \mid S_x M \neq 0 \}.$$

Immediate: $\mathcal{X}_{M\otimes N} = \mathcal{X}_M \cap \mathcal{X}_N, \ \mathcal{X}_{M\oplus N} = \mathcal{X}_M \cup \mathcal{X}_N, \ \mathcal{X}_{M*} = \mathcal{X}_M.$ Need: projectivity detection.

Although $\mathfrak{g}_1^{s^*}$ and \mathcal{X}_M are not closed in \mathfrak{g}_1 , we should pass to the quotient \mathfrak{g}_1/G_0 using G_0 -equivariance.

Let $\mathfrak{g} = \text{Lie } G$. We call $x \in \mathfrak{g}$ semisimple if $[x, x] \in \mathfrak{g}_0$ is semisimple. By Q_x we denote the quasireductive subgroup of G generated by x. Denote by \mathfrak{g}_1^{ss} the set of all odd semisimple elements of \mathfrak{g} .

A functor $S_x : \operatorname{Rep} G \to \operatorname{Svect}$ as the composition

$$\operatorname{Rep} G \xrightarrow{Res} \operatorname{Rep} Q_x \xrightarrow{S} \operatorname{Svect},$$

where S is the semisimplification functor. Equivalently,

$$S_x M := \operatorname{Ker} x_M / (xM \cap \operatorname{Ker} x_M).$$

 S_x is a symmetric monoidal functor although it is not exact!

Let M be a G-module. We define the support \mathcal{X}_M as

 $\mathcal{X}_M = \{ x \in \mathfrak{g}_1^{ss} \mid S_x M \neq 0 \}.$

Immediate: $\mathcal{X}_{M\otimes N} = \mathcal{X}_M \cap \mathcal{X}_N, \ \mathcal{X}_{M\oplus N} = \mathcal{X}_M \cup \mathcal{X}_N, \ \mathcal{X}_{M*} = \mathcal{X}_M.$ Need: projectivity detection.

Although $\mathfrak{g}_1^{s^*}$ and \mathcal{X}_M are not closed in \mathfrak{g}_1 , we should pass to the quotient \mathfrak{g}_1/G_0 using G_0 -equivariance.

Let $\mathfrak{g} = \text{Lie } G$. We call $x \in \mathfrak{g}$ semisimple if $[x, x] \in \mathfrak{g}_0$ is semisimple. By Q_x we denote the quasireductive subgroup of G generated by x. Denote by \mathfrak{g}_1^{ss} the set of all odd semisimple elements of \mathfrak{g} .

A functor $S_x : \operatorname{Rep} G \to \operatorname{Svect}$ as the composition

$$\operatorname{Rep} G \xrightarrow{Res} \operatorname{Rep} Q_x \xrightarrow{S} \operatorname{Svect},$$

where S is the semisimplification functor. Equivalently,

$$S_x M := \operatorname{Ker} x_M / (xM \cap \operatorname{Ker} x_M).$$

 S_x is a symmetric monoidal functor although it is not exact!

Let M be a G-module. We define the support \mathcal{X}_M as

 $\mathcal{X}_M = \{ x \in \mathfrak{g}_1^{ss} \mid S_x M \neq 0 \}.$

Immediate: $\mathcal{X}_{M\otimes N} = \mathcal{X}_{M} \cap \mathcal{X}_{N}, \ \mathcal{X}_{M\oplus N} = \mathcal{X}_{M} \cup \mathcal{X}_{N}, \ \mathcal{X}_{M*} = \mathcal{X}_{M}.$ Need: projectivity detection.

Although \mathfrak{g}_1^{ss} and \mathcal{X}_M are not closed in \mathfrak{g}_1 , we should pass to the quotient \mathfrak{g}_1/G_0 using G_0 -equivariance.

Let $\mathfrak{g} = \text{Lie } G$. We call $x \in \mathfrak{g}$ semisimple if $[x, x] \in \mathfrak{g}_0$ is semisimple. By Q_x we denote the quasireductive subgroup of G generated by x. Denote by \mathfrak{g}_1^{ss} the set of all odd semisimple elements of \mathfrak{g} .

A functor $S_x : \operatorname{Rep} G \to \operatorname{Svect}$ as the composition

$$\operatorname{Rep} G \xrightarrow{Res} \operatorname{Rep} Q_x \xrightarrow{S} \operatorname{Svect},$$

where S is the semisimplification functor. Equivalently,

$$S_x M := \operatorname{Ker} x_M / (xM \cap \operatorname{Ker} x_M).$$

 S_x is a symmetric monoidal functor although it is not exact!

Let M be a G-module. We define the support \mathcal{X}_M as

$$\mathcal{X}_M = \{ x \in \mathfrak{g}_1^{ss} \mid S_x M \neq 0 \}.$$

Immediate: $\mathcal{X}_{M\otimes N} = \mathcal{X}_M \cap \mathcal{X}_N$, $\mathcal{X}_{M\oplus N} = \mathcal{X}_M \cup \mathcal{X}_N$, $\mathcal{X}_{M*} = \mathcal{X}_M$. Need: projectivity detection.

Although \mathfrak{g}_1^{ss} and \mathcal{X}_M are not closed in \mathfrak{g}_1 , we should pass to the quotient \mathfrak{g}_1/G_0 using G_0 -equivariance.

Let $\mathfrak{g} = \text{Lie } G$. We call $x \in \mathfrak{g}$ semisimple if $[x, x] \in \mathfrak{g}_0$ is semisimple. By Q_x we denote the quasireductive subgroup of G generated by x. Denote by \mathfrak{g}_1^{ss} the set of all odd semisimple elements of \mathfrak{g} .

A functor $S_x : \operatorname{Rep} G \to \operatorname{Svect}$ as the composition

$$\operatorname{Rep} G \xrightarrow{Res} \operatorname{Rep} Q_x \xrightarrow{S} \operatorname{Svect},$$

where S is the semisimplification functor. Equivalently,

$$S_x M := \operatorname{Ker} x_M / (xM \cap \operatorname{Ker} x_M).$$

 S_x is a symmetric monoidal functor although it is not exact!

Let M be a G-module. We define the support \mathcal{X}_M as

$$\mathcal{X}_M = \{ x \in \mathfrak{g}_1^{ss} \mid S_x M \neq 0 \}.$$

Immediate: $\mathcal{X}_{M\otimes N} = \mathcal{X}_M \cap \mathcal{X}_N, \ \mathcal{X}_{M\oplus N} = \mathcal{X}_M \cup \mathcal{X}_N, \ \mathcal{X}_{M*} = \mathcal{X}_M.$ Need: projectivity detection.

Although \mathfrak{g}_1^{ss} and \mathcal{X}_M are not closed in \mathfrak{g}_1 , we should pass to the quotient \mathfrak{g}_1/G_0 using G_0 -equivariance.

Let $K \subset G$ be both quasireductive. Then $\mathcal{O}(G/K) = \operatorname{Ind}_{K}^{G} \mathbb{C}$ contains a trivial *G*-submodule \mathbb{C} . We call *K* detecting in *G* if $\mathbb{C} \to \mathcal{O}(G/K)$ splits.

Γ heorem

The following conditions on the subgroup K in G are equivalent:

- K is detecting;
- 2 Any G-module M splits as a direct summand in $\operatorname{Ind}_K^G M$.
- 3 For any pair of G-modules M, M', the restriction morphism

 $\operatorname{Ext}_{G}^{i}(M, M') \to \operatorname{Ext}_{K}^{i}(M, M')$

is injective for all i.

Example

Let G be a finite group but ground field has a positive characteristic p. Then K is detecting if it contains a p-Sylow subgroup of G.

Let $K \subset G$ be both quasireductive. Then $\mathcal{O}(G/K) = \operatorname{Ind}_K^{\mathbb{C}} \mathbb{C}$ contains a trivial *G*-submodule \mathbb{C} . We call *K* detecting in *G* if $\mathbb{C} \to \mathcal{O}(G/K)$ splits.

Theorem

The following conditions on the subgroup K in G are equivalent:

- I K is detecting;
- 2 Any G-module M splits as a direct summand in $\operatorname{Ind}_{K}^{G} M$.
- **3** For any pair of G-modules M, M', the restriction morphism

$$\operatorname{Ext}^{i}_{G}(M, M') \to \operatorname{Ext}^{i}_{K}(M, M')$$

is injective for all i.

$\mathbf{Example}$

Let G be a finite group but ground field has a positive characteristic p. Then K is detecting if it contains a p-Sylow subgroup of G.

Let $K \subset G$ be both quasireductive. Then $\mathcal{O}(G/K) = \operatorname{Ind}_K^{\mathbb{C}} \mathbb{C}$ contains a trivial *G*-submodule \mathbb{C} . We call *K* detecting in *G* if $\mathbb{C} \to \mathcal{O}(G/K)$ splits.

Theorem

The following conditions on the subgroup K in G are equivalent:

- I K is detecting;
- 2 Any G-module M splits as a direct summand in $\operatorname{Ind}_{K}^{G} M$.
- **3** For any pair of G-modules M, M', the restriction morphism

$$\operatorname{Ext}^{i}_{G}(M, M') \to \operatorname{Ext}^{i}_{K}(M, M')$$

is injective for all i.

Example

Let G be a finite group but ground field has a positive characteristic p. Then K is detecting if it contains a p-Sylow subgroup of G.

Let $K \subset G$ be both quasireductive. Then $\mathcal{O}(G/K) = \operatorname{Ind}_K^{\mathbb{C}} \mathbb{C}$ contains a trivial *G*-submodule \mathbb{C} . We call *K* detecting in *G* if $\mathbb{C} \to \mathcal{O}(G/K)$ splits.

Theorem

The following conditions on the subgroup K in G are equivalent:

- I K is detecting;
- 2 Any G-module M splits as a direct summand in $\operatorname{Ind}_{K}^{G} M$.
- **3** For any pair of G-modules M, M', the restriction morphism

$$\operatorname{Ext}^{i}_{G}(M, M') \to \operatorname{Ext}^{i}_{K}(M, M')$$

is injective for all i.

Example

Let G be a finite group but ground field has a positive characteristic p. Then K is detecting if it contains a p-Sylow subgroup of G.

Transitivity. Given $K \subset H \subset G$.

1 If K is a detecting subgroup in G, then H is also a detecting subgroup in G.

2 If K is a detecting subgroup of H, and H is a detecting subgroup of G, then K is a detecting subgroup of G.

Theorem (I. Entova-Aizenbud-V.S.-A. Sherman)

If K is a detecting subgroup of G then the restriction functor maps negligible morphisms to negligible morphisms. The restriction functor descends to the functor between semisimplifications of $\operatorname{Rep} G$ and $\operatorname{Rep} K$.

A morphism (*G*-equivariant map) $V \xrightarrow{I} W$ is called negligible if for any $W \xrightarrow{g} V$ the supertrace of $f \circ g$ is zero.

Theorem (V.S.-A. Sherman)

Let K be a detecting subgroup of G. Then any G_0 -orbit in \mathfrak{g}_1^{ss} has non-empty intersection with \mathfrak{e}_1 .

Idea of proof. If $G_0 x \cap \mathfrak{t}_1 = \emptyset$ then the corresponding vector field on G/K does not have zeros. Using localization we can prove that $S_x \mathcal{O}(G/K) = 0$.

Transitivity. Given $K \subset H \subset G$.

1 If K is a detecting subgroup in G, then H is also a detecting subgroup in G.

2 If K is a detecting subgroup of H, and H is a detecting subgroup of G, then K is a detecting subgroup of G.

Theorem (I. Entova-Aizenbud-V.S.-A. Sherman)

If K is a detecting subgroup of G then the restriction functor maps negligible morphisms to negligible morphisms. The restriction functor descends to the functor between semisimplifications of $\operatorname{Rep} G$ and $\operatorname{Rep} K$.

A morphism (*G*-equivariant map) $V \xrightarrow{f} W$ is called negligible if for any $W \xrightarrow{g} V$ the supertrace of $f \circ g$ is zero.

Theorem (V.S.-A. Sherman)

Let K be a detecting subgroup of G. Then any G_0 -orbit in \mathfrak{g}_1^{ss} has non-empty intersection with \mathfrak{l}_1 .

Idea of proof. If $G_0 x \cap \mathfrak{k}_1 = \emptyset$ then the corresponding vector field on G/K does not have zeros. Using localization we can prove that $S_x \mathcal{O}(G/K) = 0$.

Transitivity. Given $K \subset H \subset G$.

1 If K is a detecting subgroup in G, then H is also a detecting subgroup in G.

2 If K is a detecting subgroup of H, and H is a detecting subgroup of G, then K is a detecting subgroup of G.

Theorem (I. Entova-Aizenbud-V.S.-A. Sherman)

If K is a detecting subgroup of G then the restriction functor maps negligible morphisms to negligible morphisms. The restriction functor descends to the functor between semisimplifications of $\operatorname{Rep} G$ and $\operatorname{Rep} K$.

A morphism (*G*-equivariant map) $V \xrightarrow{f} W$ is called negligible if for any $W \xrightarrow{g} V$ the supertrace of $f \circ g$ is zero.

Theorem (V.S.-A. Sherman)

Let K be a detecting subgroup of G. Then any G_0 -orbit in \mathfrak{g}_1^{ss} has non-empty intersection with \mathfrak{k}_1 .

Idea of proof. If $G_0x \cap \mathfrak{k}_1 = \emptyset$ then the corresponding vector field on G/K does not have zeros. Using localization we can prove that $S_x \mathcal{O}(G/K) = 0$.

Goal: Find small detecting subgroup in G.

- Let G = GL(m|n). When $K = GL(p|q) \times GL(m-p|n-q)$ is detecting?
- Geometric necessary condition implies min(p, q) + min(m − p, n − q) = min(m, n) or, equivalently, p − q, m − n and (m − p) − (n − q) are all non-negative or all non-positive.
- Unitary trick. The group G has a compact real form U, unitary supergroup. Then the supergrassmannian $M = U/(K \cap U) = Gr(p|q, m|n)$ is a closed U-orbit in G/K. It has U-invariant volume form. The integral \int_M defines a U-equivariant map $\mathcal{O}(G/K) \to \mathbb{C}$ and hence a G-equivariant map. This map defines a splitting iff the volume of the supergrassmannian M is not zero. We can prove that it is not zero exactly when the necessary condition holds.

Theorem (V.S.-A. Sherman)

The subgroup $GL(p|q) \times GL(m-p|n-q)$ is a detecting subgroup in GL(m|n) if and only if Gr(p|q, m|n) has a non-zero volume. Gr(p|q,m|n) will denote the supermanifold of $(p|q)\text{-dimensional subspaces in }\mathbb{C}^{m|n}.$

Properties

- Underlying manifold $Gr(p,m) \times Gr(q,n)$ is compact.
- $D := \dim_{\mathbb{C}} Gr(p|q, m|n) = ((m-p)p + (n-q)q|(m-p)q + p(n-q)).$
- $Gr(p|q,m|n) \simeq Gr(m-p|n-q,m|n).$
- Homogeneous supermanifold $U(m|n)/U(p|q) \times U(m-p|n-q)$ where U(a|b) is the unitary supergroup: preserves Hermitian form on $\mathbb{C}^{a|b}$.
- Lie algebra $\mathfrak{u}(m|n) = \{X \in \mathfrak{gl}(m|n) \mid X^* = X\}$

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}^* = \begin{pmatrix} \bar{A}^t & \mathbf{i}\bar{B}^t \\ \mathbf{i}\bar{C}^t & D^t \end{pmatrix}.$$

Let $x \in \mathfrak{u}(m|n)_{\bar{0}}$ of rank (p|q) and $x^2 = x$. Then Gr(p|q, m|n) is isomorphic to the U(m|n)-orbit of x.

29 / 65

Gr(p|q,m|n) will denote the supermanifold of $(p|q)\text{-dimensional subspaces in }\mathbb{C}^{m|n}.$

Properties

- Underlying manifold $Gr(p,m) \times Gr(q,n)$ is compact.
- $D := \dim_{\mathbb{C}} Gr(p|q, m|n) = ((m-p)p + (n-q)q|(m-p)q + p(n-q)).$
- $Gr(p|q,m|n) \simeq Gr(m-p|n-q,m|n).$
- Homogeneous supermanifold $U(m|n)/U(p|q) \times U(m-p|n-q)$ where U(a|b) is the unitary supergroup: preserves Hermitian form on $\mathbb{C}^{a|b}$.
- Lie algebra $\mathfrak{u}(m|n) = \{X \in \mathfrak{gl}(m|n) \mid X^* = X\}$

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}^* = \begin{pmatrix} \bar{A}^t & \mathbf{i}\bar{B}^t \\ \mathbf{i}\bar{C}^t & D^t \end{pmatrix}.$$

Let $x \in \mathfrak{u}(m|n)_{\bar{0}}$ of rank (p|q) and $x^2 = x$. Then Gr(p|q, m|n) is isomorphic to the U(m|n)-orbit of x.

Gr(p|q,m|n) will denote the supermanifold of $(p|q)\text{-dimensional subspaces in }\mathbb{C}^{m|n}.$

Properties

- Underlying manifold $Gr(p,m) \times Gr(q,n)$ is compact.
- $D := \dim_{\mathbb{C}} Gr(p|q, m|n) = ((m-p)p + (n-q)q|(m-p)q + p(n-q)).$
- $Gr(p|q,m|n) \simeq Gr(m-p|n-q,m|n).$
- Homogeneous supermanifold $U(m|n)/U(p|q) \times U(m-p|n-q)$ where U(a|b) is the unitary supergroup: preserves Hermitian form on $\mathbb{C}^{a|b}$.
- Lie algebra $\mathfrak{u}(m|n) = \{X \in \mathfrak{gl}(m|n) \mid X^* = X\}$

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}^* = \begin{pmatrix} \bar{A}^t & \mathbf{i}\bar{B}^t \\ \mathbf{i}\bar{C}^t & D^t \end{pmatrix}.$$

Let $x \in \mathfrak{u}(m|n)_{\bar{0}}$ of rank (p|q) and $x^2 = x$. Then Gr(p|q, m|n) is isomorphic to the U(m|n)-orbit of x.

Gr(p|q,m|n) will denote the supermanifold of $(p|q)\text{-dimensional subspaces in }\mathbb{C}^{m|n}.$

Properties

- Underlying manifold $Gr(p,m) \times Gr(q,n)$ is compact.
- $D := \dim_{\mathbb{C}} Gr(p|q, m|n) = ((m-p)p + (n-q)q|(m-p)q + p(n-q)).$
- $Gr(p|q,m|n) \simeq Gr(m-p|n-q,m|n).$
- Homogeneous supermanifold $U(m|n)/U(p|q) \times U(m-p|n-q)$ where U(a|b) is the unitary supergroup: preserves Hermitian form on $\mathbb{C}^{a|b}$.
- Lie algebra $\mathfrak{u}(m|n) = \{X \in \mathfrak{gl}(m|n) \mid X^* = X\}$

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}^* = \begin{pmatrix} \bar{A}^t & \mathbf{i}\bar{B}^t \\ \mathbf{i}\bar{C}^t & D^t \end{pmatrix}.$$

Let $x \in \mathfrak{u}(m|n)_{\bar{0}}$ of rank (p|q) and $x^2 = x$. Then Gr(p|q, m|n) is isomorphic to the U(m|n)-orbit of x.

イロト 不通 ト イヨト イヨト ヨー ろんで

32 / 65

Gr(p|q,m|n) will denote the supermanifold of $(p|q)\text{-dimensional subspaces in }\mathbb{C}^{m|n}.$

Properties

- Underlying manifold $Gr(p,m) \times Gr(q,n)$ is compact.
- $D := \dim_{\mathbb{C}} Gr(p|q, m|n) = ((m-p)p + (n-q)q|(m-p)q + p(n-q)).$
- $Gr(p|q,m|n) \simeq Gr(m-p|n-q,m|n).$
- Homogeneous supermanifold $U(m|n)/U(p|q) \times U(m-p|n-q)$ where U(a|b) is the unitary supergroup: preserves Hermitian form on $\mathbb{C}^{a|b}$.
- Lie algebra $\mathfrak{u}(m|n) = \{X \in \mathfrak{gl}(m|n) \mid X^* = X\}$

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}^* = \begin{pmatrix} \bar{A}^t & \mathbf{i}\bar{B}^t \\ \mathbf{i}\bar{C}^t & D^t \end{pmatrix}.$$

Let $x \in \mathfrak{u}(m|n)_{\bar{0}}$ of rank (p|q) and $x^2 = x$. Then Gr(p|q, m|n) is isomorphic to the U(m|n)-orbit of x.

イロト 不通 ト イヨト イヨト ヨー ろんで

33 / 65

Gr(p|q,m|n) will denote the supermanifold of $(p|q)\text{-dimensional subspaces in }\mathbb{C}^{m|n}.$

Properties

- Underlying manifold $Gr(p,m) \times Gr(q,n)$ is compact.
- $D := \dim_{\mathbb{C}} Gr(p|q, m|n) = ((m-p)p + (n-q)q|(m-p)q + p(n-q)).$
- $Gr(p|q,m|n) \simeq Gr(m-p|n-q,m|n).$
- Homogeneous supermanifold $U(m|n)/U(p|q) \times U(m-p|n-q)$ where U(a|b) is the unitary supergroup: preserves Hermitian form on $\mathbb{C}^{a|b}$.

• Lie algebra
$$\mathfrak{u}(m|n) = \{X \in \mathfrak{gl}(m|n) \mid X^* = X\}$$

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}^* = \begin{pmatrix} \bar{A}^t & \mathbf{i}\bar{B}^t \\ \mathbf{i}\bar{C}^t & D^t \end{pmatrix}.$$

Let $x \in \mathfrak{u}(m|n)_{\bar{0}}$ of rank (p|q) and $x^2 = x$. Then Gr(p|q, m|n) is isomorphic to the U(m|n)-orbit of x.

イロト 不通 ト イヨト イヨト ヨー ろんで

34 / 65

Gr(p|q,m|n) will denote the supermanifold of $(p|q)\text{-dimensional subspaces in }\mathbb{C}^{m|n}.$

Properties

- Underlying manifold $Gr(p,m) \times Gr(q,n)$ is compact.
- $D := \dim_{\mathbb{C}} Gr(p|q, m|n) = ((m-p)p + (n-q)q|(m-p)q + p(n-q)).$
- $Gr(p|q,m|n) \simeq Gr(m-p|n-q,m|n).$
- Homogeneous supermanifold $U(m|n)/U(p|q) \times U(m-p|n-q)$ where U(a|b) is the unitary supergroup: preserves Hermitian form on $\mathbb{C}^{a|b}$.

• Lie algebra
$$\mathfrak{u}(m|n) = \{X \in \mathfrak{gl}(m|n) \mid X^* = X\}$$

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}^* = \begin{pmatrix} \bar{A}^t & \mathbf{i}\bar{B}^t \\ \mathbf{i}\bar{C}^t & D^t \end{pmatrix}.$$

Let $x \in \mathfrak{u}(m|n)_{\bar{0}}$ of rank (p|q) and $x^2 = x$. Then Gr(p|q, m|n) is isomorphic to the U(m|n)-orbit of x.

Gr(p|q,m|n) will denote the supermanifold of $(p|q)\text{-dimensional subspaces in }\mathbb{C}^{m|n}.$

Properties

- Underlying manifold $Gr(p,m) \times Gr(q,n)$ is compact.
- $D := \dim_{\mathbb{C}} Gr(p|q, m|n) = ((m-p)p + (n-q)q|(m-p)q + p(n-q)).$
- $Gr(p|q,m|n) \simeq Gr(m-p|n-q,m|n).$
- Homogeneous supermanifold $U(m|n)/U(p|q) \times U(m-p|n-q)$ where U(a|b) is the unitary supergroup: preserves Hermitian form on $\mathbb{C}^{a|b}$.

• Lie algebra
$$\mathfrak{u}(m|n) = \{X \in \mathfrak{gl}(m|n) \mid X^* = X\}$$

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}^* = \begin{pmatrix} \bar{A}^t & \mathbf{i}\bar{B}^t \\ \mathbf{i}\bar{C}^t & D^t \end{pmatrix}.$$

Let $x \in \mathfrak{u}(m|n)_{\bar{0}}$ of rank (p|q) and $x^2 = x$. Then Gr(p|q, m|n) is isomorphic to the U(m|n)-orbit of x.

Berezinian: $\operatorname{Ber}\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(A - BD^{-1}C) \det D^{-1}.$ Volume form $\omega = f(x,\xi)d\xi dx$ on a supermanifold \mathcal{M} : $f(x,\xi)d\xi dx = \operatorname{Ber} \frac{\partial(x,\xi)}{\partial(y,\eta)}f(y,\eta)d\eta dy.$

If f is a function on $\mathbb{R}^{m|n}$ with compact support then

$$\int_{\mathbb{R}^{m|n}} f(x,\xi) d\xi dx := \frac{\partial}{\partial \xi_1} \dots \frac{\partial}{\partial \xi_n} \int_{\mathbb{R}^m} f(x,\xi) dx,$$
$$= (x_1, \dots, x_m), \ \xi = (\xi_1, \dots, \xi_n).$$

To integrate a form over a supermanifold \mathcal{M} we need to use

- Partition of unity.
- Fix orientation of the underlying manifold \mathcal{M}_0 .

Berezinian:

Ber
$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
 = det $(A - BD^{-1}C)$ det D^{-1} .

Volume form $\omega = f(x,\xi)d\xi dx$ on a supermanifold \mathcal{M} :

$$f(x,\xi)d\xi dx = \operatorname{Ber} \frac{\partial(x,\xi)}{\partial(y,\eta)}f(y,\eta)d\eta dy.$$

If f is a function on $\mathbb{R}^{m|n}$ with compact support then

$$\int_{\mathbb{R}^{m|n}} f(x,\xi) d\xi dx := \frac{\partial}{\partial \xi_1} \dots \frac{\partial}{\partial \xi_n} \int_{\mathbb{R}^m} f(x,\xi) dx,$$
$$= (x_1, \dots, x_m), \ \xi = (\xi_1, \dots, \xi_n).$$

To integrate a form over a supermanifold \mathcal{M} we need to use

- Partition of unity.
- Fix orientation of the underlying manifold \mathcal{M}_0 .

Berezinian:

Ber
$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
 = det $(A - BD^{-1}C)$ det D^{-1} .

Volume form $\omega = f(x,\xi)d\xi dx$ on a supermanifold \mathcal{M} :

$$f(x,\xi)d\xi dx = \operatorname{Ber} \frac{\partial(x,\xi)}{\partial(y,\eta)}f(y,\eta)d\eta dy.$$

If f is a function on $\mathbb{R}^{m|n}$ with compact support then

$$\int_{\mathbb{R}^{m|n}} f(x,\xi) d\xi dx := \frac{\partial}{\partial \xi_1} \dots \frac{\partial}{\partial \xi_n} \int_{\mathbb{R}^m} f(x,\xi) dx,$$
$$x = (x_1, \dots, x_m), \ \xi = (\xi_1, \dots, \xi_n).$$

To integrate a form over a supermanifold \mathcal{M} we need to use

- Partition of unity.
- Fix orientation of the underlying manifold \mathcal{M}_0 .

ヘロト ヘヨト ヘヨト ヘヨト

Berezinian:

x

Ber
$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
 = det $(A - BD^{-1}C)$ det D^{-1} .

Volume form $\omega = f(x,\xi)d\xi dx$ on a supermanifold \mathcal{M} :

$$f(x,\xi)d\xi dx = \operatorname{Ber} \frac{\partial(x,\xi)}{\partial(y,\eta)}f(y,\eta)d\eta dy.$$

If f is a function on $\mathbb{R}^{m|n}$ with compact support then

$$\int_{\mathbb{R}^{m|n}} f(x,\xi) d\xi dx := \frac{\partial}{\partial \xi_1} \dots \frac{\partial}{\partial \xi_n} \int_{\mathbb{R}^m} f(x,\xi) dx,$$
$$= (x_1, \dots, x_m), \ \xi = (\xi_1, \dots, \xi_n).$$

To integrate a form over a supermanifold \mathcal{M} we need to use

- Partition of unity.
- Fix orientation of the underlying manifold \mathcal{M}_0 .

Example

(Rudakov) Let dim $\mathcal{M} = (1|2)$, $\mathcal{M}_0 = (0, 1)$, two coordinate systems (x, ξ_1, ξ_2) and $y = (y, \eta_1, \eta_2)$ related by

$$y = x + \xi_1 \xi_2, \ \eta_i = \xi_i.$$

We have Ber $\frac{\partial(y,\eta)}{\partial(x,\xi)} = 1$ Then

$$y d\eta_1 d\eta_2 dy = 0, \quad \int_{\mathcal{M}} (x + \xi_1 \xi_2) d\xi_1 d\xi_2 dx = -1.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = つへ⊙

41 / 65

Example

(Rudakov) Let dim $\mathcal{M} = (1|2)$, $\mathcal{M}_0 = (0, 1)$, two coordinate systems (x, ξ_1, ξ_2) and $y = (y, \eta_1, \eta_2)$ related by

$$y = x + \xi_1 \xi_2, \ \eta_i = \xi_i.$$

We have Ber $\frac{\partial(y,\eta)}{\partial(x,\xi)}=1$ Then

$$\int_{\mathcal{M}} y d\eta_1 d\eta_2 dy = 0, \quad \int_{\mathcal{M}} (x + \xi_1 \xi_2) d\xi_1 d\xi_2 dx = -1.$$

・ロト ・四ト ・ヨト ・ヨー うへぐ

42 / 65

Let \mathcal{M} be a symplectic supermanifold with Hamiltonian action of the Lie superalgebra \mathfrak{g} . Then there exists a canonical \mathfrak{g} -invariant volume form ω on \mathcal{M} .

In Darboux coordinates

$$\Omega = \sum_{i=1}^{\frac{m}{2}} dx_i \wedge dy_i + \sum_{j=1}^{n} d\xi_j \wedge d\xi_j,$$

$$\omega = dx_1 \dots dx_{\frac{m}{2}} dy_1 \dots dy_{\frac{m}{2}} d\xi_1 \dots d\xi_n.$$

Gr(p|q, m|n) has a U(m|n)-invariant volume form unique up to rescaling.

Problem. Compute the volume of Gr(p|q, m|n).

Very often the volume of the compact supermanifold is zero. For example the volume of the supergroup U(m|n) (with respect to Haar volume form) is 0 unless mn = 0.

Let \mathcal{M} be a symplectic supermanifold with Hamiltonian action of the Lie superalgebra \mathfrak{g} . Then there exists a canonical \mathfrak{g} -invariant volume form ω on \mathcal{M} .

In Darboux coordinates

$$\Omega = \sum_{i=1}^{\frac{m}{2}} dx_i \wedge dy_i + \sum_{j=1}^{n} d\xi_j \wedge d\xi_j,$$

$$\omega = dx_1 \dots dx_{\frac{m}{2}} dy_1 \dots dy_{\frac{m}{2}} d\xi_1 \dots d\xi_n.$$

Gr(p|q,m|n) has a $U(m|n)\mbox{-invariant}$ volume form unique up to rescaling.

Problem. Compute the volume of Gr(p|q, m|n).

Very often the volume of the compact supermanifold is zero. For example the volume of the supergroup U(m|n) (with respect to Haar volume form) is 0 unless mn = 0.

Let \mathcal{M} be a symplectic supermanifold with Hamiltonian action of the Lie superalgebra \mathfrak{g} . Then there exists a canonical \mathfrak{g} -invariant volume form ω on \mathcal{M} .

In Darboux coordinates

$$\Omega = \sum_{i=1}^{\frac{m}{2}} dx_i \wedge dy_i + \sum_{j=1}^n d\xi_j \wedge d\xi_j,$$

$$\omega = dx_1 \dots dx_{\frac{m}{2}} dy_1 \dots dy_{\frac{m}{2}} d\xi_1 \dots d\xi_n.$$

Gr(p|q,m|n) has a U(m|n)-invariant volume form unique up to rescaling.

Problem. Compute the volume of Gr(p|q, m|n).

Very often the volume of the compact supermanifold is zero. For example the volume of the supergroup U(m|n) (with respect to Haar volume form) is 0 unless mn = 0.

Let \mathcal{M} be a symplectic supermanifold with Hamiltonian action of the Lie superalgebra \mathfrak{g} . Then there exists a canonical \mathfrak{g} -invariant volume form ω on \mathcal{M} .

In Darboux coordinates

$$\Omega = \sum_{i=1}^{\frac{m}{2}} dx_i \wedge dy_i + \sum_{j=1}^{n} d\xi_j \wedge d\xi_j,$$

$$\omega = dx_1 \dots dx_{\frac{m}{2}} dy_1 \dots dy_{\frac{m}{2}} d\xi_1 \dots d\xi_n.$$

Gr(p|q,m|n) has a U(m|n)-invariant volume form unique up to rescaling.

Problem. Compute the volume of Gr(p|q, m|n).

Very often the volume of the compact supermanifold is zero. For example the volume of the supergroup U(m|n) (with respect to Haar volume form) is 0 unless mn = 0.

Theorem (V.S.-A.Sherman)

The supergrassmannian Gr(p|q, m|n) has a non-zero volume if and only if $\min(p, q) + \min(m - p, n - q) = \min(m, n)$ or, equivalently, p - q, m - n and (m - p) - (n - q) are all non-negative or all non-positive.

Main tool is Schwarz-Zaboronsky localization formula.

Introduce some notations:

- For a vector field X on a supermanifold \mathcal{M} we set Z(X) to be the zero locus of X.
- For a function f with singular point $p \in \mathcal{M}_0$ we denote by $H_p(f) \in S^2(T_p^* \mathcal{M})$ the Hessian of f at p.
- Let V be a vector superspace of superdimension (r|2s) equipped with volume element ω and non-degenerate quadratic form Q. We set

$$\gamma(Q,\omega) = \exp(\frac{\pi i(\dim V_0^+ - \dim V_0^-)}{4}) \frac{Pf(B_1)}{\sqrt{|\det B_0|}},$$

where B is the matrix of Q in the homogeneous basis

$$v_1,\ldots,v_r\in V_0,u_1,\ldots,u_{2s}\in V_1$$

such that $\omega(v_1, ..., v_r, u_1, ..., u_{2s}) = 1$

47 / 65

イロト 不得 とうせい うせい

Theorem (V.S.-A.Sherman)

The supergrassmannian Gr(p|q, m|n) has a non-zero volume if and only if $\min(p, q) + \min(m - p, n - q) = \min(m, n)$ or, equivalently, p - q, m - n and (m - p) - (n - q) are all non-negative or all non-positive.

Main tool is Schwarz-Zaboronsky localization formula.

Introduce some notations:

- For a vector field X on a supermanifold \mathcal{M} we set Z(X) to be the zero locus of X.
- For a function f with singular point $p \in \mathcal{M}_0$ we denote by $H_p(f) \in S^2(T_p^* \mathcal{M})$ the Hessian of f at p.
- Let V be a vector superspace of superdimension (r|2s) equipped with volume element ω and non-degenerate quadratic form Q. We set

$$\gamma(Q,\omega) = \exp(\frac{\pi i(\dim V_0^+ - \dim V_0^-)}{4}) \frac{Pf(B_1)}{\sqrt{|\det B_0|}},$$

where B is the matrix of Q in the homogeneous basis

$$v_1,\ldots,v_r\in V_0,u_1,\ldots,u_{2s}\in V_1$$

such that $\omega(v_1, ..., v_r, u_1, ..., u_{2s}) = 1$

48 / 65

-

イロト 不得 とうせい うせい

Theorem (V.S.-A.Sherman)

The supergrassmannian Gr(p|q, m|n) has a non-zero volume if and only if $\min(p, q) + \min(m - p, n - q) = \min(m, n)$ or, equivalently, p - q, m - n and (m - p) - (n - q) are all non-negative or all non-positive.

Main tool is Schwarz-Zaboronsky localization formula.

Introduce some notations:

- For a vector field X on a supermanifold \mathcal{M} we set Z(X) to be the zero locus of X.
- For a function f with singular point $p \in \mathcal{M}_0$ we denote by $H_p(f) \in S^2(T_p^*\mathcal{M})$ the Hessian of f at p.
- Let V be a vector superspace of superdimension (r|2s) equipped with volume element ω and non-degenerate quadratic form Q. We set

$$\gamma(Q,\omega) = \exp(\frac{\pi \mathbf{i}(\dim V_0^+ - \dim V_0^-)}{4}) \frac{\Pr(B_1)}{\sqrt{|\det B_0|}},$$

where B is the matrix of Q in the homogeneous basis

$$v_1,\ldots,v_r\in V_0,u_1,\ldots,u_{2s}\in V_1$$

such that $\omega(v_1, ..., v_r, u_1, ..., u_{2s}) = 1$

49 / 65

3

・ロト ・四ト ・ヨト ・ヨト

Theorem (V.S.-A.Sherman)

The supergrassmannian Gr(p|q, m|n) has a non-zero volume if and only if $\min(p, q) + \min(m - p, n - q) = \min(m, n)$ or, equivalently, p - q, m - n and (m - p) - (n - q) are all non-negative or all non-positive.

Main tool is Schwarz-Zaboronsky localization formula.

Introduce some notations:

- For a vector field X on a supermanifold \mathcal{M} we set Z(X) to be the zero locus of X.
- For a function f with singular point $p \in \mathcal{M}_0$ we denote by $H_p(f) \in S^2(T_p^*\mathcal{M})$ the Hessian of f at p.
- Let V be a vector superspace of superdimension (r|2s) equipped with volume element ω and non-degenerate quadratic form Q. We set

$$\gamma(Q,\omega) = \exp(\frac{\pi i(\dim V_0^+ - \dim V_0^-)}{4}) \frac{Pf(B_1)}{\sqrt{|\det B_0|}},$$

where B is the matrix of Q in the homogeneous basis

$$v_1,\ldots,v_r\in V_0,u_1,\ldots,u_{2s}\in V_1$$

such that $\omega(v_1, ..., v_r, u_1, ..., u_{2s}) = 1$

50 / 65

イロト 不通 とうほう うほう しほう

Theorem (V.S.-A.Sherman)

The supergrassmannian Gr(p|q, m|n) has a non-zero volume if and only if $\min(p, q) + \min(m - p, n - q) = \min(m, n)$ or, equivalently, p - q, m - n and (m - p) - (n - q) are all non-negative or all non-positive.

Main tool is Schwarz-Zaboronsky localization formula.

Introduce some notations:

- For a vector field X on a supermanifold \mathcal{M} we set Z(X) to be the zero locus of X.
- For a function f with singular point $p \in \mathcal{M}_0$ we denote by $H_p(f) \in S^2(T_p^*\mathcal{M})$ the Hessian of f at p.
- Let V be a vector superspace of superdimension (r|2s) equipped with volume element ω and non-degenerate quadratic form Q. We set

$$\gamma(Q,\omega) = \exp(\frac{\pi \mathbf{i}(\dim V_0^+ - \dim V_0^-)}{4}) \frac{\Pr(B_1)}{\sqrt{|\det B_0|}},$$

where B is the matrix of Q in the homogeneous basis

$$v_1,\ldots,v_r\in V_0,u_1,\ldots,u_{2s}\in V_1$$

such that $\omega(v_1, ..., v_r, u_1, ..., u_{2s}) = 1.$

51/65

イロト 不同 トイヨト イヨト ヨー ろくつ

Theorem (A.Schwarz-O. Zaboronsky)

Let \mathcal{M} be an oriented compact supermanifold with volume form ω . Assume that X is an odd vector field such that

- $X^2 = \frac{1}{2}[X, X]$ is a compact vector field,
- $X\omega = 0$,
- Z(X) is finite and every $p \in Z(X)$ is an isolated zero of X.

Then there exist an odd function f on M such that

- $X^2f = 0$,
- the set of singular points of Xf coincides with Z(X).

For any such f we have

$$\int_{\mathcal{M}} \omega = \pi^n \sum_{p \in \mathbb{Z}(X)} \gamma(H_p(Xf), \omega_p).$$

Note that if $Z(X) \neq \emptyset$ then dim $\mathcal{M} = (2n|2n)$. If $Z(X) = \emptyset$ for some X then $\int_{\mathcal{M}} \omega = 0$.

Theorem (A.Schwarz-O. Zaboronsky)

Let \mathcal{M} be an oriented compact supermanifold with volume form ω . Assume that X is an odd vector field such that

- $X^2 = \frac{1}{2}[X, X]$ is a compact vector field,
- $X\omega = 0$,
- Z(X) is finite and every $p \in Z(X)$ is an isolated zero of X.

Then there exist an odd function f on M such that

- $X^2 f = 0$,
- the set of singular points of Xf coincides with Z(X).

For any such f we have

$$\int_{\mathcal{M}} \omega = \pi^n \sum_{p \in Z(X)} \gamma(H_p(Xf), \omega_p).$$

Note that if $Z(X) \neq \emptyset$ then dim $\mathcal{M} = (2n|2n)$. If $Z(X) = \emptyset$ for some X then $\int_{\mathcal{M}} \omega = 0$.

53 / 65

-

イロト イボト イヨト イヨト

Theorem (A.Schwarz-O. Zaboronsky)

Let \mathcal{M} be an oriented compact supermanifold with volume form ω . Assume that X is an odd vector field such that

- $X^2 = \frac{1}{2}[X, X]$ is a compact vector field,
- $X\omega = 0$,
- Z(X) is finite and every $p \in Z(X)$ is an isolated zero of X.

Then there exist an odd function f on M such that

- $X^2 f = 0$,
- the set of singular points of Xf coincides with Z(X).

For any such f we have

$$\int_{\mathcal{M}} \omega = \pi^n \sum_{p \in Z(X)} \gamma(H_p(Xf), \omega_p).$$

Note that if $Z(X) \neq \emptyset$ then dim $\mathcal{M} = (2n|2n)$. If $Z(X) = \emptyset$ for some X then $\int_{\mathcal{M}} \omega = 0$.

Example

Let (M_0, Ω_0) be a symplectic manifold and $M := \prod T M_0$.

- **①** De Rham differential d is an odd vector field on M,
- **2** Functions on M are differential forms on M_0 ,
- **3** M has a canonical volume form ω via identification $TM \simeq \Pi TM$.

Let X_0 be a compact vector field on M_0 with Hamiltonian h. Then $X = d + i_{X_0}$ is an odd vector field with $X^2 = 2X_0$ and $f := h + \Omega$ is a function on M. It is easy to check that Xf = 0. Then

$$\int_{\mathcal{M}_0} e^{\mathbf{i}h} \Omega_0^n = \frac{\mathbf{i}^n}{n!} \int_{\mathcal{M}} e^f \omega = \pi^n \frac{\mathbf{i}^n}{n!} \sum_{p \in Z(X_0)} \gamma(H_p(h), \Omega_0^n),$$

and the Schwarz-Zaboronsky formula yields to the Duistermaat-Heckman formula.

イロト イボト イヨト イヨト

55 / 65

Example

Let (M_0, Ω_0) be a symplectic manifold and $M := \prod T M_0$.

- **1** De Rham differential d is an odd vector field on M,
- **2** Functions on M are differential forms on M_0 ,

3 M has a canonical volume form ω via identification $TM \simeq \Pi TM$.

Let X_0 be a compact vector field on M_0 with Hamiltonian h. Then $X = d + i_{X_0}$ is an odd vector field with $X^2 = 2X_0$ and $f := h + \Omega$ is a function on M. It is easy to check that Xf = 0. Then

$$\int_{\mathcal{M}_0} e^{\mathbf{i}h} \Omega_0^n = \frac{\mathbf{i}^n}{n!} \int_{\mathcal{M}} e^f \omega = \pi^n \frac{\mathbf{i}^n}{n!} \sum_{p \in Z(X_0)} \gamma(H_p(h), \Omega_0^n),$$

and the Schwarz-Zaboronsky formula yields to the Duistermaat-Heckman formula.

Conjecture (T. Voronov)

 $\operatorname{Vol} Gr(p|q, m|n) = g_D \frac{G(a+1)G(b+1)}{G(a+b+1)},$

where $g_{(d_0|d_1)} := \pi^{d_0} 2^{\frac{d_1}{2}}$, a = p - q, b = (m - n) - (p - q) and G(z) is the Barnes function:

$$G(n) = \begin{cases} 0, & n \leq 0, \\ 1, & n = 1, \\ (n-2)!!, & n > 1 \end{cases}$$

- Up to normalization the volume of supergrassmannian Gr(V, W) depends only on superdimension of V and W.
- Universal Deligne's category GL(t), for $t \in \mathbb{C}$ "covers" the categories Rep GL(m|n) with m n = t.
- The supergrassmannian can be defined in the category $GL(r) \times GL(s)$.
- Can we define the volume?

Conjecture

(T. Voronov)

$$\operatorname{Vol} Gr(p|q, m|n) = g_D \frac{G(a+1)G(b+1)}{G(a+b+1)},$$

where $g_{(d_0|d_1)} := \pi^{d_0} 2^{\frac{d_1}{2}}$, a = p - q, b = (m - n) - (p - q) and G(z) is the Barnes function:

$$G(n) = \begin{cases} 0, & n \leq 0, \\ 1, & n = 1, \\ (n-2)!!, & n > 1 \end{cases}$$

- Up to normalization the volume of supergrassmannian Gr(V, W) depends only on superdimension of V and W.
- Universal Deligne's category GL(t), for $t \in \mathbb{C}$ "covers" the categories Rep GL(m|n) with m n = t.
- The supergrassmannian can be defined in the category $GL(r) \times GL(s)$.
- Can we define the volume?

Some consequences

- $SL(1|1)^d$ is a detecting subgroup of GL(m|n) where $d = \min(m, n)$. We conjecture that it a minimal detecting subgroup.
- We can prove that the volume of Q-grassmannian QGr(p, n) is not zero iff p(n-p) is even. Thus, $Q(2)^d$ or $Q(2)^d \times Q(1)$ is a detecting subgroup for Q(n) with n = 2d or, respectively, n = 2d + 1.
- We can prove that $\mathcal{X}_M = 0$ iff M is projective for GL(m|n) and Q(n).

We are close to proving

Conjecture

If G is a quasireductive algebraic group and M is a G-module then M is projective if and only if $\mathcal{X}(M) = \{0\}$.

For a moment let G be a finite group, we work over a ground field of positive characteristic p. Let H be a p-Sylow subgroup and K be the normalizer of H. There is a bijection between indecomposable representations of G of non-zero dimension and indecomposable representations of K of non-zero dimension. This, as noticed by Etingof and Ostrik implies equivalence of semisimplifications of Rep K and Rep G.

Now go back to supergroups. Let $G = GL(m|n), m \leq n, H = GL(1|1)^m, K$ be the normalizer of H, K is a semidirect product of H and the symmetric group $S_m \times GL(n-m)$.

Theorem (V.S.-A. Sherman-I. Entova-Aizenbud)

Let V be an indecomposable representation of G of nonzero superdimension. Then exactly one among indecomposable K-components has a non-zero superdimension.

- The functor between Rep G
 → Rep K
 is not an equivalence (although equivalence in defect 1 case). It defines a surjective morphism of pro-reductive supergroups K
 → G.
- Generalize unitary trick for other quasireductive supergroups.
- Borel-Weil-Bott theorem. New results: Kapranov-Pimenov, Sam-Snowden.

For a moment let G be a finite group, we work over a ground field of positive characteristic p. Let H be a p-Sylow subgroup and K be the normalizer of H. There is a bijection between indecomposable representations of G of non-zero dimension and indecomposable representations of K of non-zero dimension. This, as noticed by Etingof and Ostrik implies equivalence of semisimplifications of Rep K and Rep G.

Now go back to supergroups. Let G = GL(m|n), $m \leq n$, $H = GL(1|1)^m$, K be the normalizer of H, K is a semidirect product of H and the symmetric group $S_m \times GL(n-m)$.

Theorem (V.S.-A. Sherman-I. Entova-Aizenbud)

Let V be an indecomposable representation of G of nonzero superdimension. Then exactly one among indecomposable K-components has a non-zero superdimension.

- The functor between Rep G → Rep K is not an equivalence (although equivalence in defect 1 case). It defines a surjective morphism of pro-reductive supergroups K → G.
- Generalize unitary trick for other quasireductive supergroups.
- Borel-Weil-Bott theorem. New results: Kapranov-Pimenov, Sam-Snowden.

For a moment let G be a finite group, we work over a ground field of positive characteristic p. Let H be a p-Sylow subgroup and K be the normalizer of H. There is a bijection between indecomposable representations of G of non-zero dimension and indecomposable representations of K of non-zero dimension. This, as noticed by Etingof and Ostrik implies equivalence of semisimplifications of Rep K and Rep G.

Now go back to supergroups. Let G = GL(m|n), $m \leq n$, $H = GL(1|1)^m$, K be the normalizer of H, K is a semidirect product of H and the symmetric group $S_m \times GL(n-m)$.

Theorem (V.S.-A. Sherman-I. Entova-Aizenbud)

Let V be an indecomposable representation of G of nonzero superdimension. Then exactly one among indecomposable K-components has a non-zero superdimension.

- The functor between $\operatorname{Rep} \overline{G} \to \operatorname{Rep} \overline{K}$ is not an equivalence (although equivalence in defect 1 case). It defines a surjective morphism of pro-reductive supergroups $\overline{K} \to \overline{G}$.
- Generalize unitary trick for other quasireductive supergroups.
- Borel-Weil-Bott theorem. New results: Kapranov-Pimenov, Sam-Snowden.

For a moment let G be a finite group, we work over a ground field of positive characteristic p. Let H be a p-Sylow subgroup and K be the normalizer of H. There is a bijection between indecomposable representations of G of non-zero dimension and indecomposable representations of K of non-zero dimension. This, as noticed by Etingof and Ostrik implies equivalence of semisimplifications of Rep K and Rep G.

Now go back to supergroups. Let G = GL(m|n), $m \leq n$, $H = GL(1|1)^m$, K be the normalizer of H, K is a semidirect product of H and the symmetric group $S_m \times GL(n-m)$.

Theorem (V.S.-A. Sherman-I. Entova-Aizenbud)

Let V be an indecomposable representation of G of nonzero superdimension. Then exactly one among indecomposable K-components has a non-zero superdimension.

- The functor between Rep G
 → Rep K
 is not an equivalence (although equivalence in defect 1 case). It defines a surjective morphism of pro-reductive supergroups K
 → G.
- Generalize unitary trick for other quasireductive supergroups.
- Borel-Weil-Bott theorem. New results: Kapranov–Pimenov, Sam-Snowden.

Happy Birthday!

Вся моя интеллектуальная жизнь была сформирована тем, что я условно стал называть Просвещенческим проектом. Его основная посылка состояла в вере, что человеческий разум имеет высшую ценность, а распространение науки и просвещения само по себе неизбежно приведет к тому, что лучшие, чем мы, люди, будут жить в лучшем, чем мы, обществе.

Ничто из того, что я наблюдал вокруг себя в течение двух третей прошлого века и подходящего к концу десятилетия нового века, не оправдывало этой веры.

И все же я верю в Просвещенческий проект.