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Support variety

Let C be some abelian (or triangulated) tensor category. For every object M € C
we want to associate a geometric object (projective variety) X satisfying

@ Xyon =Xm v XN;

@ XyeNn =Xn N XN

@ Xy = X

@ M is projective iff X = .
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Support variety

Let C be some abelian (or triangulated) tensor category. For every object M € C
we want to associate a geometric object (projective variety) X satisfying

@ Xyon = Xum v Xn;
@ Xyen = XN N Xp;
@ Xpx =X
@ M is projective iff X = .
Examples:
@ Representations of finite groups in positive characteristic.
@ Representations of restricted Lie algebras.
@ Finite (super)group schemes.
o

Balmer spectrum of triangulated tensor categories.
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Approaches.

@ Homology: Xj = Spec Ext®(k,k), X5s = Spec Ext® (M, M).

© Rank variety: maps of elementary objects 7 : k[t]/(t?) — k[G] for finite
groups, p-nilpotent elements for restricted Lie algebras. Check when
restriction is not projective.

@ Rank variety and homological support coincide.
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Approaches.

@ Homology: Xj = Spec Ext®(k,k), X5s = Spec Ext® (M, M).

© Rank variety: maps of elementary objects 7 : k[t]/(t?) — k[G] for finite
groups, p-nilpotent elements for restricted Lie algebras. Check when
restriction is not projective.

@ Rank variety and homological support coincide.

Goal: Generalize to supergroups.
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Quasireductive algebraic supergroups

Now we switch to the ground field C. The following three objects are the same
(categories are equivalent):

@ Affine algebraic supergroup G.

@ Pair (g, Go) where g is a Lie superalgebra, Go an algebraic group with
Lie Gg = gg, representation of Gg in g whose differential is the adjoint
representation.

@ Commutative finitely generated Hopf superalgebra C[G].
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Quasireductive algebraic supergroups

Now we switch to the ground field C. The following three objects are the same
(categories are equivalent):

@ Affine algebraic supergroup G.

@ Pair (g, Go) where g is a Lie superalgebra, Go an algebraic group with
Lie Gg = gg, representation of Gg in g whose differential is the adjoint
representation.

@ Commutative finitely generated Hopf superalgebra C[G].

By Rep G we denote the category of finite-dimensional representations of G and
by RepG the category of all representations.
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Quasireductive algebraic supergroups

Now we switch to the ground field C. The following three objects are the same
(categories are equivalent):

@ Affine algebraic supergroup G.

@ Pair (g, Go) where g is a Lie superalgebra, Go an algebraic group with
Lie Gg = gg, representation of Gg in g whose differential is the adjoint
representation.

@ Commutative finitely generated Hopf superalgebra C[G].

By Rep G we denote the category of finite-dimensional representations of G and
by RepG the category of all representations.

We call G reductive if Rep G is semisimple (any finite-dimensional representation
is completely reducible). J
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Quasireductive algebraic supergroups

Now we switch to the ground field C. The following three objects are the same
(categories are equivalent):

@ Affine algebraic supergroup G.

@ Pair (g, Go) where g is a Lie superalgebra, Go an algebraic group with
Lie Gg = gg, representation of Gg in g whose differential is the adjoint
representation.

@ Commutative finitely generated Hopf superalgebra C[G].

By Rep G we denote the category of finite-dimensional representations of G and
by RepG the category of all representations.

We call G reductive if Rep G is semisimple (any finite-dimensional representation
is completely reducible). J

Every reductive supergroup G is isomorphic to a direct product of OSp(1|2n) (for
different n) and some reductive algebraic group.
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We call G quasireductive if Gy is reductive.
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We call G quasireductive if Gy is reductive. J

Rep G has many remarkable properties:

@ Frobenius category. Enough projective and injective objects, every
projective is injective and vice versa.

° Indg0 M is finite-dimensional if M is finite-dimensional.
@ If K c G is quasireductive then G/K is affine.

@ If K ¢ G are both quasireductive then Ind% : RepK — Rep@ is exact
maps projective modules to projective modules.
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We call G quasireductive if Gy is reductive. J

Rep G has many remarkable properties:

@ Frobenius category. Enough projective and injective objects, every
projective is injective and vice versa.

° Indg0 M is finite-dimensional if M is finite-dimensional.
@ If K c G is quasireductive then G/K is affine.

@ If K ¢ G are both quasireductive then Ind% : RepK — Rep@ is exact
maps projective modules to projective modules.

A lot of similarities with finite groups in positive characteristic.
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We call G quasireductive if Gy is reductive. J

Rep G has many remarkable properties:

@ Frobenius category. Enough projective and injective objects, every
projective is injective and vice versa.

° Indg0 M is finite-dimensional if M is finite-dimensional.
@ If K c G is quasireductive then G/K is affine.

@ If K ¢ G are both quasireductive then Ind% : RepK — Rep@ is exact
maps projective modules to projective modules.

A lot of similarities with finite groups in positive characteristic.
Examples. GL(m|n), Q(n).
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We call G quasireductive if Gy is reductive. J

Rep G has many remarkable properties:

@ Frobenius category. Enough projective and injective objects, every
projective is injective and vice versa.

® Indg0 M is finite-dimensional if M is finite-dimensional.
@ If K c G is quasireductive then G/K is affine.

@ If K ¢ G are both quasireductive then Ind% : RepK — Rep@ is exact
maps projective modules to projective modules.

A lot of similarities with finite groups in positive characteristic.
Examples. GL(m|n), Q(n).
Homological approach.[Boe, Kujawa, Nakano.]

@ Ext*(C,C) = C[g{°] is a Noetherian (supercommutative) ring.

@ Polynomial algebra in most classical examples.
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Rank variety

Let g = LieG. We call = € g semisimple if [z, z] € go is semisimple. By Q we
denote the quasireductive subgroup of GG generated by x. Denote by g;° the set of
all odd semisimple elements of g.
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Rank variety

Let g = LieG. We call = € g semisimple if [z, z] € go is semisimple. By Q, we
denote the quasireductive subgroup of GG generated by x. Denote by gi® the set of
all odd semisimple elements of g.

A functor Sg : Rep G — Svect as the composition

Rep G Res, Rep Qz 5, Svect,

where S is the semisimplification functor. Equivalently,

Sz M :=Kerzp/(xM n Kerzpr).
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Rank variety

Let g = LieG. We call = € g semisimple if [z, z] € go is semisimple. By Q, we
denote the quasireductive subgroup of GG generated by x. Denote by gi® the set of
all odd semisimple elements of g.

A functor Sg : Rep G — Svect as the composition

Rep G Res, Rep Qz 5, Svect,

where S is the semisimplification functor. Equivalently,
SaM :=Kerzp/(xM n Kerzpy).

Sz is a symmetric monoidal functor although it is not exact!
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Rank variety

Let g = LieG. We call = € g semisimple if [z, z] € go is semisimple. By Q we
denote the quasireductive subgroup of GG generated by x. Denote by gi® the set of
all odd semisimple elements of g.

A functor Sg : Rep G — Svect as the composition

Rep G Res, Rep Q2 5, Svect,

where S is the semisimplification functor. Equivalently,
Sz M :=Kerzp/(xM n Kerzpr).
Sz is a symmetric monoidal functor although it is not exact!

Let M be a G-module. We define the support Xj; as
Xy = {z € gi’| SaM # 0}. J
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Rank variety

Let g = LieG. We call = € g semisimple if [z, z] € go is semisimple. By Q, we
denote the quasireductive subgroup of GG generated by x. Denote by gi® the set of
all odd semisimple elements of g.

A functor Sg : Rep G — Svect as the composition

Rep G Res, Rep Qz 5, Svect,

where S is the semisimplification functor. Equivalently,
Sz M :=Kerzp/(xM n Kerzpr).
Sz is a symmetric monoidal functor although it is not exact!

Let M be a G-module. We define the support Xj; as
Xy = {z € gi’| SaM # 0}. J

Immediate: Xygn = Xar N XN, Xy = X v AN, Xy = Xy Need:
projectivity detection.
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Rank variety

Let g = LieG. We call = € g semisimple if [z, z] € go is semisimple. By Q, we
denote the quasireductive subgroup of GG generated by x. Denote by gi® the set of
all odd semisimple elements of g.

A functor Sg : Rep G — Svect as the composition

Rep G Res, Rep Qz 5, Svect,

where S is the semisimplification functor. Equivalently,
SaM :=Kerzp/(xM n Kerzpy).

Sz is a symmetric monoidal functor although it is not exact!

Let M be a G-module. We define the support Xj; as
Xy = {z € gi’| SaM # 0}. J

Immediate: Xygn = Xar N XN, Xy = X v AN, Xy = Xy Need:
projectivity detection.

Although g§® and Xy are not closed in g1, we should pass to the quotient g1/Go
using Gp-equivariance.
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Let K c G be both quasireductive. Then O(G/K) = Ind% C contains a trivial
G-submodule C. We call K detecting in G if C - O(G/K) splits.

. _ ®ac
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Detecting subgroups

Let K = G be both quasireductive. Then O(G/K) = Ind% C contains a trivial
G-submodule C. We call K detecting in G if C - O(G/K) splits.

o’

Theorem

The following conditions on the subgroup K in G are equivalent:
@ K is detecting;
g g g G
© Any G-module M splits as a direct summand in IndF M.
© For any pair of G-modules M, M’, the restriction morphism
Exts (M, M') — Extb (M, M')

is ingjective for all 7.
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Detecting subgroups

Let K © G be both quasireductive. Then O(G/K) = Indg C contains a trivial
G-submodule C. We call K detecting in G if C - O(G/K) splits.

v
Theorem

The following conditions on the subgroup K in G are equivalent:
@ K is detecting;
© Any G-module M splits as a direct summand in Ind% M.

© For any pair of G-modules M, M’, the restriction morphism
Exts (M, M') — Extb (M, M')

is ingjective for all 7.

Example

| N

Let G be a finite group but ground field has a positive characteristic p. Then K is
detecting if it contains a p-Sylow subgroup of G.

\
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Detecting subgroups

Let K © G be both quasireductive. Then O(G/K) = Indg C contains a trivial
G-submodule C. We call K detecting in G if C - O(G/K) splits.

v
Theorem

The following conditions on the subgroup K in G are equivalent:

@ K is detecting;

© Any G-module M splits as a direct summand in Indg M.
© For any pair of G-modules M, M’, the restriction morphism

Exts (M, M') — Extb (M, M')

is ingjective for all 7.

Example

| \

Let G be a finite group but ground field has a positive characteristic p. Then K is
detecting if it contains a p-Sylow subgroup of G.

\

If K is a detecting subgroup of G, then a G-module M is projective if and only if
its restriction to K is projective. J
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Transitivity. Given K ¢ H c G.
@ If K is a detecting subgroup in G, then H is also a detecting subgroup in G.

@ If K is a detecting subgroup of H, and H is a detecting subgroup of G, then
K is a detecting subgroup of G.
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Transitivity. Given K ¢ H c G.
@ If K is a detecting subgroup in G, then H is also a detecting subgroup in G.
@ If K is a detecting subgroup of H, and H is a detecting subgroup of G, then
K is a detecting subgroup of G.

y

Theorem (I. Entova-Aize /.S.-A. Sherman)

If K is a detecting subgroup of G then the restriction functor maps negligible
morphisms to negligible morphisms. The restriction functor descends to the
functor between semisimplifications of Rep G and Rep K.

A morphism (G-equivariant map) V 7, W is called negligible if for any W Ly
the supertrace of f o g is zero.
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Transitivity. Given K ¢ H c G.
@ If K is a detecting subgroup in G, then H is also a detecting subgroup in G.
@ If K is a detecting subgroup of H, and H is a detecting subgroup of G, then
K is a detecting subgroup of G.

y

Theorem (I. Entova-Aizenbud-V A. Sherman)

If K is a detecting subgroup of G then the restriction functor maps negligible
morphisms to negligible morphisms. The restriction functor descends to the
functor between semisimplifications of Rep G and Rep K.

A morphism (G-equivariant map) V R W is called negligible if for any W Ly
the supertrace of f o g is zero.

Theorem (V.S.-A. Sherman)

Let K be a detecting subgroup of G. Then any Go-orbit in gi° has non-empty
intersection with €.

Idea of proof. If Gox n t; = J then the corresponding vector field on G/K does
not have zeros. Using localization we can prove that S;O(G/K) = 0.
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Goal: Find small detecting subgroup in G.
@ Let G = GL(m|n). When K = GL(p|g) x GL(m — p|n — q) is detecting?

@ Geometric necessary condition implies
min(p, ¢) + min(m — p,n — ¢) = min(m,n) or, equivalently, p — ¢, m —n and
(m — p) — (n — q) are all non-negative or all non-positive.

@ Unitary trick. The group G has a compact real form U, unitary supergroup.
Then the supergrassmannian M = U/(K n U) = Gr(p|g, m|n) is a closed
U-orbit in G/K. It has U-invariant volume form. The integral {,, defines a
U-equivariant map O(G/K) — C and hence a G-equivariant map. This map
defines a splitting iff the volume of the supergrassmannian M is not zero.
We can prove that it is not zero exactly when the necessary condition holds.

Theorem (V.S.-A. Sherman)

The subgroup GL(p|q) X GL(m — p|n — q) is a detecting subgroup in GL(m|n) if
and only if Gr(p|g, m|n) has a non-zero volume.
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G
el

p|g, m|n) will denote the supermanifold of (p|q)-dimensional subspaces in
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Supergrassmannians

Grﬁp|q, m|n) will denote the supermanifold of (p|g)-dimensional subspaces in
cmin,
Properties

@ Underlying manifold Gr(p, m) x Gr(g,n) is compact.
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Supergrassmannians

GTS
cmin,
Properties

p|g, m|n) will denote the supermanifold of (p|q)-dimensional subspaces in

@ Underlying manifold Gr(p, m) x Gr(g,n) is compact.

@ D :=dimc Gr(plg, m|n) = ((m —p)p + (n — ¢)q|(m — p)g + p(n — q)).
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Supergrassmannians

G’rﬁp|q, m|n) will denote the supermanifold of (p|g)-dimensional subspaces in
cmin,
Properties
@ Underlying manifold Gr(p, m) x Gr(g,n) is compact.
@ D :=dimg Gr(plg, m|n) = ((m —p)p + (n — q)q|(m — p)qg + p(n — q)).
® Gr(plg,m|n) ~ Gr(m — pln — ¢, m|n).
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Supergrassmannians

G’rﬁp|q, m|n) will denote the supermanifold of (p|g)-dimensional subspaces in
cmin,
Properties

@ Underlying manifold Gr(p, m) x Gr(g,n) is compact.

@ D :=dimc Gr(plg,m|n) = ((m —p)p + (n — q)q|(m — p)g + p(n — q))-
@ Gr(plg,mln) =~ Gr(m — p|n — g, m|n).
o

Homogeneous supermanifold U(m|n)/U(p|q) x U(m — p|n — q) where U(a|b)
is the unitary supergroup: preserves Hermitian form on cealb,
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Supergrassmannians

G’rﬁp|q, m|n) will denote the supermanifold of (p|g)-dimensional subspaces in
cmin,
Properties

@ Underlying manifold Gr(p, m) x Gr(g,n) is compact.

@ D :=dimg Gr(plg,m|n) = ((m = p)p + (n — q)gl(m — p)g + p(n — q)).
@ Gr(plg,m|n) = Gr(m — pln — g, m|n).
o

Homogeneous supermanifold U(m|n)/U(p|q) x U(m — p|n — q) where U(a|b)
is the unitary supergroup: preserves Hermitian form on cealb,

@ Lie algebra u(m|n) = {X € gl(m|n) | X* = X}

A B\* (At iBt
¢ p) ~\ict Dpt):
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Supergrassmannians

G’rﬁp|q, m|n) will denote the supermanifold of (p|g)-dimensional subspaces in

cmin
Properties

@ Underlying manifold Gr(p, m) x Gr(g,n) is compact.

@ D :=dimg Gr(plg,m|n) = ((m — p)p + (n — ¢)g|(m — p)q + p(n — q)).

@ Gr(plg,m|n) ~ Gr(m — p|n — ¢, m|n).

@ Homogeneous supermanifold U(m|n)/U(p|q) x U(m — p|n — q) where U(a|b)

is the unitary supergroup: preserves Hermitian form on cealb,
@ Lie algebra u(m|n) = {X € gl(m|n) | X* = X}

A B\* (At iBt

c D) —\iCct D'}
Let x € u(m|n)g of rank (p|g) and x2 = z. Then Gr(p|q, m|n) is isomorphic
to the U(m|n)-orbit of x.
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Supergrassmannians

G’rﬁp|q, m|n) will denote the supermanifold of (p|g)-dimensional subspaces in
cmin,
Properties

@ Underlying manifold Gr(p, m) x Gr(g,n) is compact.

@ D :=dimg Gr(plg,m|n) = ((m = p)p + (n — q)gl(m — p)g + p(n — q)).
@ Gr(plg,m|n) ~ Gr(m — pln — ¢, m|n).
o

Homogeneous supermanifold U(m|n)/U(p|q) x U(m — p|n — q) where U(a|b)
is the unitary supergroup: preserves Hermitian form on cealb,

@ Lie algebra u(m|n) = {X € gl(m|n) | X* = X}
A B\* (At iBt
C D —\ict Dt)-

Let x € u(m|n)g of rank (p|g) and x2 = z. Then Gr(p|q, m|n) is isomorphic
to the U(m|n)-orbit of x.

@ Gr(plg,m|n) is a symplectic supermanifold, the action of U(m/|n) is
Hamiltonian.
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Berezinian:

A B _ _
Ber (C D) =det(A— BD 'C)det D",
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Volume forms and Berezin integral

Berezinian:

A B\ -1 =il
Ber (C D) =det(A—BD C)detD .
Volume form w = f(z,£)dédz on a supermanifold M:

f(:L‘, §)d£d$ = Ber a(.’.lf, 5)

o) f(y,m)dndy.
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Volume forms and Berezin integral

Berezinian:
A B\ _ —1 —il
Ber (C D) =det(A—BD C)detD™ .
Volume form w = f(z,&)dédz on a supermanifold M:
d(z,§)
x, £)dédr = Ber ,n)dndy.
f(z,€)d¢ 6(y,n)f(y n)dndy

If f is a function on R™™ with compact support then

0 0
| f@odeds =z | (o€

= (T1,..,Tm), & = (&1,...,&n).
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Volume forms and Berezin integral

Berezinian:
A B\ _ —1 —il
Ber (C D) =det(A—BD C)detD™ .
Volume form w = f(z,&)dédz on a supermanifold M:
d(z,§)
x, £)dédr = Ber ,n)dndy.
f(z,€)d¢ 6(y,n)f(y n)dndy

If f is a function on R™™ with compact support then

| f@odeds =z | (o€

o6 9 Jam
= (T1,..,Tm), & = (&1,...,&n).
To integrate a form over a supermanifold M we need to use

@ Partition of unity.

@ Fix orientation of the underlying manifold M.
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Example

(Rudakov) Let dim M = (1|2), Mo = (0, 1), two coordinate systems
(,81,€2) and y = (y,m, n2) related by

y=z+&&2, 1 =E.

o(y,m) _
We have Ber ot = 1
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Example

(Rudakov) Let dim M = (1|2), Mo = (0, 1), two coordinate systems
(,81,€2) and y = (y,m, n2) related by

y=x+&&, n =&
o(y,m) _
We have Ber a(g,Z) =1 Then

j ydnidnady = 0, J (z + &1&2)dErdEadn = —1.
M M
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Volumes of supergrassmannians

Let M be a symplectic supermanifold with Hamiltonian action of the Lie
superalgebra g. Then there exists a canonical g-invariant volume form w on

M.
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Volumes of supergrassmannians

Let M be a symplectic supermanifold with Hamiltonian action of the Lie
superalgebra g. Then there exists a canonical g-invariant volume form w on

M.

In Darboux coordinates

dz; A dyi + Z dg; A dg;,

j=1

ANglE

Q=

Il
—

[

w=dx . ..dx%dyl . ..dy%dfl oo dEn.

Gr(p|g, m|n) has a U(m|n)-invariant volume form unique up to rescaling.
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Volumes of supergrassmannians

Let M be a symplectic supermanifold with Hamiltonian action of the Lie
superalgebra g. Then there exists a canonical g-invariant volume form w on

M.

In Darboux coordinates

Q= dml/\dyl—FZdﬁ] A dEj,

j=1

ANglE

Il
—

[

w=dx . ..dx%dyl . ..dy%dfl oo dEn.

Gr(p|g, m|n) has a U(m|n)-invariant volume form unique up to rescaling.

Problem. Compute the volume of Gr(p|g, m|n). J

45 /65



Volumes of supergrassmannians

Let M be a symplectic supermanifold with Hamiltonian action of the Lie
superalgebra g. Then there exists a canonical g-invariant volume form w on

M.

In Darboux coordinates

ANglE

Q= dml/\dyl—l-Zd@ A dEj,

j=1

Il
—

[

w=dx . ..dx%dyl . ..dy%dfl oo dEn.

Gr(p|g, m|n) has a U(m|n)-invariant volume form unique up to rescaling.

Problem. Compute the volume of Gr(p|g, m|n). J

Very often the volume of the compact supermanifold is zero. For example
the volume of the supergroup U(m|n) (with respect to Haar volume form)
is 0 unless mn = 0.
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Main result

Theorem (V.S.-A.Sherman)

The supergrassmannian Gr(p|g, m|n) has a non-zero volume if and only if
min(p, ¢) + min(m — p,n — ¢) = min(m, n) or, equivalently, p — q, m —n and
(m —p) — (n — q) are all non-negative or all non-positive.
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Main result

Theorem (V.S.-A.Sherman)

The supergrassmannian Gr(p|g, m|n) has a non-zero volume if and only if
min(p, ¢) + min(m — p,n — ¢) = min(m, n) or, equivalently, p — q, m —n and
(m —p) — (n — q) are all non-negative or all non-positive.

Main tool is Schwarz-Zaboronsky localization formula.
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Main result

Theorem (V.S.-A.Sherman)

The supergrassmannian Gr(p|g, m|n) has a non-zero volume if and only if
min(p, ¢) + min(m — p,n — ¢) = min(m,n) or, equivalently, p — q, m —n and
(m —p) — (n — q) are all non-negative or all non-positive.

Main tool is Schwarz-Zaboronsky localization formula.
Introduce some notations:

@ For a vector field X on a supermanifold M we set Z(X) to be the zero locus
of X.
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Main result

Theorem (V.S.-A.Sherman)

The supergrassmannian Gr(p|g, m|n) has a non-zero volume if and only if
min(p, ¢) + min(m — p,n — ¢) = min(m,n) or, equivalently, p — q, m —n and
(m —p) — (n — q) are all non-negative or all non-positive.

Main tool is Schwarz-Zaboronsky localization formula.
Introduce some notations:

@ For a vector field X on a supermanifold M we set Z(X) to be the zero locus
of X.

@ For a function f with singular point p € Mg we denote by
Hy(f) € 52(T;¥ M) the Hessian of f at p.
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Main result

Theorem (V.S.-A.Sherman)

The supergrassmannian Gr(p|g, m|n) has a non-zero volume if and only if
min(p, ¢) + min(m — p,n — ¢) = min(m,n) or, equivalently, p — q, m —n and
(m —p) — (n — q) are all non-negative or all non-positive.

Main tool is Schwarz-Zaboronsky localization formula.
Introduce some notations:

@ For a vector field X on a supermanifold M we set Z(X) to be the zero locus
of X.

@ For a function f with singular point p € Mg we denote by
Hy(f) € 52(T;¥ M) the Hessian of f at p.

@ Let V be a vector superspace of superdimension (r|2s) equipped with
volume element w and non-degenerate quadratic form Q. We set

mi(dim V" — dim VO*)) Pf(B1)
4 A/ | det Bo| ’

where B is the matrix of @ in the homogeneous basis

7(Q,w) = exp(

V1,...,Ur € Vo,U1,...,u25 € V]

such that w(vi,...,vr,u1,...,u2s) = 1.
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Schwarz-Zaboronsky localization

Theorem (A.Schwarz-O. Zaboronsky)

Let M be an oriented compact supermanifold with volume form w. Assume that
X is an odd vector field such that

o X?= %[X7 X is a compact vector field,
@ Xw=0,
@ Z(X) is finite and every p € Z(X) is an isolated zero of X.
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Schwarz-Zaboronsky localization

Theorem (A.Schwarz-O. Zaboronsky)

Let M be an oriented compact supermanifold with volume form w. Assume that
X is an odd vector field such that

o X?= %[X7 X is a compact vector field,

@ Xw=0,

@ Z(X) is finite and every p € Z(X) is an isolated zero of X.
Then there exist an odd function f on M such that

@ X2f=0,

@ the set of singular points of X f coincides with Z(X).

For any such f we have

wa=7r" S A (Hp(Xf),wp).

PEZ(X)
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Schwarz-Zaboronsky localization

Theorem (A.Schwarz-O. Zaboronsky)

Let M be an oriented compact supermanifold with volume form w. Assume that
X is an odd vector field such that

o X?= %[X7 X is a compact vector field,

@ Xw=0,

@ Z(X) is finite and every p € Z(X) is an isolated zero of X.
Then there exist an odd function f on M such that

@ X2f=0,

@ the set of singular points of X f coincides with Z(X).

For any such f we have

wa=7r" S A (Hp(Xf),wp).

PEZ(X)

Note that if Z(X) # & then dim M = (2n|2n). If Z(X) = & for some X then
fpw=0.
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Example

Let (Mo, Q0) be a symplectic manifold and M := IIT M.
@ De Rham differential d is an odd vector field on M,
© Functions on M are differential forms on Mo,

© M has a canonical volume form w via identification TM ~ IITM.
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Example
Let (Mo, Q0) be a symplectic manifold and M := IIT M.
@ De Rham differential d is an odd vector field on M,
© Functions on M are differential forms on Mo,
© M has a canonical volume form w via identification TM ~ IITM.

Let Xo be a compact vector field on My with Hamiltonian h. Then
X =d +ix, is an odd vector field with X? = 2X, and f:=h + Q is a
function on M. It is easy to check that X f = 0. Then

i n i" nin n
J ey = EJ dw=n o Z ~(Hp(h),Q0),
Mo ¢ M " pEZ(Xo)

and the Schwarz-Zaboronsky formula yields to the Duistermaat-Heckman
formula.
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Dream

(T. Voronov)

d
where g(q,(a;) ‘= 7rd0271, a=p—q, b= (m—n)— (p—q) and G(z) is the Barnes

function:

Vol Gr(p|g, m|n) = gp

Gla+1)G(b+1)

G(a+b+1)

0, n<0,
Gn)=<1, n=1,

(n—2)!,

n > 1.

)
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Dream

(T. Voronov)
G(a+1)G(b+ 1)
G(a+b+1)

Vol Gr(plg, m|n) = gp :
d
where g(q,(a;) ‘= 7rd0271, a=p—q, b= (m—n)— (p—q) and G(z) is the Barnes
function:
0, n<0,
Gn)=<1, n=1,
(n—=2)11, n>1.

@ Up to normalization the volume of supergrassmannian Gr(V, W) depends
only on superdimension of V and W.

@ Universal Deligne’s category GL(t), for t € C “covers” the categories
Rep GL(m|n) with m —n = ¢.

@ The supergrassmannian can be defined in the category GL(r) x GL(s).

@ Can we define the volume?
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Some consequences

@ SL(1|1)% is a detecting subgroup of GL(m|n) where d = min(m,n). We
conjecture that it a minimal detecting subgroup.

@ We can prove that the volume of Q-grassmannian QGr(p,n) is not zero iff
p(n — p) is even. Thus, Q(2)? or Q(2)? x Q(1) is a detecting subgroup for
Q(n) with n = 2d or, respectively, n = 2d + 1.

@ We can prove that Xp; = 0 iff M is projective for GL(m|n) and Q(n).

We are close to proving

If G is a quasireductive algebraic group and M is a G-module then M is projective
if and only if X (M) = {0}.
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Green correspondence

For a moment let G be a finite group, we work over a ground field of positive
characteristic p. Let H be a p-Sylow subgroup and K be the normalizer of H.
There is a bijection between indecomposable representations of G of non-zero
dimension and indecomposable representations of K of non-zero dimension. This,
as noticed by Etingof and Ostrik implies equivalence of semisimplifications of
Rep K and Rep G.
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Green correspondence

For a moment let G be a finite group, we work over a ground field of positive
characteristic p. Let H be a p-Sylow subgroup and K be the normalizer of H.
There is a bijection between indecomposable representations of G of non-zero
dimension and indecomposable representations of K of non-zero dimension. This,
as noticed by Etingof and Ostrik implies equivalence of semisimplifications of

Rep K and Rep G.

Now go back to supergroups. Let G = GL(m|n), m < n, H = GL(1|1)™, K be the
normalizer of H, K is a semidirect product of H and the symmetric group

Sm X GL(n —m).
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Green correspondence

For a moment let G be a finite group, we work over a ground field of positive
characteristic p. Let H be a p-Sylow subgroup and K be the normalizer of H.
There is a bijection between indecomposable representations of G of non-zero
dimension and indecomposable representations of K of non-zero dimension. This,
as noticed by Etingof and Ostrik implies equivalence of semisimplifications of

Rep K and Rep G.

Now go back to supergroups. Let G = GL(m|n), m < n, H = GL(1|1)™, K be the
normalizer of H, K is a semidirect product of H and the symmetric group

Sm X GL(n —m).

Theorem (V.S.-A. Sherman-I. Entova-Aizenbud)

Let V' be an indecomposable representation of G of nonzero superdimension. Then
exactly one among indecomposable K-components has a non-zero superdimension.
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Green correspondence

For a moment let G be a finite group, we work over a ground field of positive
characteristic p. Let H be a p-Sylow subgroup and K be the normalizer of H.
There is a bijection between indecomposable representations of G of non-zero
dimension and indecomposable representations of K of non-zero dimension. This,
as noticed by Etingof and Ostrik implies equivalence of semisimplifications of

Rep K and Rep G.

Now go back to supergroups. Let G = GL(m|n), m < n, H = GL(1|1)™, K be the
normalizer of H, K is a semidirect product of H and the symmetric group

Sm X GL(n —m).

Theorem (V.S.-A. Sherman-I. Entova-Aizenbud)

Let V' be an indecomposable representation of G of nonzero superdimension. Then
exactly one among indecomposable K-components has a non-zero superdimension.

Open questions

@ The functor between Rep G — Rep K is not an equivalence (although
equivalence in defect 1 case). It defines a surjective morphism of
pro-reductive supergroups K — G.

@ Generalize unitary trick for other quasireductive supergroups.

@ Borel-Weil-Bott theorem. New results: Kapranov-Pimenov, Sam-Snowden.
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Happy Birthday!




Mathematics as Metaphor

Best Mmost mHTEIIEK Ty aIbHAST XKU3HD ObLIa CPOPMUPOBAHA TEM, UTO I
YCJIOBHO CTaJI Ha3bIBaTh lIpocBemendeckuM npoekToM. Ero ocHosHas
MOCBIJIKA COCTOsIJIa B BEPE, UTO YEJIOBEUECKUIl pa3yM MMEET BBICIIYIO
[IEHHOCTh, a PACIpPOCTPaHEHNEe HAYKW U MPOCBEIEHUs caMo 0 cebe
Hen30eKHO MPUBEIET K TOMY, 9TO JIYYIIUE, 9eM MbI, JIIOAH, OyIyT >KUTH B
JIyUIIIeM, YeM MBI, ODIIeCTBe.

Hwuuro u3 toro, uro st HabIIOAI BOKPYT cebsi B TEUEHME JIBYX TpeTeit
MIPOIILJIOTO BEKA W MOAXOAAIIEr0 K KOHILY JECATUIETHsSI HOBOT'O BEKa, HE
OIIPAB/IBLIBAJIO ITOW BEPHI.

U Bce xe s Bepio B [IpocBemmenyecknii mpoexT.
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