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Support variety

Let C be some abelian (or triangulated) tensor category. For every object M P C
we want to associate a geometric object (projective variety) XM satisfying

XM‘N “ XM YXN ;

XMbN “ XN XXN ;

XM˚ “ XM ;

M is projective iff XM “ H.

Examples:

Representations of finite groups in positive characteristic.

Representations of restricted Lie algebras.

Finite (super)group schemes.

Balmer spectrum of triangulated tensor categories.
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Approaches.

1 Homology: Xk “ Spec Ext‚pk,kq, XM “ Spec Ext‚pM,Mq.

2 Rank variety: maps of elementary objects π : krts{ptpq Ñ krGs for finite
groups, p-nilpotent elements for restricted Lie algebras. Check when
restriction is not projective.

3 Rank variety and homological support coincide.

Goal: Generalize to supergroups.
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Quasireductive algebraic supergroups

Now we switch to the ground field C. The following three objects are the same
(categories are equivalent):

Affine algebraic supergroup G.

Pair pg, G0q where g is a Lie superalgebra, G0 an algebraic group with
LieG0 “ g0̄, representation of G0 in g whose differential is the adjoint
representation.

Commutative finitely generated Hopf superalgebra CrGs.

By RepG we denote the category of finite-dimensional representations of G and
by RepG the category of all representations.

We call G reductive if RepG is semisimple (any finite-dimensional representation
is completely reducible).

Theorem

Every reductive supergroup G is isomorphic to a direct product of OSpp1|2nq (for
different n) and some reductive algebraic group.
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We call G quasireductive if G0 is reductive.

RepG has many remarkable properties:

Frobenius category. Enough projective and injective objects, every
projective is injective and vice versa.

IndGG0
M is finite-dimensional if M is finite-dimensional.

If K Ă G is quasireductive then G{K is affine.

If K Ă G are both quasireductive then IndGK : RepK Ñ RepG is exact
maps projective modules to projective modules.

A lot of similarities with finite groups in positive characteristic.
Examples. GLpm|nq, Qpnq.
Homological approach.[Boe, Kujawa, Nakano.]

Ext‚pC,Cq “ CrgG0
1 s is a Noetherian (supercommutative) ring.

Polynomial algebra in most classical examples.
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Rank variety

Let g “ LieG. We call x P g semisimple if rx, xs P g0 is semisimple. By Qx we
denote the quasireductive subgroup of G generated by x. Denote by gss1 the set of
all odd semisimple elements of g.
A functor Sx : RepGÑ Svect as the composition

RepG
Res
ÝÝÝÑ RepQx

S
ÝÑ Svect,

where S is the semisimplification functor. Equivalently,

SxM :“ KerxM {pxM XKerxM q.

Sx is a symmetric monoidal functor although it is not exact!

Let M be a G-module. We define the support XM as

XM “ tx P gss1 | SxM ‰ 0u.

Immediate: XMbN “ XM X XN , XM‘N “ XM Y XN , XM˚ “ XM . Need:
projectivity detection.
Although gss1 and XM are not closed in g1, we should pass to the quotient g1{G0

using G0-equivariance.
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Detecting subgroups

Let K Ă G be both quasireductive. Then OpG{Kq “ IndGK C contains a trivial
G-submodule C. We call K detecting in G if CÑ OpG{Kq splits.

Theorem

The following conditions on the subgroup K in G are equivalent:

1 K is detecting;

2 Any G-module M splits as a direct summand in IndGKM .

3 For any pair of G-modules M,M 1, the restriction morphism

ExtiGpM,M 1q Ñ ExtiKpM,M 1q

is injective for all i.

Example

Let G be a finite group but ground field has a positive characteristic p. Then K is
detecting if it contains a p-Sylow subgroup of G.

If K is a detecting subgroup of G, then a G-module M is projective if and only if
its restriction to K is projective.
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Transitivity. Given K Ă H Ă G.

1 If K is a detecting subgroup in G, then H is also a detecting subgroup in G.

2 If K is a detecting subgroup of H, and H is a detecting subgroup of G, then
K is a detecting subgroup of G.

Theorem (I. Entova-Aizenbud-V.S.-A. Sherman)

If K is a detecting subgroup of G then the restriction functor maps negligible
morphisms to negligible morphisms. The restriction functor descends to the
functor between semisimplifications of RepG and RepK.

A morphism (G-equivariant map) V f
ÝÑW is called negligible if for any W g

ÝÑ V
the supertrace of f ˝ g is zero.

Theorem (V.S.-A. Sherman)

Let K be a detecting subgroup of G. Then any G0-orbit in gss1 has non-empty
intersection with k1.

Idea of proof. If G0xX k1 “ H then the corresponding vector field on G{K does
not have zeros. Using localization we can prove that SxOpG{Kq “ 0.
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Goal: Find small detecting subgroup in G.

Let G “ GLpm|nq. When K “ GLpp|qq ˆGLpm´ p|n´ qq is detecting?

Geometric necessary condition implies
minpp, qq `minpm´ p, n´ qq “ minpm,nq or, equivalently, p´ q, m´ n and
pm´ pq ´ pn´ qq are all non-negative or all non-positive.

Unitary trick. The group G has a compact real form U , unitary supergroup.
Then the supergrassmannian M “ U{pK X Uq “ Grpp|q,m|nq is a closed
U -orbit in G{K. It has U -invariant volume form. The integral

ş

M defines a
U -equivariant map OpG{Kq Ñ C and hence a G-equivariant map. This map
defines a splitting iff the volume of the supergrassmannian M is not zero.
We can prove that it is not zero exactly when the necessary condition holds.

Theorem (V.S.-A. Sherman)

The subgroup GLpp|qq ˆGLpm´ p|n´ qq is a detecting subgroup in GLpm|nq if
and only if Grpp|q,m|nq has a non-zero volume.
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Supergrassmannians

Grpp|q,m|nq will denote the supermanifold of pp|qq-dimensional subspaces in
Cm|n.
Properties

Underlying manifold Grpp,mq ˆGrpq, nq is compact.

D :“ dimCGrpp|q,m|nq “ ppm´ pqp` pn´ qqq|pm´ pqq ` ppn´ qqq.

Grpp|q,m|nq » Grpm´ p|n´ q,m|nq.

Homogeneous supermanifold Upm|nq{Upp|qq ˆ Upm´ p|n´ qq where Upa|bq
is the unitary supergroup: preserves Hermitian form on Ca|b.

Lie algebra upm|nq “ tX P glpm|nq | X˚ “ Xu

ˆ

A B
C D

˙˚

“

ˆ

Āt iB̄t

iC̄t Dt

˙

.

Let x P upm|nq0̄ of rank pp|qq and x2 “ x. Then Grpp|q,m|nq is isomorphic
to the Upm|nq-orbit of x.

Grpp|q,m|nq is a symplectic supermanifold, the action of Upm|nq is
Hamiltonian.
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Āt iB̄t

iC̄t Dt

˙

.

Let x P upm|nq0̄ of rank pp|qq and x2 “ x. Then Grpp|q,m|nq is isomorphic
to the Upm|nq-orbit of x.

Grpp|q,m|nq is a symplectic supermanifold, the action of Upm|nq is
Hamiltonian.

31 / 65



Supergrassmannians

Grpp|q,m|nq will denote the supermanifold of pp|qq-dimensional subspaces in
Cm|n.
Properties

Underlying manifold Grpp,mq ˆGrpq, nq is compact.

D :“ dimCGrpp|q,m|nq “ ppm´ pqp` pn´ qqq|pm´ pqq ` ppn´ qqq.

Grpp|q,m|nq » Grpm´ p|n´ q,m|nq.

Homogeneous supermanifold Upm|nq{Upp|qq ˆ Upm´ p|n´ qq where Upa|bq
is the unitary supergroup: preserves Hermitian form on Ca|b.

Lie algebra upm|nq “ tX P glpm|nq | X˚ “ Xu

ˆ

A B
C D

˙˚

“

ˆ
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D :“ dimCGrpp|q,m|nq “ ppm´ pqp` pn´ qqq|pm´ pqq ` ppn´ qqq.

Grpp|q,m|nq » Grpm´ p|n´ q,m|nq.

Homogeneous supermanifold Upm|nq{Upp|qq ˆ Upm´ p|n´ qq where Upa|bq
is the unitary supergroup: preserves Hermitian form on Ca|b.

Lie algebra upm|nq “ tX P glpm|nq | X˚ “ Xu

ˆ

A B
C D

˙˚

“

ˆ

Āt iB̄t

iC̄t Dt

˙

.

Let x P upm|nq0̄ of rank pp|qq and x2 “ x. Then Grpp|q,m|nq is isomorphic
to the Upm|nq-orbit of x.

Grpp|q,m|nq is a symplectic supermanifold, the action of Upm|nq is
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Volume forms and Berezin integral

Berezinian:

Ber

ˆ

A B
C D

˙

“ detpA´BD´1Cq detD´1.

Volume form ω “ fpx, ξqdξdx on a supermanifold M:

fpx, ξqdξdx “ Ber
Bpx, ξq

Bpy, ηq
fpy, ηqdηdy.

If f is a function on Rm|n with compact support then
ż

Rm|n

fpx, ξqdξdx :“
B

Bξ1
. . .

B

Bξn

ż

Rm

fpx, ξqdx,

x “ px1, . . . , xmq, ξ “ pξ1, . . . , ξnq.

To integrate a form over a supermanifold M we need to use

Partition of unity.

Fix orientation of the underlying manifold M0.

37 / 65



Volume forms and Berezin integral

Berezinian:

Ber

ˆ

A B
C D

˙

“ detpA´BD´1Cq detD´1.

Volume form ω “ fpx, ξqdξdx on a supermanifold M:

fpx, ξqdξdx “ Ber
Bpx, ξq

Bpy, ηq
fpy, ηqdηdy.

If f is a function on Rm|n with compact support then
ż

Rm|n

fpx, ξqdξdx :“
B

Bξ1
. . .

B

Bξn

ż

Rm

fpx, ξqdx,

x “ px1, . . . , xmq, ξ “ pξ1, . . . , ξnq.

To integrate a form over a supermanifold M we need to use

Partition of unity.

Fix orientation of the underlying manifold M0.

38 / 65



Volume forms and Berezin integral

Berezinian:

Ber

ˆ

A B
C D

˙

“ detpA´BD´1Cq detD´1.

Volume form ω “ fpx, ξqdξdx on a supermanifold M:

fpx, ξqdξdx “ Ber
Bpx, ξq

Bpy, ηq
fpy, ηqdηdy.

If f is a function on Rm|n with compact support then
ż

Rm|n

fpx, ξqdξdx :“
B

Bξ1
. . .

B

Bξn

ż

Rm

fpx, ξqdx,

x “ px1, . . . , xmq, ξ “ pξ1, . . . , ξnq.

To integrate a form over a supermanifold M we need to use

Partition of unity.

Fix orientation of the underlying manifold M0.

39 / 65



Volume forms and Berezin integral

Berezinian:

Ber

ˆ

A B
C D

˙

“ detpA´BD´1Cq detD´1.

Volume form ω “ fpx, ξqdξdx on a supermanifold M:

fpx, ξqdξdx “ Ber
Bpx, ξq

Bpy, ηq
fpy, ηqdηdy.

If f is a function on Rm|n with compact support then
ż

Rm|n

fpx, ξqdξdx :“
B

Bξ1
. . .

B

Bξn

ż

Rm

fpx, ξqdx,

x “ px1, . . . , xmq, ξ “ pξ1, . . . , ξnq.

To integrate a form over a supermanifold M we need to use

Partition of unity.

Fix orientation of the underlying manifold M0.

40 / 65



Example

(Rudakov) Let dimM “ p1|2q, M0 “ p0, 1q, two coordinate systems
px, ξ1, ξ2q and y “ py, η1, η2q related by

y “ x` ξ1ξ2, ηi “ ξi.

We have Ber Bpy,ηq
Bpx,ξq

“ 1 Then
ż

M
ydη1dη2dy “ 0,

ż

M
px` ξ1ξ2qdξ1dξ2dx “ ´1.
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Volumes of supergrassmannians

Theorem

Let M be a symplectic supermanifold with Hamiltonian action of the Lie
superalgebra g. Then there exists a canonical g-invariant volume form ω on
M.

In Darboux coordinates

Ω “

m
2
ÿ

i“1

dxi ^ dyi `
n
ÿ

j“1

dξj ^ dξj ,

ω “ dx1 . . . dxm
2
dy1 . . . dym

2
dξ1 . . . dξn.

Grpp|q,m|nq has a Upm|nq-invariant volume form unique up to rescaling.

Problem. Compute the volume of Grpp|q,m|nq.

Very often the volume of the compact supermanifold is zero. For example
the volume of the supergroup Upm|nq (with respect to Haar volume form)
is 0 unless mn “ 0.
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Main result

Theorem (V.S.-A.Sherman)

The supergrassmannian Grpp|q,m|nq has a non-zero volume if and only if
minpp, qq `minpm´ p, n´ qq “ minpm,nq or, equivalently, p´ q, m´ n and
pm´ pq ´ pn´ qq are all non-negative or all non-positive.

Main tool is Schwarz-Zaboronsky localization formula.
Introduce some notations:

For a vector field X on a supermanifold M we set ZpXq to be the zero locus
of X.

For a function f with singular point p PM0 we denote by
Hppfq P S2pT˚p Mq the Hessian of f at p.

Let V be a vector superspace of superdimension pr|2sq equipped with
volume element ω and non-degenerate quadratic form Q. We set

γpQ,ωq “ expp
πipdimV `0 ´ dimV ´0 q

4
q

PfpB1q
a

|detB0|
,

where B is the matrix of Q in the homogeneous basis

v1, . . . , vr P V0, u1, . . . , u2s P V1

such that ωpv1, . . . , vr, u1, . . . , u2sq “ 1.
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Schwarz-Zaboronsky localization

Theorem (A.Schwarz-O. Zaboronsky)

Let M be an oriented compact supermanifold with volume form ω. Assume that
X is an odd vector field such that

X2 “ 1
2
rX,Xs is a compact vector field,

Xω “ 0,

ZpXq is finite and every p P ZpXq is an isolated zero of X.

Then there exist an odd function f on M such that

X2f “ 0,

the set of singular points of Xf coincides with ZpXq.

For any such f we have
ż

M
ω “ πn

ÿ

pPZpXq

γpHppXfq, ωpq.

Note that if ZpXq ‰ H then dimM “ p2n|2nq. If ZpXq “ H for some X then
ş

M ω “ 0.
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Example

Let pM0,Ω0q be a symplectic manifold and M :“ ΠTM0.
1 De Rham differential d is an odd vector field on M ,
2 Functions on M are differential forms on M0,
3 M has a canonical volume form ω via identification TM » ΠTM .

Let X0 be a compact vector field on M0 with Hamiltonian h. Then
X “ d` iX0 is an odd vector field with X2

“ 2X0 and f :“ h` Ω is a
function on M . It is easy to check that Xf “ 0. Then

ż

M0

eihΩn0 “
in

n!

ż

M
efω “ πn

in

n!

ÿ

pPZpX0q

γpHpphq,Ω
n
0 q,

and the Schwarz-Zaboronsky formula yields to the Duistermaat-Heckman
formula.
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Dream

Conjecture

(T. Voronov)

VolGrpp|q,m|nq “ gD
Gpa` 1qGpb` 1q

Gpa` b` 1q
,

where gpd0|d1q :“ πd02
d1
2 , a “ p´ q, b “ pm´ nq ´ pp´ qq and Gpzq is the Barnes

function:

Gpnq “

$

’

&

’

%

0, n ď 0,

1, n “ 1,

pn´ 2q!!, n ą 1.

Up to normalization the volume of supergrassmannian GrpV,W q depends
only on superdimension of V and W .

Universal Deligne’s category GLptq, for t P C “covers” the categories
RepGLpm|nq with m´ n “ t.

The supergrassmannian can be defined in the category GLprq ˆGLpsq.

Can we define the volume?
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Some consequences

SLp1|1qd is a detecting subgroup of GLpm|nq where d “ minpm,nq. We
conjecture that it a minimal detecting subgroup.

We can prove that the volume of Q-grassmannian QGrpp, nq is not zero iff
ppn´ pq is even. Thus, Qp2qd or Qp2qd ˆQp1q is a detecting subgroup for
Qpnq with n “ 2d or, respectively, n “ 2d` 1.

We can prove that XM “ 0 iff M is projective for GLpm|nq and Qpnq.

We are close to proving

Conjecture

If G is a quasireductive algebraic group and M is a G-module then M is projective
if and only if X pMq “ t0u.
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Green correspondence

For a moment let G be a finite group, we work over a ground field of positive
characteristic p. Let H be a p-Sylow subgroup and K be the normalizer of H.
There is a bijection between indecomposable representations of G of non-zero
dimension and indecomposable representations of K of non-zero dimension. This,
as noticed by Etingof and Ostrik implies equivalence of semisimplifications of
RepK and RepG.
Now go back to supergroups. Let G “ GLpm|nq, m ď n, H “ GLp1|1qm, K be the
normalizer of H, K is a semidirect product of H and the symmetric group
Sm ˆGLpn´mq.

Theorem (V.S.-A. Sherman-I. Entova-Aizenbud)

Let V be an indecomposable representation of G of nonzero superdimension. Then
exactly one among indecomposable K-components has a non-zero superdimension.

Open questions

The functor between Rep ḠÑ Rep K̄ is not an equivalence (although
equivalence in defect 1 case). It defines a surjective morphism of
pro-reductive supergroups K̄ Ñ Ḡ.

Generalize unitary trick for other quasireductive supergroups.

Borel-Weil-Bott theorem. New results: Kapranov–Pimenov, Sam-Snowden.
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Happy Birthday!
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Mathematics as Metaphor

Вся моя интеллектуальная жизнь была сформирована тем, что я
условно стал называть Просвещенческим проектом. Его основная
посылка состояла в вере, что человеческий разум имеет высшую
ценность, а распространение науки и просвещения само по себе
неизбежно приведет к тому, что лучшие, чем мы, люди, будут жить в
лучшем, чем мы, обществе.
Ничто из того, что я наблюдал вокруг себя в течение двух третей
прошлого века и подходящего к концу десятилетия нового века, не
оправдывало этой веры.
И все же я верю в Просвещенческий проект.
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