Fibonacci structures related to adjoint functors and semi-orthogonal decompositions

M.Kapranov, based on joint work in progress with T.Dyckerhoff and V.Schechtman

Conference in honor of Y. I. Manin, Bonn, March 8, 2022

Iterated adjoints and their (co)contractions

$F: \mathcal{A} \rightarrow \mathcal{B}$ functor between categories. May have a right adjoint $F^{*}: \mathcal{B} \rightarrow \mathcal{A}$, i.e., $\operatorname{Hom}_{\mathcal{B}}(F(a), b) \simeq \operatorname{Hom}_{\mathcal{A}}\left(a, F^{*}(b)\right)$.

$$
\text { counit : } F F^{*} \rightarrow \operatorname{Id}_{\mathcal{B}}, \quad \text { unit }: \operatorname{Id}_{\mathcal{A}} \rightarrow F^{*} F
$$

Suppose $\exists F^{* *}=\left(F^{*}\right)^{*}, F^{* * *}$ etc. A chain of iterated adjoints $\left(F_{1}, \cdots, F_{N}\right): F_{i}=F_{i-1}^{*}$.
Can contract $F_{i} F_{i+1} \rightarrow$ Id, then again,... What do we get?
$N=3:$

$$
\begin{gathered}
F_{1} F_{2} F_{3} \longrightarrow F_{1} \\
\stackrel{\downarrow}{\downarrow} \\
F_{3}
\end{gathered}
$$

Contractions explicitly

$N=4:$

$N=5:$

General pattern: cotwinned subsets

$I \subset\{1, \cdots, N\}$ called cotwinned, if its complement is a (possibly empty) disjoint union of "twins" $\{i, i+1\}$. $\operatorname{Cot}\{1, \cdots, N\}=$ set of such.
$\mathcal{E}_{N}\left(F_{1}, \ldots, F_{N}\right):=$ the diagram of contractions of F_{1}, \cdots, F_{N}. Consists of compositions (which make sense)

$$
F_{I}=F_{i_{1}} \cdots F_{i_{m}}, \quad I=\left\{i_{1}<\cdots<i_{m}\right\} \in \operatorname{Cot}\{1, \cdots, N\}
$$

$|\operatorname{Cot}\{1, \ldots, N\}|=\varphi_{N}=$ Fibonacci number $1,2,3,5,8, \cdots$.
There is also the dual diagram of "cocontractions" (via units), ending in $F_{N} F_{N-1} \cdots F_{1}$. Denote it $\mathcal{E}^{N}\left(F_{N}, \cdots, F_{1}\right)$.

The Fibonacci cube [W.-J. Hsu, 1993], see also Wiki

$N-1$ twins $\{i, i+1\} \subset\{1, \cdots, N\} \sim$ simple roots for A_{N-1}
Boolean cube $2^{N-1}=$ set of all collections of such twins.
Fibonacci cube $\Gamma_{N} \subset \mathbf{2}^{N-1}$ \{collections of disjoint twins\}
$\simeq\{$ orthogonal collections of simple roots $\} \simeq \operatorname{Cot}\{1, \cdots, N\}$
Rem.1: $\Gamma_{N} \simeq$ Grothendieck construction (mapping cylinder) of $\Gamma_{N-2} \hookrightarrow \Gamma_{N-1}$ (this upgrades $\varphi_{N}=\varphi_{N-1}+\varphi_{N-2}$).
Rem.2: $\Gamma_{N} \subset \mathbf{2}^{N-1}$ is an order ideal, so a Γ_{N}-diagram can be extended by 0 s to a comm. cube.
So our diagram $\mathcal{E}_{N}\left(F_{1}, \cdots, F_{N}\right)$ can be regarded as a commutative cube with many 0 s.

Cubes to complexes: the Nth twist and cotwist

 In DG (or stable ∞-categorical) context:A commutative cube $Q \stackrel{ \pm}{\rightsquigarrow}$ Complex \rightsquigarrow Total object $\operatorname{Tot}(Q)$ N th spherical twist associated to $F=F_{1}$:

$$
\mathbb{E}_{N}(F)=\mathbb{E}_{N}\left(F_{1}, \cdots, F_{N}\right)=\operatorname{Tot} \mathcal{E}_{N}\left(F_{1}, \cdots, F_{N}\right)
$$

also cotwist $\mathbb{E}^{N}(F)=\mathbb{E}^{N}\left(F_{N}, \cdots, F_{1}\right)$. New (dg) functors.

$$
\begin{gathered}
\mathbb{E}_{2}\left(F_{1}, F_{2}\right)=\text { Cone }\left\{F_{1} F_{2} \xrightarrow{\text { counit }} \mathrm{Id}\right\} \\
\mathbb{E}_{3}\left(F_{1}, F_{2}, F_{3}\right)=\text { Cone }\left\{F_{1} F_{2} F_{3} \rightarrow F_{1} \oplus F_{3}\right\}
\end{gathered}
$$

$\mathbb{E}_{4}\left(F_{1}, F_{2}, F_{3}, F_{4}\right)=\operatorname{Tot}\left\{F_{1} F_{2} F_{3} F_{4} \rightarrow F_{1} F_{2} \oplus F_{3} F_{4} \oplus F_{1} F_{4} \rightarrow \mathrm{Id}\right\}$

They fit into exact "Fibonacci triangles"

Relation to (universal) continued fractions

$$
\begin{gathered}
R_{N}=x_{1}-\frac{1}{x_{2}-\frac{1}{\ddots-\frac{1}{x_{N}}}} \in \mathbb{Q}\left(x_{1}, \cdots, x_{N}\right) \\
R_{2}=x_{1}-\frac{1}{x_{2}}=\frac{x_{1} x_{2}-1}{x_{2}} \\
R_{3}=x_{1}-\frac{1}{x_{2}-\frac{1}{x_{3}}}=\frac{x_{1} x_{2} x_{3}-x_{1}-x_{3}}{x_{2} x_{3}-1}
\end{gathered}
$$

NB: We can make the x_{i} noncommutative: $R_{N} \in$ any skew field containing $\mathbb{Q}\left\langle x_{1}, \cdots, x_{N}\right\rangle$.

Euler continuants (noncommutative, alternating)

$I \subset\{1, \cdots, N\}$ cotwinned $\rightsquigarrow \operatorname{dep}(I):=\#$ (missing twins).
Ordered product x_{I} of $x_{i}, i \in I$.

$$
\begin{gathered}
E_{N}\left(x_{1}, \cdots x_{N}\right):=\sum_{I \in \operatorname{Cot}\{1, \cdots, N\}}(-1)^{\operatorname{dep}(I)} x_{I} \in \mathbb{Z}\left\langle x_{1}, \cdots, x_{N}\right\rangle . \\
E_{1}(x)=x \\
E_{2}\left(x_{1}, x_{2}\right)=x_{1} x_{2}-1, \\
E_{3}\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} x_{3}-x_{1}-x_{3} \\
E_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{2} x_{3} x_{4}-x_{1} x_{2}-x_{1} x_{3}-x_{3} x_{4}+1, \quad \text { etc. } \\
\mathbb{E}_{N}\left(F_{1}, \cdots, F_{N}\right) \text { categorifies } E_{N}\left(x_{1}, \cdots, x_{N}\right) .
\end{gathered}
$$

Continuants and continued fractions

Noncommutative $R_{N}=x_{1}-\frac{1}{x_{2}-\frac{1}{\ddots \cdot-\frac{1}{x_{N}}}}$ is represented as

$$
\begin{gathered}
R_{N}=P_{N} Q_{N}^{-1}=\left(Q_{N}^{\prime}\right)^{-1} P_{N}^{\prime}, \quad \text { where } \\
P_{N}=E_{N}\left(x_{1}, \cdots, x_{N}\right), \quad Q_{N}=E_{N-1}\left(x_{2}, \cdots, x_{N}\right), \\
P_{N}^{\prime}=E_{N}\left(x_{N}, \cdots, x_{1}\right), \quad Q_{N}^{\prime}=E_{N-1}\left(x_{N}, \cdots, x_{2}\right) .
\end{gathered}
$$

N -spherical functors

Def. A (dg-)functor F (s.t. adjoints \exists) is called N-spherical, if $\mathbb{E}_{N-1}(F)=\mathbb{E}^{N-1}(F)=0$.

Prop. In this case $\mathbb{E}_{N-2}(F)$ and $\mathbb{E}_{N}(F)$ are equivalences and similarly for $\mathbb{E}^{N-2}, \mathbb{E}^{N}$.

Reason: Categorification of classical formula ("continued fractions give best approximation")

$$
\begin{gathered}
R_{N+1}-R_{N}=\frac{-1}{Q_{N} Q_{N+1}^{\prime}}, \quad \text { or, equivalently } \\
Q_{N+1}^{\prime} P_{N}-P_{N+1}^{\prime} Q_{N}=-1, \quad \text { or, equivalently } \\
E_{N}\left(x_{1}, \cdots, x_{N}\right) E_{N}\left(x_{N+1}, \cdots, x_{2}\right)- \\
-E_{N+1}\left(x_{1}, \cdots, x_{N+1}\right) E_{N-1}\left(x_{N}, \cdots, x_{2}\right)=1
\end{gathered}
$$

Meaning of N-spherical for small N

2-spherical means $F=0$.
3-spherical means that F is an equivalence.
4 -spherical \Leftrightarrow spherical in the usual sense, i.e., \mathbb{E}_{2} and \mathbb{E}^{2} are equivalences. Our def. gives $\mathbb{E}_{3}=\mathbb{E}^{3}=0$ which is the def. due to A. Kuznetsov [1509.07657] and shown by him to be \Leftrightarrow usual. His argument categorifies the identity

$$
(a b-1)(c b-1)-(a b c-a-c) b=1
$$

which is an instance of (!).
\Rightarrow Subtleties of the theory of spherical functors are manifestations of subtleties of continued fractions

If N is odd and $F: \mathcal{A} \rightarrow \mathcal{B}$ is N-spherical, then \mathcal{A} is equivalent to \mathcal{B} via \mathbb{E}_{N-2} or \mathbb{E}_{N}.

N-spherical condition symbolically

$$
F-\frac{1}{F^{*}-\frac{1}{\ddots-\frac{1}{F^{(N-2)}}}}=0
$$

(Numerator zero, denominator invertible)

Semi-orthogonal decompositions and gluing functors

[Bondal-K., 1990] \mathcal{C} triangulated $\supset \mathcal{A}, \mathcal{B}$ full triangulated. Said to form an SOD, (notation $\mathcal{C}=\langle\mathcal{A}, \mathcal{B}\rangle$ and \mathcal{A} called left admissible) if

$$
\mathcal{A}=\mathcal{B}^{\perp}:=\{A: \operatorname{Hom}(B, A)=0, \forall B \in \mathcal{B}\}, \quad \mathcal{B}={ }^{\perp} \mathcal{A},
$$

and any $C \in \mathcal{C}$ includes into into a triangle

$$
B \longrightarrow C \longrightarrow A \longrightarrow B[1], \quad A \in \mathcal{A}, B \in \mathcal{B}
$$

Gluing functor [Bondal, Kuznetsov-Lunts] $F: \mathcal{A} \rightarrow \mathcal{B}$ (if \exists) s.t. $\operatorname{Hom}_{\mathcal{C}}(A, B)=\operatorname{Hom}_{\mathcal{B}}(F(A), B)$.

In dg-setting: can construct an SOD with any F as $\mathcal{C}=S_{1}(F)$ $\mathrm{Ob}=$ data $(A, B, \gamma: B \rightarrow F(A)$ closed degree 0 morphism).
First level of relative Waldhausen S-construction.
For stable ∞ : Dyckerhoff-K-Schechtman-Soibelman [2106.02873]

N-Periodic SODs

Iterated orthogonals
$\ldots{ }^{\perp \perp} \mathcal{A}=\mathcal{A}^{(-2)},{ }^{\perp} \mathcal{A}=\mathcal{A}^{(-1)}, \mathcal{A}=\mathcal{A}^{(0)}, \mathcal{A}^{\perp}=\mathcal{A}^{(1)}, \mathcal{A}^{\perp \perp}=\mathcal{A}^{(2)},$.
Can happen that $\mathcal{A}^{(N)}=\mathcal{A}$ (periodic SOD).
Thm. In the dg-setting, for a dg-functor F TFAE:
(i) The glued (along F) $\operatorname{SOD} \mathcal{C}=\langle\mathcal{A}, \mathcal{B}\rangle$ is N-periodic.
(ii) F is N-spherical.

For $N=4$ this is due to Halpern-Leinster and Shipman.
Rem. For any ∞-admissible chain of orthogonals (each $\left(\mathcal{A}^{(i)}, \mathcal{A}^{(i-1)}\right)$ is an SOD) we have mutation equivalences $\mathcal{A}^{(i)} \rightarrow \mathcal{A}^{(i+2)}$. The equivalences $\mathbb{E}_{N-2}(F), \mathbb{E}_{N}(F)$ are compositions of such mutations.

Why continued fractions?

Continued Fractions \sim compositions of FLT \sim of 2×2 matrices

$$
z \mapsto a_{1}-\frac{1}{a_{2}-\frac{1}{\ddots-\frac{1}{a_{N}-\frac{1}{z}}}} \text { is a FLT } \frac{a z+b}{c z+d}
$$

composition of

$$
z \mapsto a_{i}-\frac{1}{z}=\frac{a_{i} z-1}{z}, \quad \text { matrix }=\left[\begin{array}{cc}
a_{i} & -1 \\
1 & 0
\end{array}\right]
$$

Continuants and continued fractions \sim multiplying such matrices.

Matrix calculus for functors between SODs

(Dg- or stable ∞-context) Suppose:
$\mathcal{A}=\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}\right\rangle$, so $\mathcal{A}_{i} \underset{\text { proj. }}{\stackrel{\text { emb }}{\leftrightarrows}} \mathcal{A}$, with gluing functor $\varphi: \mathcal{A}_{1} \rightarrow \mathcal{A}_{2}$,
$\mathcal{B}=\left\langle\mathcal{B}_{1}, \mathcal{B}_{2}\right\rangle$, so $\mathcal{B}_{i} \underset{\text { proj. }}{\stackrel{\text { emb }}{\leftrightarrows}} \mathcal{B}$, with gluing functor $\psi: \mathcal{B}_{1} \rightarrow \mathcal{B}_{2}$,
$F: \mathcal{A} \rightarrow \mathcal{B}:($ dg- or exact $\infty-$) functor $\stackrel{1: 1}{\sim} \neq$ "Enhanced matrix", i.e.,
Matrix of functors $\left[\begin{array}{ll}F_{11} & F_{12} \\ F_{21} & F_{22}\end{array}\right], \quad F_{i j}: \mathcal{A}_{j} \rightarrow \mathcal{B}_{i}$ + Nat. transformations $\psi F_{1 j} \Rightarrow F_{2 j}, \quad F_{i 1} \Rightarrow F_{i 2} \varphi$
such that the two ways to paste a transformation $\psi F_{11} \Rightarrow F_{22} \varphi$ are the same ("commutative tetrahedron").

Such enhanced matrices can be composed.

Mutation coordinate change as a Cont. Fr.-matrix

Suppose $\mathcal{A} \subset \mathcal{C}$ is an admissible subcategory, i.e.,

$$
\mathcal{C}=\left\{\begin{array}{l}
\left\langle\mathcal{A},{ }^{\perp} \mathcal{A}\right\rangle, \text { with gluing functor } \varphi: \mathcal{A} \rightarrow^{\perp} \mathcal{A} \\
\left\langle\mathcal{A}^{\perp}, \mathcal{A}\right\rangle, \text { gluing functor then } \varphi^{*} M[1] .
\end{array}\right.
$$

$M: \mathcal{A}^{\perp} \xrightarrow{\sim}{ }^{\perp} \mathcal{A}$ mutation.
(Enhanced) matrix of $\left\langle\mathcal{A}^{\perp}, \mathcal{A}\right\rangle \xrightarrow{\mathrm{Id}_{\mathcal{C}}}\left\langle\mathcal{A},{ }^{\perp} \mathcal{A}\right\rangle$ is of Cont. Fr. type

	\mathcal{A}^{\perp}	\mathcal{A}
\mathcal{A}	$\varphi^{*} \circ M[1]$	Id
${ }^{\perp} \mathcal{A}$	M	0

This explains the relevance of continued fractions in the theory of SODs

Examples of N-periodic SOD's: quivers

Ex.1: A_{n}-quiver. $\mathcal{C}=D^{b}\left\{V_{1} \rightarrow \cdots \rightarrow V_{n}\right\}=\left\{V_{1}^{\bullet} \rightarrow \cdots \rightarrow V_{n}^{\bullet}\right\}$.

$$
\mathcal{A}=\left\{V^{\bullet} \rightarrow 0 \rightarrow \cdots \rightarrow 0\right\}, \quad \mathcal{B}=\left\{0 \rightarrow V_{2}^{\bullet} \rightarrow \cdots \rightarrow V_{n}^{\bullet}\right\}
$$

$\langle\mathcal{A}, \mathcal{B}\rangle$ is a $2(n+1)$-periodic SOD.
NB: Here \mathcal{C} is fractional CY: Serre ${ }^{n+1}=[-2]$. So any SOD is $2(n+1)$ periodic, as $\mathcal{A}^{\perp \perp}=\operatorname{Serre}(\mathcal{A})$.

Similarly for other quivers, e.g., \mathcal{C} consist of

$$
V_{1}^{\bullet} \rightarrow V_{2}^{\bullet} \rightarrow \cdots \rightarrow V_{n-2}^{\bullet} \nrightarrow V_{n}^{\bullet} \quad \mathcal{A}=\left\{\text { only } V_{1}^{\bullet} \neq 0\right\}
$$

Example: Waldhausen S-construction

Ex.2. $f: \mathcal{A} \rightarrow \mathcal{B}$ usual (4-)spherical functor \rightsquigarrow
$S_{n}(f)$ nth Waldhausen category. $\mathrm{Ob}=\left\{B_{1} \rightarrow \cdots \rightarrow B_{n} \rightarrow f(A)\right\}$. Has SOD

$$
\langle\mathcal{B}, \cdots, \mathcal{B}, \mathcal{A}\rangle=\langle\mathcal{D}, \mathcal{A}\rangle, \quad \mathcal{D}=\langle\mathcal{B}, \cdots, \mathcal{B}\rangle
$$

It is $2(n+1)$-periodic.
This is because $S_{\bullet}(f)=\left(S_{n}(f)\right)_{n \geq 0}$ is a paracyclic object, see [DKSS 2106.02873]. Paracyclic rotation τ_{n} acts on $S_{n}(f)$ with $\tau_{n}^{n+1}=$ "monodromy of the schober". Also the SOD
\langle first $\mathcal{B}, \mathcal{E}\rangle, \quad \mathcal{E}=\langle$ second $\mathcal{B}, \cdots, \mathcal{B}, \mathcal{A}\rangle$.

N-spherical objects

X smooth projective, $\omega=\Omega_{X}^{n}[n], n=\operatorname{dim} X, E \in D^{b}$ Coh $_{X}$ object.

$$
\begin{aligned}
\mathcal{A}=D^{b} & \text { (Vect) } \xrightarrow[F^{*}=\operatorname{Hom}(E,-)]{F=-\otimes E} \mathcal{B}=D^{b} \operatorname{Coh}_{X} \\
& \stackrel{F^{* *}=-\otimes E \otimes \omega}{\longleftrightarrow F^{(3)}=\operatorname{Hom}(E \otimes \omega,-)} \\
& \xrightarrow[F^{(4)}=-\otimes E \otimes \omega^{\otimes 2}]{\longleftrightarrow}
\end{aligned}
$$

E is called an N-spherical object, if $F=-\otimes E$ is an N-spherical functor.
Examples related to $X=\mathrm{CY} / \mathbb{Z}_{n}$ (generalized Enriques mflds).
[In progress].

Relation to other work

T. Kuwagaki [1902.04269]: N-periodic SOD are categorical analogs of irregular connections near $\infty \in \mathbb{C}$ with exponential data (Lissajous figure) being a 2:1 covering of S_{∞}^{1} with N switches.

Like for \mathbb{C} - Schrödinger

$$
y^{\prime \prime}=P(z) y, P(z) \in \mathbb{C}[z], \operatorname{deg}=N-2
$$

3-periodic SODs: categorify Airy $y^{\prime \prime}=z y$. 4-periodic SODs (coming from spherical functors): categorify harmonic oscillator $y^{\prime \prime}=\left(z^{2}+a\right) y$ in complex domain.
NB: Spherical functors themselves categorify $\operatorname{Perv}(\mathbb{C}, 0)$ (regular)

$$
\mathcal{A}(\sim \Phi) \underset{F^{*}}{\stackrel{F}{\rightleftarrows}} \mathcal{B}(\sim \Psi)
$$

Relation to other work: appearances of continuants

P. Boalch [1501.00930] Moduli space of Stokes data for
\mathbb{C}-Schrödinger (following Shibuya, 1975 book) related to Euler continuants.
M. Fairon, D. Fernandez [2105.04858] Continuants = group valued moment maps for some multiplicative quiver varieties. NB: by [Bezrukavnikov-Kapranov 1506.07050] these varieties parametrize microlocal sheaves on the nodal curve which is the complexification of the Lissajous figure above ($\mathbb{C P}^{1}$'s instead of circles).
P. Etingof, E. Frenkel, D. Kazhdan [2106.05423] Continuants appear in analytic Langlands correspondence for $P G L_{2}$, in analysis of "balanced" local systems on $\mathbb{C P}^{1} \backslash\left\{t_{0}, \cdots, t_{N+1}\right\}$: ODE for eigenvalues of Hecke operators.

