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Iterated adjoints and their (co)contractions

F : A → B functor between categories. May have a right adjoint
F ∗ : B → A, i.e., HomB(F (a), b)'HomA(a,F ∗(b)).

counit : FF ∗ → IdB, unit : IdA → F ∗F

Suppose ∃ F ∗∗ = (F ∗)∗, F ∗∗∗ etc. A chain of iterated adjoints
(F1, · · · ,FN): Fi = F ∗i−1.

Can contract FiFi+1 → Id, then again,... What do we get?

N = 3:
F1F2F3 //

��

F1

F3
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Contractions explicitly

N = 4:
F1F4

F3F4
// Id

F1F2F3F4

OO

//

99

F1F2

==

N = 5:
F1F4F5

// F1

F1F2F5

��

F1F2F3F4F5
oo

��

OO

// F1F2F3

OO

��
F5 F3F4F5
oo // F3 3 / 22
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General pattern: cotwinned subsets

I ⊂ {1, · · · ,N} called cotwinned, if its complement is a (possibly
empty) disjoint union of “twins” {i , i + 1}. Cot{1, · · · ,N} = set
of such.

EN(F1, . · · · ,FN) := the diagram of contractions of F1, · · · ,FN .
Consists of compositions (which make sense)

FI = Fi1 · · ·Fim , I = {i1 < · · · < im} ∈ Cot{1, · · · ,N}

|Cot{1, ...,N}| = ϕN = Fibonacci number 1, 2, 3, 5, 8, · · · .

There is also the dual diagram of “cocontractions” (via units),
ending in FNFN−1 · · ·F1. Denote it EN(FN , · · · ,F1).
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The Fibonacci cube [W.-J. Hsu, 1993], see also Wiki

N − 1 twins {i , i + 1} ⊂ {1, · · · ,N} ∼ simple roots for AN−1

Boolean cube 2N−1 = set of all collections of such twins.

Fibonacci cube ΓN ⊂ 2N−1 {collections of disjoint twins}
'{orthogonal collections of simple roots}'Cot{1, · · · ,N}

Rem.1: ΓN 'Grothendieck construction (mapping cylinder) of
ΓN−2 ↪→ ΓN−1 (this upgrades ϕN = ϕN−1 + ϕN−2).

Rem.2: ΓN ⊂ 2N−1 is an order ideal, so a ΓN -diagram can be
extended by 0s to a comm. cube.

So our diagram EN(F1, · · · ,FN) can be regarded as a commutative
cube with many 0s.
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Cubes to complexes: the Nth twist and cotwist

In DG (or stable ∞-categorical) context:

A commutative cube Q
±
 Complex  Total object Tot(Q)

Nth spherical twist associated to F = F1:

EN(F ) = EN(F1, · · · ,FN) = Tot EN(F1, · · · ,FN)

also cotwist EN(F ) = EN(FN , · · · ,F1). New (dg) functors.

E2(F1,F2) = Cone{F1F2
counit−→ Id}

E3(F1,F2,F3) = Cone{F1F2F3 → F1 ⊕ F3}
E4(F1,F2,F3,F4) = Tot

{
F1F2F3F4 → F1F2 ⊕ F3F4 ⊕ F1F4 → Id

}
..........................

They fit into exact “Fibonacci triangles”
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Relation to (universal) continued fractions

RN = x1 −
1

x2 −
1

. . . −
1

xN

∈ Q(x1, · · · , xN)

R2 = x1 −
1

x2
=

x1x2 − 1

x2

R3 = x1 −
1

x2 −
1

x3

=
x1x2x3 − x1 − x3

x2x3 − 1

NB: We can make the xi noncommutative: RN ∈ any skew field
containing Q〈x1, · · · , xN〉.
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Euler continuants (noncommutative, alternating)

I ⊂ {1, · · · ,N} cotwinned  dep(I ) := #(missing twins).
Ordered product xI of xi , i ∈ I .

EN(x1, · · · xN) :=
∑

I∈Cot{1,··· ,N}

(−1)dep(I )xI ∈ Z 〈x1, · · · , xN〉 .

E1(x) = x ,

E2(x1, x2) = x1x2 − 1,

E3(x1, x2, x3) = x1x2x3 − x1 − x3,

E4(x1, x2, x3, x4) = x1x2x3x4 − x1x2 − x1x3 − x3x4 + 1, etc.

EN(F1, · · · ,FN) categorifies EN(x1, · · · , xN).
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Continuants and continued fractions

Noncommutative RN = x1 −
1

x2 −
1

. . . −
1

xN

is represented as

RN = PNQ
−1
N = (Q ′N)−1P ′N , where

PN = EN(x1, · · · , xN), QN = EN−1(x2, · · · , xN),

P ′N = EN(xN , · · · , x1), Q ′N = EN−1(xN , · · · , x2).
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N-spherical functors

Def. A (dg-)functor F (s.t. adjoints ∃) is called N-spherical, if
EN−1(F ) = EN−1(F ) = 0.

Prop. In this case EN−2(F ) and EN(F ) are equivalences and
similarly for EN−2,EN .

Reason: Categorification of classical formula (“continued fractions
give best approximation”)

RN+1 − RN =
−1

QNQ
′
N+1

, or, equivalently

Q ′N+1PN − P ′N+1QN = −1, or, equivalently

(!)
EN(x1, · · · , xN)EN(xN+1, · · · , x2)−

−EN+1(x1, · · · , xN+1)EN−1(xN , · · · , x2) = 1.
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Meaning of N-spherical for small N

2-spherical means F = 0.

3-spherical means that F is an equivalence.

4-spherical ⇔ spherical in the usual sense, i.e., E2 and E2 are
equivalences. Our def. gives E3 = E3 = 0 which is the def. due to
A. Kuznetsov [1509.07657] and shown by him to be ⇔ usual. His
argument categorifies the identity

(ab − 1)(cb − 1)− (abc − a− c)b = 1

which is an instance of (!).
⇒ Subtleties of the theory of spherical functors are manifestations

of subtleties of continued fractions

If N is odd and F : A → B is N-spherical, then A is equivalent to
B via EN−2 or EN .
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N-spherical condition symbolically

F −
1

F ∗ −
1

. . . −
1

F (N−2)

= 0

(Numerator zero, denominator invertible)
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Semi-orthogonal decompositions and gluing functors

[Bondal-K., 1990] C triangulated ⊃ A,B full triangulated. Said to
form an SOD, (notation C = 〈A,B〉 and A called left admissible) if

A = B⊥ := {A : Hom(B,A) = 0, ∀B ∈ B}, B = ⊥A,

and any C ∈ C includes into into a triangle

B −→ C −→ A −→ B[1], A ∈ A, B ∈ B.

Gluing functor [Bondal, Kuznetsov-Lunts] F : A → B (if ∃) s.t.

HomC(A,B) = HomB(F (A),B).

In dg-setting: can construct an SOD with any F as C = S1(F )
Ob = data

(
A,B, γ : B → F (A) closed degree 0 morphism

)
.

First level of
:::::::
relative

:::::::::::
Waldhausen

::::::::::::::
S-construction.

For stable ∞: Dyckerhoff-K-Schechtman-Soibelman [2106.02873]
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N-Periodic SODs

Iterated orthogonals

· · ·⊥⊥A = A(−2), ⊥A = A(−1), A = A(0), A⊥ = A(1), A⊥⊥ = A(2), · · ·

Can happen that A(N) = A (periodic SOD).

Thm. In the dg-setting, for a dg-functor F TFAE:

(i) The glued (along F ) SOD C = 〈A,B〉 is N-periodic.

(ii) F is N-spherical.

For N = 4 this is due to Halpern-Leinster and Shipman.

Rem. For any ∞-admissible chain of orthogonals (each
(A(i),A(i−1)) is an SOD) we have mutation equivalences
A(i) → A(i+2). The equivalences EN−2(F ), EN(F ) are
compositions of such mutations.
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Why continued fractions?

Continued Fractions ∼ compositions of FLT ∼ of 2× 2 matrices

z 7→ a1 −
1

a2 −
1

. . . −
1

aN −
1

z

is a FLT
az + b

cz + d

composition of

z 7→ ai −
1

z
=

aiz − 1

z
, matrix =

[
ai −1
1 0

]
Continuants and continued fractions ∼ multiplying such matrices.
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Matrix calculus for functors between SODs

(Dg- or stable ∞-context) Suppose:

A = 〈A1,A2〉, so Ai
emb. // A
proj.
oo , with gluing functor ϕ : A1 → A2,

B = 〈B1,B2〉, so Bi
emb. // B
proj.
oo , with gluing functor ψ : B1 → B2,

F : A → B: (dg- or exact ∞-) functor
1:1
! “Enhanced matrix”, i.e.,

Matrix of functors

[
F11 F12
F21 F22

]
, Fij : Aj → Bi

+ Nat. transformations ψF1j ⇒ F2j , Fi1 ⇒ Fi2ϕ

such that the two ways to paste a transformation ψF11 ⇒ F22ϕ are
the same (“commutative tetrahedron”).

Such enhanced matrices can be composed.
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Mutation coordinate change as a Cont. Fr.-matrix

Suppose A ⊂ C is an admissible subcategory, i.e.,

C =

{
〈A,⊥A〉, with gluing functor ϕ : A → ⊥A
〈A⊥,A〉, gluing functor then ϕ∗M[1].

M : A⊥ ∼−→ ⊥A mutation.

(Enhanced) matrix of 〈A⊥,A〉 IdC−→ 〈A,⊥A〉 is of Cont. Fr. type

A⊥ A
A ϕ∗ ◦M[1] Id
⊥A M 0

This explains the relevance of continued fractions in the theory of
SODs
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Examples of N-periodic SOD’s: quivers

Ex.1: An-quiver. C = Db{V1 → · · · → Vn} = {V •1 → · · · → V •n }.

A = {V • → 0→ · · · → 0}, B = {0→ V •2 → · · · → V •n }

〈A,B〉 is a 2(n + 1)-periodic SOD.

NB: Here C is fractional CY: Serren+1 = [−2]. So any SOD is
2(n + 1) periodic, as A⊥⊥ = Serre(A).

Similarly for other quivers, e.g., C consist of

V •n

V •1
// V •2

// · · · // V •n−2
66

''
V •n−1

A = {only V •1 6= 0}
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Example: Waldhausen S-construction

Ex.2. f : A → B usual (4-)spherical functor  
Sn(f ) nth Waldhausen category. Ob = {B1 → · · · → Bn → f (A)}.
Has SOD

〈B, · · · ,B,A〉 = 〈D,A〉, D = 〈B, · · · ,B〉

It is 2(n + 1)-periodic.

This is because S•(f ) = (Sn(f ))n≥0 is a paracyclic object, see
[DKSS 2106.02873]. Paracyclic rotation τn acts on Sn(f ) with
τn+1
n = “monodromy of the schober”. Also the SOD

〈first B, E〉, E = 〈second B, · · · ,B,A〉.

19 / 22



Fibonacci structures related to adjoint functors and semi-orthogonal decompositions

N-spherical objects

X smooth projective, ω = Ωn
X [n], n = dimX , E ∈ DbCohX object.

A = Db(Vect)
F=−⊗E // B = DbCohX

F∗=Hom(E ,−)oo
F∗∗=−⊗E⊗ω //

F (3)=Hom(E⊗ω,−)oo
F (4)=−⊗E⊗ω⊗2

//

E is called an N-spherical object, if F = −⊗ E is an N-spherical
functor.
Examples related to X = CY /Zn (generalized Enriques mflds).
[In progress].
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Relation to other work

T. Kuwagaki [1902.04269]: N-periodic SOD are categorical
analogs of irregular connections near ∞ ∈ C with exponential data
(Lissajous figure) being a 2 : 1 covering of S1

∞ with N switches.

Like for C- Schrödinger
y ′′ = P(z)y , P(z) ∈ C[z ], deg = N − 2.

3-periodic SODs: categorify Airy y ′′ = zy .

4-periodic SODs (coming from spherical
functors): categorify harmonic oscillator
y ′′ = (z2 + a)y in complex domain.

NB: Spherical functors themselves categorify Perv(C, 0) (regular)

A(∼ Φ)
F // B(∼ Ψ)
F∗
oo
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Relation to other work: appearances of continuants

P. Boalch [1501.00930 ] Moduli space of Stokes data for
C-Schrödinger (following Shibuya, 1975 book) related to Euler
continuants.

M. Fairon, D. Fernandez [2105.04858] Continuants = group valued
moment maps for some multiplicative quiver varieties. NB: by
[Bezrukavnikov-Kapranov 1506.07050] these varieties parametrize
microlocal sheaves on the nodal curve which is the complexification
of the Lissajous figure above (CP1’s instead of circles).

P. Etingof, E. Frenkel, D. Kazhdan [2106.05423] Continuants
appear in analytic Langlands correspondence for PGL2, in analysis
of “balanced” local systems on CP1 \ {t0, · · · , tN+1}: ODE for
eigenvalues of Hecke operators.
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