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Thank You!

Inspirations and aspirations

• We thank Yuri Ivanovich for his continued guidance and
support.

• His example of regarding mathematical truths, formulating
and sharing his insights have been a guiding light for
mathematics.

• His unmistakeable style, as evidenced by the title of this
conference, is an aspirational goal for the field.

• His character, vision and overarching influence in and outside
of mathematics have been a constant inspiration for me.
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The progression

Journey

This research has been a journey whose beginning were the moduli
spaces and their operations, which I studied with Yuri Ivanovich
during my PhD. [Man99]
Predating this his book on Quantum Groups and Noncommutative
Geometry [Man18] that introduced me to his way of thinking
before meeting him.
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The progression

Steps

1 Graphs. (Borisov-Manin), Categories (Feynman categories)

2 Algebra. (Representations operads)

3 Geometry. Moduli spaces.

Physics

1 Feynman graphs

2 Renormalization Hopf algebras
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Small Ontology: two inputs

Combinatorial categorical level

Trees ⊂ Graphs.
Expressed categorically, this gives a diagram for push–forwards and
pullbacks.

Planar Trees have cyclic orders
Expressed categorically cyclic orders are a type of Grothendieck
construction called decoration.

Almost ribbon graphs/topological types are push–forwards
Putting the two things together, one can push–forward the
decorations and obtains a type of decorated graph. These graphs
give the topological type of surfaces.
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Combinatorial ; topology/moduli spaces

Tool

W–constructions. [KW17].
This yields a cubical complex.

Application/Results with C. Berger

1 A cubical model for Igusa type complexes homotopy
equivalent to moduli spaces of curves resulting from a derived
push–forward.

2 A cubical complex which is the cone over the combinatorial
compactification of Penner/Kontsevich. [Kon92, Pen87]
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Borisov–Manin graph categories

Objects and morphisms

1 (V ,F , ∂, ı). The involution ı : F → F glues flags F to edges.

2 φ = (φV , φ
F , ıφ).

3 φV : V � V ′, φF : F ′ ↪→ F , ıφ : F \ F ′ → F \ F ′

4 Morphisms. Glue edges, contract edges, merge vertices.

Ghost graph

(V ,F , ∂, ıφ). Keeps track of contracted edges and glued and then
contracted edges.

Explanation in terms of Non–unique factorization

Work in progress with M. Monaco and C. Berger on graphs.
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Example
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Feynman Categories of graphs

Monoidal structure

Disjoint union gives a monoidal structure.

Feynman category of graphs [BK22]

• Basic objects. Irreducible objects. Connected graphs.

• Basic morphisms. Irreducible morphisms Those whose target
is connected.

Feynman subcategories. Related to operadic things

• Basic objects are corollaries.

• Basic morphisms have connected underlying graphs FGctd
.

• Basic morphisms have trees as underlying graphs FT = Fcyc.
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Feynman category

Basic morphisms FG

• Non-self gluing or virtual edge contraction

• Self–gluing or virtual loop contraction (exclude for
trees/forests)

• Merger (exclude for connected).

• Everything is labelled and kept track of.

Theorem [BK22]

The categories of graphs and aggregates from a Feynman double
category, viz. a category internal to Feynman categories. Suitably
restricted the double category has connections.
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Definition of Feynman category

Data

1 V a groupoid

2 F a symmetric monoidal category

3 ı : V → F a functor.

Notation

V⊗ the free symmetric category on V (words in V).

V


  

ı // F

V⊗

ı⊗
>>
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Feynman category

Definition: Data and Axioms

Such a triple F = (V,F , ı) is called a Feynman category if

i ı⊗ induces an equivalence of symmetric monoidal categories
between V⊗ and Iso(F).

ii ı and ı⊗ induce an equivalence of symmetric monoidal
categories between Iso(F ↓ V)⊗ and Iso(F ↓ F) .

iii For any ∗ ∈ V, (F ↓ ∗) is essentially small.
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Operads and S–modules in general: Ops and Mods

Definition

Fix a symmetric cocomplete monoidal category C, where colimits
and tensor commute, and F = (V,F , ı) a Feynman category.

• Consider the category of strong symmetric monoidal functors

F-OpsC := Fun⊗(F , C)

which we will call F–ops in C An element is called and F–op.

• Functors form V,

V-ModsC := Fun(V, C)

will be called V-modules in C with elements being called a
V–mod in C.
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The monoidal category of operations Ops

Trival op

Let TF : F → C be the functor which assigns I ∈ Obj(C) to any
object, and which sends morphisms to the identity of the unit.

Proposition

With objectwise monoidal product (P ⊗O)(X ) := P(X )⊗O(X )
F-OpsC is a symmetric monoidal category with unit TF .
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Structure Theorems

Theorem (Free/Monadicity/Triples)

The forgetful functor G : Ops →Mods has a left adjoint F (free
functor) and this adjunction is monadic.

F : V-ModsC � F-OpsC : G

1 The endofunctor T = GF is a monad (triple).

2 F-OpsC , are algebras over it.
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Frobenius reciprocity

Theorem[KW17]

Feynman categories form a category. Morphisms are pairs of
compatible functors. There is an adjunction

f! : [F , C]⊗ � [F ′, C]⊗ : f ∗

F f //

f ∗O

��

F ′

O��
C

F f //

O

��

F ′

f!O��
C

x ‘

The push–forward is given by a left Kan extension f! = Lanf . The
theorem is that this functor is monoidal.

Remarks

Sometimes there is also a right adjoint f∗ = Ranf which is
“extension by zero”. These will form part of a 6 functor formalism
[War19].
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Basic objects and basic morphisms

Unraveling the axioms: Consequences

1 X '
⊗

v∈I ı(∗v ).
• ∗v ∈ V. The ı(∗v ) are called the basic objects.
• Iso(X ) '

⊗
v∈I Iso(∗v )

2 φ : Y → X ,
• φ '

⊗
v∈I φv

• φv : Yv → ı(∗v ), Y '
⊗

v∈I Yv .
• The morphisms φv : Y → ı(∗v ) are called basic morphisms.
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Hereditary property

Hereditary diagram

1 In particular, fix φ : X → X ′ and fix X ′ '
⊗

v∈I ı(∗v ): there
are Xv ∈ F , and φv ∈ Hom(Xv , ∗v ) s.t. the following diagram
commutes.

(1) X
φ //

'
��

X ′

'
��⊗

v∈I Xv

⊗
v∈I φv //

⊗
v∈I ı(∗v )

2 For any two such decompositions
⊗

v∈I φv and
⊗

v ′∈I ′ φ
′
v ′

there is a bijection ψ : I → I ′ and isomorphisms
σv : Xv → X ′ψ(v) s.t. P−1

ψ ◦
⊗

v σv ◦ φv =
⊗
φ′v ′ where Pψ is

the permutation corresponding to ψ.

3 These are the only isomorphisms between morphisms.
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Examples see e.g. [Kau21]

Set versions

1 Finite sets. Restriction to injections and surjections.

2 Ops are unital algebras, FI algebras and nonunital algebras,

3 If one considers the non–symmetric analogue, one obtains
ordered sets, with order preserving surjections and associative
algebras.

4 The F-OpsC for FinSet are unital commutative algebras. item
∆+S crossed simplicial group. There are the skeleton of
non-commutative sets: order on the fibers of morphisims
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Examples based on G: morphisms have underlying graphs

F Feynman category for condition/additional decoration

Foperad operads rooted trees
Opl non-Sigma operads planar rooted trees
Foperad,mult operads with mult. b/w rooted trees.

FT = Fcyc cyclic operads trees
F¬Σcyc non Σ cyclic operads planar trees

FGctd

unmarked modular operads connected graphs
Fmod modular operads connected + genus marking
F¬Σ mod non-sigma modular operads connected +surface marking

FG unmarked nc modular operads graphs
Fncmod nc modular operads genus marking
Fnc¬Σmod nc non Σ modular operads surface marking

Fdiop dioperads connected directed graphs w/o
directed loops or parallel edges

FPROP PROPs directed graphs w/o directed loops
Fproperad properads connected directed graphs

w/o directed loops

Table: List of Feynman categories with conditions and decorations
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Adjunction

Classical Frobenius reciprocity

Taking V1 = H, F1 = V⊗1 , V2 = G ,F2 = V⊗2 with the standard
inclusion, then for a morphism induced by an inclusion f : H → G ,
the adjunction means that:

Homk[G ](ind
G
H ρ, λ)↔ Homk[H](ρ, res

G
H λ)

Application to graphs and moduli spaces

We will consider the inclusion k : FT → FGctd
.

This realizes the inclusion trees ⊂ connected graphs.
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FdecO w/ J. Lucas, C. Berger. Grothendieck construction

Theorem

Given an O ∈ F–Ops, then there is a Feynman category FdecO
which is indexed over F .

• It objects are pairs (X , dec ∈ O(X ))

• HomFdecO((X , dec), (X ′, dec ′)) is the set of φ : X → X ′, s.t.
O(φ)(dec) = dec ′.

(This construction works a priori for Cartesian C, but with
modifications it also works for the non–Cartesian case.)

Example

F = Fcyc, O = CycAss, CycAss(∗S) = {cyclic orders ≺ on S}.
New basic objects of CdecCycAss are planar corollas ∗S ,≺. Basic
morphisms have underlying trees with a planar structure.
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Main result

Theorem

(2) FdecO
f O //

π

��

F′dec f!(O)

π′

��
F

f // F′

FdecO
σdec //

f O

��

FdecP

f P

��
F′decf!(O)

σ′dec // F′decf!(P)

The squares above commute squares and are natural in O.
We get the induced diagram of adjoint functors.

(3) FdecO-Ops
f O! ..

π!

��

F ′dec f!(O)-Ops
f O∗
nn

π′!




F-Ops
f! --

π∗

UU

F ′-Ops

π′∗
KK

f ∗
mm
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More FdecO [KL17]

Theorem

π!π
∗(T ) = O.

Definition

We call a morphism of Feynman categories i : F→ F′ a connected
if i!(TF ) = TF ′ in F′-OpsC , where TF : F → Set is the terminal
Set operation.

Proposition

If f : F→ F′ is a connected then f O : FdecO → F′decf!(O) is as well.
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Factorization

Theorem (w/ C. Berger)

Any morphism of Feynman f : F→ F′ categories factors as
connected morphism followed by a covering, viz. the projection of a
set decoration.

F
f

##

i // F ′dec f!(T )

��
F ′

Furthermore, connected morphisms and covering form a
factorization system. In particular, the factorization is essentially
unique.
These come from a comprehension scheme of connected
morphisms and coverings.
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Theorem w. C. Berger [BK22]

Connecting the different categories

Fcyc
dec CycAss = F¬Σcyc iCycAss//

π

��

Fmod
dec i!(CycAss) = F¬Σmod

π

��

Fcyc i //

j

**

Fmod = FGctd

j!(T )

π
��

FGctd

1 The commutative square exists simply by the Theorems about
decoration and factorization.

2 Fmod are the Getzler-Kapranov [GK98] modular operads.
These now are defined by push-forward of the trivial functor.
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Theorem w. C. Berger [BK22]

Connecting the different categories

Fcyc
dec CycAss = F¬Σcyc iCycAss//

π

��

Fmod
dec i!(CycAss) = F¬Σmod

π

��

Fcyc i //

j

**

Fmod = FGctd

j!(T )

π
��

FGctd

1 F¬Σcyc-Ops are non–Σ cyclic operads.

2 j!(T )(∗S) = qg∈N ∗. Accordingly the basic objects of Fmod

are of the form ∗g ,S . These can be thought of as the
topological types of an oriented surfaces: genus g with S
boundaries.
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Modular/Surface theory

Modular graphs and almost ribbon graphs

Fcyc
dec CycAss = F¬Σcyc iCycAss//

π

��

Fmod
dec i!(CycAss) = F¬Σmod

π

��

Fcyc i //

j

**

Fmod = FGctd

j!(T )

π
��

FGctd

4 F¬Σmod-Ops are non–sigma modular operads [Mar16, KP06].
Objects of V are ∗g ,s,S1,...,Sb where each Si has a cyclic order.
These can be thought of as oriented surfaces with genus g , s
internal marked points, b boundaries where each boundary i
has marked points labelled by Si in the given cyclic order.
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Example

Bootstrap

Fcyc
dec CycAss = F¬Σcyc iCycAss//

π

��

Fmod
dec i!(CycAss) = F¬Σmod

π

��

Fcyc i //

j

**

Fmod = FGctd

j!(T )

π
��

FGctd

5 This is now actually a calculation. A succinct proof uses the
theorem that the spanning tree graph is connected and
mutations act transitively.
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More details in [BK22]

Remarks

• The calculation of the push-foward can be done in

1 graphs, the calculation involving spanning trees (new and
important for the following)

2 cyclic words, classification of surfaces by labelling schemes.
3 topological surfaces, classification of surfaces, [KP06], [CL07].
4 chord diagrams, (nice formalism).
5 other combinatorial gadgets [Mar16].

• Fobenius reciprocity can be used to give a new proof and
understanding of the well known results that 2d TFT and
OTFT being defined by Frobenius algebras.

• This can be used to recover the algebraic string topology
([CS99]) operations of [Kau08] purely from graphs and
natural constructions.
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Intermediate covers

Proposition

There is a tower of FG-opsSet

OFl → OEuler ,poly → Ogenus → ∗

and accordingly a tower of covers

F¬Σmod → FGctd

dec OEuler,poly
→ Fmod = Gctd

decOgenus
→ Gctd
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Remarks

The functors

• OFl(∗S) is the set of tuples (g , p, {S	
1 , . . . ,S

	
b }) of two

natural numbers and a {partition of S into non–empty sets
and a cyclic structure on each of the sets}. These signify the
genus, number of punctures and marked points on the
boundary. Alternatively, p can also be thought of as the
number of emtpy partitions in the partition of S

• OEuler ,poly (∗S) = N0 × {partitions of S into non–empty sets
and a cyclic structure on each of the sets}. The natural
number is the 1-Euler characteristic of the closed surface.
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Intermediate coverings

Proposition

There are morphisms between the FG − ops:

OFl → OpolyN → Opoly → ∗

and accordingly a tower of covers

F¬Σmod → FGctd

dec OpolyN
→ FGctd

decOpoly
→ FGctd

Functors

• OpolyN(∗S) is the set of possibly empty partitions of S with
cyclic order on the parts.

• Opoly (∗S) is the set of non–empty partitions of S .

• Note: Neither OpolyN nor Opoly map to Ogenus .
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History

Remark

1 The Gctd -op OFl first appeared in the gluing description with

s◦t and ◦ss′ in [KP06] as the open part of the c/o structure
given by π0 of ARC. This is an extension of [KLP03].

2 F¬Σmod was first formalized in [Mar16].

3 The correlation functions of [Kau08] use the projection to
OEuler ,poly . (Application to string topology).

4 The full non–sigma modular structure is needed for
open/closed string topology [Kau10].

5 Props or operads using Opoly and OpolyN arise in different
situations.
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W-construction [KW17]

Input: Cubical Feynman categories in a nutshell

• Ex: φe1 ◦ φe2 = φe′2 ◦ φe′1 , commutative square for two
consecutive edge contractions.

• Generators and relations for basic morphisms.

• Additive length function l(φ), l(φ) = 0 equivalent to φ is iso.

• Quadratic relations and every morphism of length n has
precisely n! decompositions into morphisms of length 1 up to
isomorphisms.

Definition

Let P ∈ F-OpsT op. For Y ∈ ob(F) we define

W (P)(Y ) := colimw(F,Y )P ◦ s(−)
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Technical Details

The category w(F,Y ), for Y ∈ F Objects:

Objects are the set
∐

n Cn(X ,Y )× [0, 1]n, where Cn(X ,Y ) are
chains of morphisms from X to Y with n degree ≥ 1 maps modulo
contraction of isomorphisms.
An object in w(F,Y ) will be represented (uniquely up to
contraction of isomorphisms) by a diagram

X
t1−→
f1

X1
t2−→
f2

X2 → · · · → Xn−1
tn−→
fn

Y

where each morphism is of positive degree and where t1, . . . , tn
represents a point in [0, 1]n. These numbers will be called weights.
Note that in this labeling scheme isomorphisms are always
unweighted.
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Setup: cubical Feynman category F

The category w(F,Y ), for Y ∈ F Morphisms:

1 Levelwise commuting isomorphisms which fix Y , i.e.:

X //

∼=
��

X1

∼=
��

// X2

∼=
��

// . . . // Xn

∼=
��

// Y

X ′ // X ′1
// X ′2

// . . . // X ′n

??

2 Simultaneous Sn action.

3 Truncation of 0 weights: morphisms of the form

(X1
0→ X2 → · · · → Y ) 7→ (X2 → · · · → Y ).

4 Decomposition of identical weights: morphisms of the form

(· · · → Xi
t→ Xi+2 → . . . ) 7→ (· · · → Xi

t→ Xi+1
t→ Xi+2 →

. . . ) for each (composition preserving) decomposition of a
morphism of degree ≥ 2 into two morphisms each of degree
≥ 1.
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Nontechnical version

Nontechnical version for graphs

Glue together cubes. One n-cube for each graph with n edges.
There are two boundaries per edge. Contract or mark. Glue along
these edges.

Remark (Kreimer)

This is exactly what happens in Cutkosky rules. Only instead of
marking edge as fixed, forget (aka. cut) the edge.
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Example for an algebra, [GCKT20a]

1

abc

b

a

c

s

t

ab

cab c

bc

a

a

bc

s

b c
t

a

a

b

c

b

a

c

s

t(0,0)

(1,1)(1,0)

(0,1)

1 1

1

1

1

Figure: The cubical structure in the case of n = 3. One can think of the
edges marked by 1 as cut.
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Other interpretations of the same picture

Remark

The cubical structure also becomes apparent if we interpret
[n] = 0→ 1→ 2→ · · · → n as the simplex.

δ

δ

δδ +

+

−

−

0−>3

0−>1−>3

2

1

1

2

0−>2−>3

.

0−>1−>2−>3

023

0123
013

02|23

01|123

012|23

01|13

03

01|12|23

Figure: Two other renderings of the same square. Note: 0
a→ 1

b→ 2
c→ 3
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Cubical decomposition of associahedra

W (Ass)

The associative operad Ass(n) = regular(Sn). W (Ass)(n) is a
cubical decomposition of the associahedron.

v

v v

v

v

1

1

v v

1

v

1

v

v

v

1

1

v

v

v

v

v

1

1

Figure: The cubical decomposition for K3 and K4, v indicates a variable
height.
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Models for moduli spaces and push–forwards

The square revisited

F¬Σcyc iCycAss //

π

��

F¬Σmod

π
��

Fcyc i // Fmod

Theorem with C. Berger

1 Wi!(CycAss)(∗g ,n) = Cone(M̄
K/P
g ,n ) ⊃ M̄

K/P
g ,n ⊃ Mg ,n, metric

almost ribbon graphs (emtpy graph is allowed).

2 icycAss! (WT )(∗g ,s,S1q···qSb) ' Mg ,s,S1q···qSb . This is a
generalization of Igusa’s theorem Mg ,n ' Nerve(IgusaCat)
[Igu02]



Intro Feynman cats Deco/Groth. W-const Geometry The End

Details

Open moduli space

1 The first part of the homotopy equivalence is an identification
of the nerve of the Igusa–type category with a simplicial
decomposition of the cubical complex where each n–cube is
subdivided into n! simpilces.

2 The second part is the natural emedding into the
combinatorial moduli space.

3 The third part is a retraction of moduli space as an open
subset of the compactified combinatorial moduli space to the
embedded nerve.

Compactified moduli space

This uses the fact that the cone point is (0, . . . , 0) corner of any
cube and that any cube minus this point can be retracted to the
simplex

∑
i ti = 1.

This can be done coherently.
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M0,3

Mcomb
0,3 , its spine/nerve

b 1 2

3

1 3

2

1
2

3
2

3

1

2 3

1

1
3

2

a b

d

1 2

3

a b

1 2

3

1 3

2

1 2

3

2 3

1

2
3

1 1
2

3

1
3

2

a

b

c

a c

c
c

e

a
b

f

c
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M0,3

Mcomb
0,3 , its spine/nerve and the retraction
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Cutkosky/Outer space, w/ C. Berger

The cube complex j!(W (CycAss))(∗S)

Is the complex whose cubical cells are indexed by pairs (Γ, τ),
where

• Γ is a graph with S–labelled tails and τ is a spanning forest.

• The cell has dimension |E (τ)|
• the differential ∂−e contracts the edge

• ∂+
e , removes the edge from the spanning forest.

Remark

This complex and the differential are not defined by hand, but
automatic!

Outer space

Without the almost ribbon structure, we obtain analogous results
pertaining to Outer Space.
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Blow-ups/Compactifications w/ J.J. Zuniga

Claim

1 There is a natural blow–up of the W –construction above,
which is induced by the cubical structure of the Feynman
category. This leads to new compactificaion of the moduli
space.

2 There is a sequence of blow–downs which terminates in the

final blow–down M
KSV
g ,n → M

DM
g ,n → M

comb
g ,n .

3 This can be modeled on both the analytic/algebraic side and
the combinatorial side, giving the desired orbircell
decomposition to all spaces.

Remark

This is driven by master-equations [KWZn15] and is directly
related to the Jewels of Vogtman et. al. and the truncations in
QFT (Kreimer group).
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Quantum and Noncommutative

Hopf algebras and quadratic

1 There are Hopf and bialgebras hidden here
[GCKT20a, GCKT20b, KY21].

2 Relations to [KM01].

3 This works for general cubical Feynman categories [KW21].

4 more . . .



Intro Feynman cats Deco/Groth. W-const Geometry The End

The end

Thank you

I hope you enjoyed the tour of mathematical results which trace
their being back to Yuri Ivanovich.

To Yuri Ivanovich

Happy birthday!
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