Reflections on moduli space

In preparation for my Hirzebruch Lecture in Bonn (15 May 2023), I sent several of my friends, collaborators,
and colleagues the following message:

Why are you interested in moduli spaces? If you could write a quick paragraph, I would be grateful.

I received a flood of interesting replies varying in perspective from the philosophical to the technical. Instead
of keeping all of the answers to myself, I have presented them below in an anonymous form (slightly edited
in some cases). Each bullet point represents a distinct person (none of whom are me). I hope some sense of
the motivations of the community will come through.

I have been in part inspired by the masterpiece Working by Studs Terkel which I found on the bookshelf of
a friend more than 30 years ago.

Rahul, May 2023

e What do I mean by moduli space? The sets of all algebro-geometric objects of a certain type are themselves
algebro-geometric objects, called moduli spaces, whose geometric structure depends on, and hence reveals,
properties of the objects they parametrize. This is a fascinating phenomenon whose enchantment never ends:
the more you understand the parametrized objects, the more you know their moduli space, and the more
you understand the moduli space, the more you know the parametrized objects.

e Geometry before moduli theory can be compared to the past fascination with cabinets of curiosities, as
the wonder for the discovery and exhibition of new species were the main motivations of geometers. In the
same way that Enlightenment thinkers contributed to the declining influence of cabinets of curiosities by
placing greater emphasis on patterns and systems within nature, moduli theory offers a universal approach
to geometry that permits the encompassment of all general features and anomalies at once. The anomalies
are no longer isolated wonder objects, but they are studied to capture the nature of general objects. The
resulting collection provided by moduli theory turns out to have a nature of its own, as if the catalogue of
all butterflies were a new, exotic animal.

e People have always been fascinated with transcendent ideas, among them the paradoxes and beauty of
self-referential concepts. Such concepts give one the feeling one is close to God, even if one is a total atheist.
Moduli spaces give geometers a mathematical playground in which self-referential concepts are concrete,
immensely fruitful, and not at all paradoxical: the space of all lines in the plane is another plane, the space
of circles in the plane is half of a 3-space, and so on. How could one resist?

e If you studied individual fish swimming in the sea, you might learn a thing or two about how they move
and navigate their surroundings, but fish usually swim in schools, and if you study the movement of entire
schools of fish, you will probably be led to a far greater understanding of how the individual fish move
and communicate with one another (not to mention the beauty of watching fish swim in schools). In the
same way, mathematical objects often arise in families, and studying the families can often lead to a better
understanding of the individual objects. For example, to understand why each individual cubic surface
contains a line, it is, perhaps, easiest to study the geometry of the moduli space parametrizing pairs of a
cubic surface and a line on it.

e Moduli spaces are encrypted treasure maps. We know there is treasure somewhere, but we must decipher
the map to find it. It is often harder to point out specific objects. It can be helpful to first consider a space
which parametrizes all possibilities and then put conditions to understand original problem (as in Schubert
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calculus). Some moduli spaces, such as the moduli space of curves, are fundamentally important objects, so
that the comparison to a treasure map is an underestimation. Maybe I should say that a moduli space is a
treasure map which is itself a treasure.

e Moduli spaces can be viewed as a Noah’s ark, a collection of species, except for the poor unicorns who
didn’t make it (perhaps they were too singular?). The ark minimally contains what is needed to recreate
the world we live in after the storm.

e Moduli spaces are a way to conjure up a whole world to explore, a whole country with interesting inhab-
itants, with just a few magic words “What about the moduli space of ...”. Usually in mathematics, when
you want a space to study, you must build it up yourself: you start with something known, take products,
blow-ups, projective bundles, cut it down again with equations, and so on. All of that can be hard work,
and often in the end there is no mystery: you get what you ordered. But with moduli spaces, you can just
name what you are interested in (triangles in the plane, ordered bases of a vector space, Riemann surfaces
of genus 5), and a whole landscape is summoned for you to explore. After travelling in these moduli spaces,
you start to get a feel for the interesting questions to ask on arrival: Is the country connected? Is it compact
or can you walk on and on without ever returning? What is the dimension? Are there any regions with sin-
gularities I should avoid? Often the answer to these questions is directly tied to properties of the inhabitants
of the moduli space, and this interplay is another part of the charm. When starting to study mathematics,
one typically looks at objects in isolation and gets to know them better. The moduli space puts them in
perspective: you learn which ones are general and which ones are very special. And sometimes you then
manage to prove a property of a general object by looking at a special one (or vice versa). This encourages
a certain cosmopolitan approach for your studies: even if you are just interested in a single object and its
features, it might be helpful to travel around, come back and then understand better the place that you
started from.

e In many intellectual disciplines one tries to balance universality and peculiarity. Universal notions provide
context for particular situations, and the most interesting phenomena occur when the particular fights
back against the universal. In our corner of mathematics, moduli theory is the setting best suited for
understanding universal properties of our favorite mathematical objects. At the same time, moduli theory
reveals how special, exciting, and weird some of our favorite objects are. A basic example occurs in my
favorite space, the moduli space of curves. When first learning algebraic geometry, one might try to write
down a curve a genus g for every natural number g. The easiest way to do this is to write down equations
for a hyperelliptic curve. As one starts to study moduli, one realizes how special hyperelliptic curves are and
how weird it is that they were the ones we wrote down in the first place.

e If you want to understand human psychology, you had better study how humans live and interact with
each other. If you want to understand curves, you must also study where they live and interact. But perhaps
what attracts me most to moduli spaces is the fact that they often unexpectedly and beautifully form bridges
to different mathematical islands. You can go to the island of number theory, modular forms, theta series,
and lattices via the bridge of the moduli spaces of abelian varieties and K3 surfaces by seeing them as
Siegel/orthogonal Shimura varieties. You can go to the island of representation theory via the moduli of
points on surfaces and the moduli of quiver representations. You can go to the island of combinatorics via
Mo,n. I imagine math as a bunch of islands in the north of Norway, and there is a crazy architect — not
very concerned with efficiency, but with beauty and probably using magic mushrooms — who is designing all
these bridges that take you to surprising places.

e T'wo aspects of mathematics that I have always found intriguing are translation and connection, and moduli

spaces embody both concepts. They are meta-spaces, in that their points represent different geometric

objects, which is, in and of itself, philosophically satisfying. Problems such as enumerative questions are

then naturally translated into intersection theoretic problems on appropriate moduli spaces. Moduli spaces

create connections among different parts of mathematics in at least two different ways, both from the fact
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that the geometric objects we study in moduli spaces end up being relevant in other disciplines (string theory,
representation theory, knot theory, and so on) and from the fact that working with moduli spaces requires
tools and intuition from topology, combinatorics, and more. I find it very interesting that even though the
geometry of moduli spaces can be very sophisticated and complex, some things can be deduced by taking
a concrete perspective on simple properties of the objects parameterized (for example, the stratification of
ﬂg,n depends on topological concepts presented in a second year undergraduate course). Finally, and still
in the realm of connection, I find it interesting that when one studies moduli spaces, one never studies just
one space at a time, but a whole network of spaces connected by a wealth of tautological morphisms, and
this gives rise to a lot of structure.

e My curiosity about the hidden symmetries governing the processes observable in nature drove me to learn
different ways to characterize the possible evolutions of diverse physical systems. Often the mathematical
formulation of this question is phrased in terms of studying solutions of (partial) differential equations living
on geometries meant to capture some part of our world. Working with PDEs is a daunting task as one
often needs to develop new techniques for each case and there are only a few universally applicable methods.
By transforming the problem into an algebro-geometric one, it becomes more concrete and gains a more
manageable form. At this point, one can use the robust theory of algebraic geometry developed clearly
and precisely by many famous mathematicians. This solid foundation makes it easier to apply tools from
algebraic topology, combinatorics, representation theory, and other fields to the study of moduli spaces, and
it leaves us with almost unlimited possibilities to introduce new theories while finding connections between
the existing ones.

e Nature likes equilibria, which are typically minima of some energy-like function (like minimal surfaces).
However, when such minima are not unique, she is forced to explore the moduli space of all possible equilibria.

e Most mathematical problems are moduli problems. Often the moduli questions are infinite-dimensional or
do not have a reasonable topology or are much too complicated to be useful. But sometimes we are lucky
and the moduli problem in question can be studied by algebro-geometric or more general geometric tools.
Amazingly, in many of these questions, a link with theoretical physics can be found. These types of moduli
spaces usually lie on crossroads of many mathematical fields. These moduli spaces are guiding stars that
help me to study new mathematics (and, if I am extremely lucky, to discover new mathematics).

e Algebraic geometers are interested in moduli spaces because we want to understand what exists. It’s one
thing to know that there is a curve of any genus, but we also feel a responsibility to understand how many
curves there are. And it’s a particularly beautiful feature of algebraic geometry that the space of all varieties
of some sort can often be viewed as a variety itself. Beyond that, it is striking how complicated M, is, and
it has taken heroic efforts to understand it as much as we do. In part, the complexity has to do with the
surprising difficulty of describing a general curve (or varieties in general) by equations.

e My first papers which were explicitly about moduli spaces concerned the moduli of polarized abelian
surfaces of low degree. We proved that an assortment of moduli spaces were rational. The original motivation,
however, came from studying explicit equations for abelian surfaces in projective space. We often wanted to
be able study these equations via Macaulay on a computer. Of course, the equations involve coefficients which
are determined by the modulus of the abelian surface, and you immediately have to start to think about
what the moduli spaces are to have a hope of writing down equations. Rationality becomes fundamental: if
the moduli space is rational, then it is usually easy to write down equations. If the moduli space is general
type, then you have to work very hard to find even one point in the moduli space and to write down the
corresponding equations. So the structure of the moduli space essentially told us how easy it was to study
abelian surfaces in an effective way.



e To be interested in a type of geometric object is to be interested in the moduli of those objects. For example,
the stack of genus g curves is just a category whose objects are families of genus g curves: can you really be
interested in one without being interested in the others? Presumably some people manage, but it feels hard.
My other main motivation comes from trying to make precise an aesthetic sense of which constructions are
clear/natural. I tried various things along the lines of does not depend on choice of coordinates/equations,
but (after I learnt what it meant) I found makes sense on the universal object a more precise and accurate
metric.

e Moduli spaces do a good job of encoding information of various types, both directly as moduli spaces and
indirectly via their Euler characteristic, cohomology, and other invariants. For example the Hilbert schemes
of n points on a surface don’t just solve the problem of parametrizing families of n points on the surface,
they also are a geometric realization of the combinatorics of partitions. Maybe another way to think about
this is that moduli spaces are the most complicated geometric spaces that I know, so if you want to focus
on studying specific spaces then they are going to be the most interesting ones.

e Associated to a geometric space X of some type are usually various moduli spaces. These are parameter
spaces, parametrizing the solutions of an equation on X, or all possible geometric structures of some type on
X, or all possible geometric objects (of a certain type) contained in X. The geometry of such a moduli space
M often reflects that of X in various ways. It is also usually a very sophisticated (nonlinear) invariant of X.
Simple (linear) algebraic invariants of M (like its cohomology) are (nonlinear) invariants of X, containing
subtle and deep information.

e Moduli spaces are very useful tools to extract interesting numbers and structures from your variety. How
would you otherwise know that there is an Igusa cusp form hiding in the K3 surface? Or how would you
find the automorphic forms of Borcherds (coming from moduli spaces of K3 surfaces)? The moduli spaces
of stable sheaves on K3 surfaces are hyperkéahler manifolds, which is a very rare class of varieties, so moduli
spaces are also good for construction.

e Algebraic geometry is the study of algebraic varieties: we are interested in describing their geometry,
topology, cohomology, and so on. Varieties of high dimension are usually very hard for us to study. Moduli
theory can help us construct examples of higher dimensional varieties from low dimensional data (moduli
of curves, sheaves, and K3 surfaces are all examples). The theory creates interesting examples of higher
dimensional varieties and many exciting problems.

e For a family of varieties, what is the best possible limit we can choose? Naturally for an algebraic geometer,
that is translated into asking whether we can write a good functor, such that the corresponding moduli space
is compact. In the case Kx > 0, the Kollar-Shepherd-Barron limit given by the minimal model program
provides a satisfactory answer. While in the case Kx < 0, K-stability provides the right one. The latter was
once beyond the vision of algebraic geometers, since it comes from the not-yet-completely-proven speculation
that Kéhler-Einstein metrics form a compact space.

e I think of moduli spaces as the classification scheme for varieties, with the remarkable property that they
are themselves solutions to systems of equations. For me, invariant theory is the heart of the subject.

e I'm interested in moduli spaces just like I'm interested in the Hodge conjecture: if a geometric object is
defined by algebraic equations, it feels good to be able to read its geometry (the cohomology) from algebraic
structures (the algebraic cycles). If that geometric object is a moduli space, it feels equally good to be able
to understand the geometry of the moduli space through its modular interpretation.



e The moduli spaces we work with are (generally) provably as complicated as nature allows them to be by
Murphy’s Law. In this sense, they contain infinite complexity. Therefore, they have the potential of encoding
a huge amount of information, which we are able to extract in some cases using virtual intersection theory.

e One shouldn’t be able to say anything about moduli spaces. They appear as huge impenetrable objects
at first. But they end up being so highly structured that almost every meaningful construction you can do
in geometry implies some nontrivial result about moduli. The cell structure of the Grassmannian is a great
example: the basic idea is high school geometry, but, down the road, it tells you things about lines on the
cubic surface. In fact, once you throw away the technical stuff, many of the techniques we use are in the
spirit of the geometry of lines and planes in space that you learn in school. You just sit there and think
“what can I do to these spaces” and something wonderful pops out. I find this mix of being very mysterious,
but also amenable to naive geometric thinking, very attractive. The other thing that makes them interesting
is that the answers to the questions we ask are unexpectedly beautiful.

e When I learned about moduli spaces, it was at a time when I generally liked all sorts of stuff (litera-
ture/cinema) that was self-referential, so a statement like the set of all geometric objects of a certain type is
itself a geometric object was really music to my ears.

e It just so happened that my first mathematical research was on moduli spaces. But it made me realize
that it is a wonderful part of mathematics, at the crossroads of main areas of mathematics. It involves
algebra, geometry, analysis and number theory and has already quite a history. Although general theories
apply, the field is much more than general theories and exhibits many objects with intricate and beautiful
properties whose existence already looks like a miracle. The various interpretations of these as moduli give
their properties extra meaning. Often geometry and number theory seem intricately connected here as if
by magic. Time and again surprises appear in this field and completely unexpected connections between
seemingly unrelated objects are discovered.

e The first paper that brought me to moduli spaces was Kontsevich’s proof of Witten’s conjecture (besides
the main result, the appendix contains a simplification of Harer and Zagier’s computation of the Euler char-
acteristic of M, ,,). As I was studying it, the ELSV formula appeared. Both papers made a huge impression
on me. The reason is, I think, that they used a lot of what I had just learned and liked most in mathematics:
intersection theory, generating series in combinatorics, the saddle point method, the asymptotic expansion
of the I'-function, and the representation theory of the symmetric group. I don’t really know why I liked
these topics more than, for instance, functional analysis or PDEs. But I certainly wasn’t expecting that
there was a topic mixing them all in such a marvelous way.

e I think nobody really knows why the cohomology of M, ,, decides to structure itself as a universal source
of integrable systems. It’s a miracle worth investigating and a powerful thing to know how to manipulate,
and everything cool about this garden of elegant geometry that is the the moduli theory of algebraic curves,
from mirror symmetry, to Abel Jacobi theory, to intersection theory, has an integrable counterpart that is
as beautiful and rich.

e The moduli space that I study the most is that of algebraic curves, and even the objects it parametrizes, Rie-
mann surfaces, are absolutely central to mathematics. They can be studied geometrically (as 1-dimensional
varieties), analytically (as Riemann surfaces, via Fuchsian groups), or algebraically (via Galois theory or
group theory). The insights one obtains in these ways are highly complementary. When it comes to the
space of essential parameters for curves of genus g, that is, to M, all these different aspects are still present,
but in addition combinatorics, modular forms, and theoretical physics also come to the fore. The resulting
object is therefore extremely rich, and, in fact, very often really important progress in the field is achieved
by mixing nontrivially these perspectives. This feature of moduli space mixing various fields of mathematics
has been very appealing to me.



e Before going into algebraic geometry, I was interested in the topology of 4-manifolds and gauge theory
(Donaldson invariants and Seiberg-Witten invariants). Moduli spaces appear in these fields as well, and
I enjoyed seeing the interactions between topology, analysis (which enters the constructions of the moduli
spaces), and algebraic geometry (via explicit realizations of the moduli spaces). I particularly liked the fact
that the algebro-geometric approach can be used to carry out many concrete computations. The transition
to other moduli spaces and to algebraic geometry seemed quite natural to me at the time, so I arrived at
moduli theory because of my own trajectory/background as well as my personal interest. Why study moduli
theory now? Here are four reasons: many moduli spaces exhibit interesting/unexpected geometric features
that are fun to explore and of great interest to understand, the study of moduli carries rich and unexpected
connections with other nearby fields, moduli theory is broad enough that it allows for many points of view
(there are questions of abstract nature as well as concrete computations), and there are many very interesting
open questions.

e Moduli spaces have four main attractions for me. First, they allow us to study objects by specialization.
We can prove properties about a general object by specializing to simpler objects at the boundary. Almost
all my work involves computing the rank of a matrix or counting the solutions to a system of polynomials by
specializing the system to a more manageable system. Second, among all varieties moduli spaces have extra
structure: a modular interpretation of the points which gives us an additional handle to study them. The
interaction between families of objects and properties of the moduli space makes the geometry of moduli
spaces richer and more accessible. Third, moduli spaces allow us to define interesting invariants. Topological
and geometric invariants of the moduli spaces influence and constrain the geometry of the objects they
parameterize. Finally, moduli spaces allow us to access positivity that is not apparent from a single object.
For example, it is almost impossible to understand rational curves on a variety or the algebraic hyperbolicity
of a variety without varying it in a family to make use of the positivity of certain tangent and normal bundles
of the universal family.

e I studied nonlinear PDEs on manifolds, such as harmonic maps, minimal surfaces, and Ké&hler-Einstein
metrics, when I was a student, following a suggestion of my supervisor. Around the same time, a topologist
gave a course on Donaldson’s work, namely the application of gauge theory to topology. His course motivated
me to study PDE aspects of gauge theories. While writing several papers in this direction, I was also
fascinated by the beauty of moduli spaces through Donaldson’s work and also Mukai’s result for K3 surfaces.
Therefore, I decided to study moduli spaces. Relations to representation theory came to me afterwards.

e I am interested in moduli spaces (in particular moduli of sheaves on algebraic varieties) because they
produce many interesting and deep geometric/algebraic structures from a given variety: holomorphic sym-
plectic structures on the moduli of sheaves on K3 surfaces, Heisenberg action for Hilbert schemes of points,
symmetries from derived equivalences, and so on. And these structures connect algebraic geometry to other
research fields, such as representation theory and mathematical physics.

e Having been raised in the Oxford school of gauge theory, I was taught that the geometry of moduli spaces
is meant to shed light on the geometry, or even the topology, of the original space, as it did in Donaldson’s
famous theorem. Decades later, I have come to understand that such pursuits in mathematics often become
ends in themselves. The study of moduli spaces turns out to be like a vast gallery or labyrinth, with many
wings or corridors that recede to infinity.

e The two things that come to mind are the following. First, just what everyone would say: the idea of
not just studying one instance of a geometric object, but instead studying all instances of a certain class
of geometric objects by looking at a space that parametrizes them is just a very cool idea. Second, I like
the way that the same moduli space shows up in wildly different contexts. For example, the moduli space
of instantons shows up in physics, algebraic geometry, differential geometry, and representation theory: the
space of minima of the Yang-Mills functional in quantum field theory is the same as the moduli space of



algebraic bundles on the projective plane (trivialized on a line) is the same as the same as the space of anti-
self dual connections on a principal bundle up to gauge equivalence is the same as quiver representations of
the ADHM quiver.

e Moduli spaces of very simple objects have rich geometry. It is surprising how much one can under-
stand about moduli spaces of complicated objects by analogy. Moduli problems in different branches of
mathematics shed light on each other: instantons, monopoles, stable maps, objects in a derived category,
special Lagrangian submanifolds. Studying moduli problems has led to breakthroughs on a priori unrelated
questions. For example, instantons changed our understanding of smooth structures, stable maps revealed
symplectic rigidity phenomena, and so on.

e Moduli spaces straddle categories. One Riemann surface is an object of algebraic geometry, but the moduli
space is just as much an object of homotopy theory. One hypersurface X in projective space is an object of
algebraic geometry, but the moduli space M is an object of symplectic geometry via the map

M — BSymp(X).

Moduli spaces eliminate unnecessary choice. A single instanton on a 4-manifold is of possible interest in
physics, if you had a good reason to choose it. The space of all of them is intrinsic to the underlying geometry,
and, in some ways, even topology.

e My interest comes from attempting to classify mathematical objects. Classically this means describing the
set of mathematical objects of some type modulo isomorphism in some nontautological, and perhaps even
useful, way. But homotopy theory teaches us that one should avoid strictly identifying isomorphic objects
that are not identical, because they can be isomorphic in different ways, so instead one should try to describe
the groupoid (mathematical objects of some type, isomorphism). In algebraic geometry, this change of view
is quite modest: it promotes consideration of the stack M, over its coarse moduli space. But in geometric
topology, the change of view is drastic: almost all coarse moduli spaces are a single point, and the groupoid
is then the symmetry group of such an object. In other words

classify families < moduli spaces < classify symmetries.

The only caveat is that group may have to be interpreted in a homotopical and not-quite-literal way.

e Manifolds form a category and studying them amounts to more than classification up to isomorphism,
one must also understand the morphism spaces, and, in particular, automorphisms. In homotopy theory,
a group G with its group structure contains the same information as its classifying space BG, hence the
study of BDiff(M) up to homotopy naturally accompanies classification questions of any type. Or you can
take a functor of points perspective, for each base manifold S there is a groupoid of smooth fiber bundles
E — S with fiber M. Up to homotopy, this functor is represented by BDiff(M). Typically one imposes
conditions and extra structure on the bundles, and obtains many variations of moduli spaces, but it’s the
same idea. Classical classification questions (for example, the Kervaire-Milnor classification of exotic spheres
up to diffeomorphism) relate to the case where S is a point, but that’s only part of the story. Any reason
to be interested in manifolds one at a time should also be a reason for trying to understand families of
manifolds. It seems to me that pursuing that perspective more fully has somewhat revived high-dimensional
manifold theory.

e I'm very fond of how the moduli space of curves is so closely connected to very disparate areas of math
(algebraic geometry, homotopy theory, number theory, mathematical physics, geometric group theory, dy-
namical systems). It makes for a very fun corner of mathematics to work in. And all of these are actual,
honest connections, not of the superficial type where someone studying subject X says “X is interesting
because of close links to Y”, while the people actually working on Y have no interest in X. From a homo-
topy theory perspective, a topological group G contains exactly the same information as its classifying space
BG. For Diff(M), the diffeomorphism group of a manifold M, BDiff(M) is the moduli space of M-bundles.
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So studying the moduli space of manifolds is the same as studying spaces of diffeomorphisms, which is ob-
viously a very fundamental mathematical problem. But I think the moduli space perspective is the more
psychologically helpful one.

e Most moduli spaces I work with are essentially algebraic objects (keeping track of all algebraic structures
on some space, or morphisms, or deformations thereof) and are not nice geometric objects like the moduli
space of curves. My interests in those moduli spaces stems from the attempt to classify the underlying
objects they encode. For example, local coordinates around a point could give a complete set of invariants
of deformations of some algebraic structure or morphisms thereof (except that the spaces are often very
singular, so it is not clear what is meant by local coordinates). However, specifically for the moduli space
of curves, my interest does not come from classifying curves (I am not an algebraic geometer), but rather
from the algebraic structures it carries, and the fact that the resulting operads have many links to algebra
and topology. Furthermore, I am interested in computing H*(BDiff(M)) which produces a complete set of
characteristic classes for M-bundles. The moduli space of curves,

M, ~¢ BDIff(S,),

where S, is a surface of genus g, is the lowest dimensional interesting example.

e | am not so much interested in specific moduli spaces as geometric objects themselves. I agree they are
natural objects to study, but that’s just not my cup of tea.
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