Rodriguez Camargo's analytic de Rham stacks play a key role in the geometrization of "locally analytic" local Langlands both over the real and p-adic numbers. In both settings, one also uses a notion of perfectoid algebras, with the critical property being that "perfectoidization is adjoint to passing to analytic de Rham stacks". This suggests a "global" definition of perfectoid rings. We will explain this definition, and present some partial results on the relation to the established p-adic notion. Two natural open questions are whether tilting works in this setting; and what perfectoid algebras over the real numbers look like.
Links:
[1] https://www.mpim-bonn.mpg.de/de/taxonomy/term/39
[2] https://www.mpim-bonn.mpg.de/de/node/3444
[3] https://www.mpim-bonn.mpg.de/de/faltings70