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Abstract

We prove Boyd’s conjectures relating Mahler’s measures and values
of L-functions of elliptic curves in the cases when the corresponding
elliptic curve has conductor 14.

1 Boyd’s conjectures

Rogers provided a table of relations between Mahler’s measures and values
of L-functions of elliptic curves of low conductors 11, 14, 15, 20, 24, 27, 32,
36 in [Rog08]. Among these relations some had been proved and some had
not. According to Rogers, those relations which involve curves with complex
multiplication (conductors 27, 32, 36) were all proved. Except those, only a
relation with curve of conductor 11 was proved. Let us list the relations with
curves of conductor 14.

Let P ∈ C[y, z]. Then Mahler’s measure of P is defined as

m(P ) := (2πi)−2

∫
|y|=|z|=1

log |P (y, z)|dy

y

dz

z
.

Denote

n(k) := m(y3 + z3 + 1− kyz),

g(k) := m((1 + y)(1 + z)(y + z)− kyz).

Let E be the elliptic curve of conductor 14 with Weierstrass form y2 +
yx + y = x3 + 4x− 6. It is isomorphic to the modular curve X0(14) with the
pullback of the Néron differential dx

2y+x+1
given by the eta-product [MO97]

f := η(τ)η(2τ)η(7τ)η(14τ).

∗mellit@gmail.com

1



Then L(E, s) = L(f, s) and the relations listed by Rogers are

n(−1) =
7

π2
L(f, 2), (1)

n(5) =
49

2π2
L(f, 2), (2)

g(1) =
7

2π2
L(f, 2), (3)

g(7) =
21

π2
L(f, 2), (4)

g(−8) =
35

π2
L(f, 2). (5)

2 The regulator

Fix a smooth projective curve C/C. An element
∑

i{fi, gi} ∈ Λ2C(C)× will
be denoted simply by {f, g} and we will omit the corresponding “

∑
i” sign in

expressions below to soften the notation. The regulator of {f, g} ∈ K2(C) is
defined as rC({f, g}) ∈ H1(C, R) whose value on [γ] ∈ H1(C, Z) is

rC({f, g})([γ]) =

∫
γ

log |f |d arg g − log |g|d arg f.

Let ω be a holomorphic 1-form on C. The value of the regulator on ω is
defined as follows:

〈rC({f, g}), ω〉 = 〈rC({f, g}) ∩ ω, [C]〉 = 2

∫
C

log |f |d arg g ∧ ω. (6)

Denote by Kn (resp. Kg) the set of values of the function y3+z3+1
yz

(resp.
(1+y)(1+z)(y+z)

yz
) on the torus |y| = |z| = 1. Then by a theorem of Deninger

[Den97] for k /∈ Kn (resp. k /∈ Kg) one can express n(k) (resp. g(k)) as
1
2π

rC({y, z})([γ]) for a certain [γ] ∈ H1(C, Z), where C is the projective closure
of the equation y3 + z3 +1−kyz (resp. (1+y)(1+ z)(y + z)−kyz). When k is
on the boundary of Kn (resp. Kg) Deninger’s result still applies by continuity.

3 Elliptic dilogarithm

Let E/C be an elliptic curve. Define a map from Λ2C(E)× to Z[E(C)]− by

{f, g} → (f) ∗ (g)−

where “∗” and “−” mean the convolution and the antipode operations on
divisors of an elliptic curve. Fix an isomorphism E ∼= C/〈1, τ〉 for τ ∈ H. Let
u be the coordinate on C. Let x ∈ E(C), x = aτ +b for a, b ∈ R. As in [Zag90]
(it seems that the sign there is wrong) put

R(τ, x) = − i

π
(Im τ)2

∑
(m,n) 6=(0,0)

sin(2π(na−mb))

(mτ + n)2(mτ + n)
.
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We have
〈rE({f, g}), du〉 = R(τ, (f) ∗ (g)−).

For a holomorphic 1-form ω on E put

RE,ω(x) =
ω

du
R(τ, x).

Then RE,ω does not depend on the choice of the isomorphism E ∼= C/〈1, τ〉
and we call RE,ω the elliptic dilogarithm, while usually people call elliptic
dilogarithm the real part of R(τ, x).

When E is defined over R and an orientation on E(R) is chosen there is
a canonical choice of the isomorphism above and we will write RE(x) for the
“old dilogarithm” R(τ, x) = RE,du(x).

By linearity we extend RE,ω to the odd part of the group of divisors
Z[E(C)]−.

The function RE,ω(x) satisfies the following properties:

(i) For any λ ∈ C RE,λω(x) = λRE,ω(x).

(ii) For an isogeny ϕ : E ′ → E and x ∈ E(C)

RE,ω(x) =
∑

x′∈ϕ−1(x)

RE′,ϕ∗ω(x′). (7)

(iii) For a function f ∈ C(E)×, f 6= 1, one has RE,ω((f) ∗ (1− f)−) = 0.

The second property is called the distribution relation, the third one is the
Steinberg relation.

We expect that any algebraic relation between RE,ω(x) where E, ω, x are
defined over Q follows from the relations listed above.

4 Beilinson’s theorem for Γ0(N)

Let N be a squarefree integer with prime decomposition N = p1, . . . , pn. Let
f =

∑
a(n)qn be a newform for Γ0(N) of weight 2. Let W be the group of

Atkin-Lehner involutions. This is a group isomorphic to (Z/2Z)n. For m > 0,
m|N denote by wm the Atkin-Lehner involution corresponding to m. Any cusp
of Γ0(N) is given by w(∞) for a unique w ∈ W . The width of wm(∞) is m.
It is known that for a prime p|N we have f |2wp = −a(p)f .

Let Q[W ]0 be the augmentation ideal of Q[W ]. For any α ∈ Q[W ]0, α =∑
w∈W αw[w] consider Fα ∈ C(X0(N))×⊗Q such that (Fα) =

∑
w∈W αw[w(∞)].

Let γ : W → {±1} be such that f |2w = γ(w)f for all w ∈ W . Let
d =

∑
m|N mwm,

d−1 =
n∏

k=1

1− pkwpk

1− p2
k

.
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Let γ∗ be the involution of Q[W ] which sends w to γ(w)w for w ∈ W . Put
α′ = d−1α, β′ = d−1β for α, β ∈ Q[W ]0. Let ε : Q[W ] → Q be a linear map
such that ε(wm) is 0 for m 6= 1 and 1 for m = 1. Then

〈rX0(N)({Fα, Fβ}), 2πif(τ)dτ〉 = −144N

π
ε(wNα′γ∗(β′))L(f, 1)L(f, 2). (8)

5 Parallel lines

By results stated above both sides of the conjectured identities are reduced
to relations between values of the elliptic dilogarithm. To prove relations
between elliptic dilogarithms one usually tries to construct rational functions
f such that divisors of both f and 1−f are supported on a given set of points.

Let E/C be an elliptic curve and Z ⊂ E(C) be a finite subgroup. Let us
realize E as a plane cubic with equation y2 = x3 +ax+b for a, b ∈ C. For each
triple p, q, r ∈ Z \ {0} such that p + q + r = 0 consider the line lp,q,r passing
through p, q, r with equation y + sp,q,rx+ tp,q,r = 0. Suppose sp,q,r = sp′,q′,r′ for
another triple of points, which is equivalent to the lines lp,q,r and lp′,q′,r′ being
parallel. Then from equations of these lines one can obtain two functions f ,
g on E such that f + g = 1 and divisors of f and g are supported on Z.
Thus we obtain (hopefully a non-trivial) relation between values of the elliptic
dilogarithm at points of Z.

I propose to search for parallel lines as above in two ways. The first way,
dubbed “breadth-first search”, is to fix Z = Z/m × Z/m′ and consider the
moduli space of elliptic curves E with embedding Z → E. Then for any two
triples p, q, r and p′, q′, r′ the difference sp,q,r−sp′,q′,r′ is a function on the moduli
space, which can be found explicitly, and at the points where the function is
zero we obtain a relation.

Another approach, which I call “depth-first search”, is to fix a curve E
and consider some large subgroup Z hoping that when Z is large enough some
parallel lines will appear. However, this seems to work only for some “nice”
curves.

In the proof of (1) - (5) we use identities found by the two approaches on
the curve Y 2 + Y X + Y = X3 −X, and obtain results for isogenous curves by
the distribution relation.

Finally let us mention an interesting propery of the slopes sp,q,r.

Proposition. There exists a unique map from Z \{0} to C, denoted p → zp ∈
C, such that

(i) zp + z−p = 0 for all p,

(ii) zp + zq + zr = sp,q,r for all (p, q, r) with p + q + r = 0,

moreover, we have (xp is the x-coordinate of p)

(iii) xp + xq + xr = s2
p,q,r for all (p, q, r) with p + q + r = 0.

In fact these zp are related to Eisenstein series of weight 1 and they satisfy
a certain distribution relation.
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