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SYMPLECTIC REDUCTION
(X,w) symplectic manifold

w IS a closed nondegenerate 2-form on X;
locally X = R2™ with

w = Z dxj N\ ATy, 4
1<j<m

Example: X = T*M cotangent bundle

K compact Lie group with Lie algebra £ acting
on (X,w)

u: X — & moment(um) map satisfies

d:UJZU(g)a:wx(g)ax) \VIQZ‘EX,fETxX,CLé?

and p is K-equivariant (for the coadjoint action
on £*).

Special case: (X,w) is Kahler and K acts
holomorphically; then the action extends to

G = K¢ = complexification of K
[e.g. SL(n;C) is the complexification of SU(n)].
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Let ¢ € € be a regular value of u: X — £*.
et KC be its stabiliser for the coadjoint action.

Then the

Marsden-Weinstein reduction at ¢
)/ K,
IS a symplectic orbifold.

Often we take ¢ = 0:

X//K = p~1(0)/K
‘symplectic quotient’

Kahler case: p~1(0)/K = (open subset of X)/G
inherits Kahler structure.

N.B. gradu(x).a =iay Va €t
X//K = n~1(0)/K has symplectic/Kahler struc-

ture with more serious singularities when 0O is
not a regular value of wu.



Example:
X — (P1)4
where P1 = CU {o0} = S? C R3.

K = SU(2) acting on X via rotations of S?2

G = K¢ = SL(2;C) Mbbius transformations

\az—l—b
Ccz+d

2 |

moment map p: X — £ = R3 given by

pu(xy, 2, 73,74) = 1 + 22 + 23 + 74.

1~ 1(0)/K represented by ‘balanced’ configura-
tions of four points on S2.



Hyperkahler quotients

X hyperkahler manifold, complex structures ¢, 5, k
with 2 = j2 =k?2 = —1, ij = k = —ji etc,
metric g, Kahler forms wq, wo, wo

compact group K acting on X preservingi,j,k, g

Hyperkahler moment map

p=(u1,p2,u3): X - QR"
Often fix the complex structure z and write
p=pur ®pc : X — @ with pugp = p1 and
pe = po + ip3; then pe is holomorphic wrt <.

Examples: H", T*K¢
(closures of) coadjoint orbits in £x
(Kronheimer, Kovalev, Nakajima, Kobak=S ...)

Hyperkahler quotient

X///K = p~1(0)/K = us (0)// K
(Hitchin, Karlhede, Lindstrom, Rocek)



Mumford’s geometric invariant theory
(GIT)

G complex reductive linear algebraic group
X complex projective variety acted on by G

We require a linearisation of the action (i.e.
an ample line bundle L on X and a lift of the
action to L; think of X C P"™ and the action
given by a representation p: G — GL(n+ 1)).

X = AX) = Clzg,...,zn]l/Tx
| = ®pLo HO(X, L)
| Ul

l
X//G < A(X)C algebra of invariants

G reductive implies that A(X)C is a finitely
generated graded complex algebra so that
X//G = Proj(A(X)®) is a projective variety.
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The rational map X— — X//G fits in a diagram

X ——— X//G cx proj variety
U |

semistable xss Q0O X//G
U U open

stable X* — X9%/G

where the morphism X%° — X//G is G-invariant
and surjective.

Topologically |X//G = X%/ ~| where
r~y<s GrNGyn X £ (.

G reductive & G is the complexification K¢ of
a maximal compact subgroup K (for example
SL(n) = SU(n)c), and then

r€ X% o Grnu 1(0) £

for a suitable moment map u for the K-action,
and

X//G=p 1 (0)/K = X//K

NB There is a slight conflict of notation here.
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What can we do if G is not reductive?

Problem: We can't define a projective variety
X//G = Proj(A(X)%)

as A(X)G is not necessarily finitely generated,
so can we still define a sensible ‘quotient’ X//G7?

Theorem (Doran—K,...): Let G be a linear al-
gebraic group over C acting linearly on X C P",
Then X has open subsets X¢ (‘stable points’)
and X% (‘semistable points’), a geometric
quotient X° — X%/G and an ‘enveloping quo-
tient’ X% — X//G. Moreover if A(X)C is
finitely generated then X//G = Proj(A(X)%).

X ——= X//G

U |
semistable X% —  X//G

U U open

stable X°® — X%/G

Warning: X//G is not necessarily projective
and X* — X//G is not necessarily onto.
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Simple example: CT acting on P"

We can choose coordinates in which the gener-
ator of Lie(CT) has Jordan normal form with
blocks of size k1 +1,...,kg+ 1. The linear CT
action therefore extends to G = SL(2) with

01
via Cntl = D7, Symki(C2).

<c+={<1 a):ae@}gc;

In fact in this case the invariants are finitely
generated (Weitzenbock) so we can define

P"//Ct+ = Proj((Clzg, ..., zn])CT).
N.B. Via (g,2) — (gC7t, gz) we have
G Xt PP 2 (G/CT) x P £ (C? )\ {0}) x P"

C C2 x P" C P2 x P

and so

Pn//CT £ (P2 x P")//SL(2)




P2 x P — — P2 x P"//G

U |
PP ={[1:0:1]} x P — — Pn//CT
U |
(Pn)ss not nionto IP”//(C+
U U
(P)® — (P™)s/CT

Example when (P")$5 — P"//CY is not onto:
P3 = P(Sym3(C?)) = { 3 unordered points on P1}.
Then (P3)%s = (P3)5 is
{ 3 unordered points on Pl at most one at oo}

and its image in

P3//Ct = (P3)*/CT u P3//SL(2)

is the open subset (P3)$/CT which does not
include the ‘boundary’ points coming from

0 € C2 C P2,
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SYMPLECTIC IMPLOSION (Guillemin,
Jeffrey, Sjamaar 2001)

Ingredients: (X,w) symplectic manifold

Hamiltonian action of compact connected group
K

u X — 8 moment map
T maximal torus of K, Lie algebra t C ¢

Weyl group W = Np/T acts on t and t* which
decompose into Weyl chambers.

= positive Weyl chamber = t*/W = /K.

Recall K = {k € K[(Ad*k){ = (}. Its com-
mutator subgroup [K., K] is generated by the
commutators khk~1h™! for k,h € K.
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The imploded cross-section of X is
Ximpl = M_l(tj-)/ ~
where z ~ y < z = ky for some k € [K;, K]
with
¢ = p(z) = pu(y) € th.
Examples: (1) K = SU(2).
th = [0,00) = {0} L (0, 00)

p~1(0)
SU(2)

Ximpl — |—|,UJ_1(<0700))

(2) K = SU(3).

Over the interior points of ti‘l_ no collapsing
occurs since [K., K/ = [T,T] is trivial.

Over nonzero boundary points of ti we have
Over 0 €t} we have K, = SU(3) = [K¢, K¢l
Ximpl INherits a symplectic structure and
T-action with moment map X;,;; — ti Ct*
induced by the restriction of u.
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K acts on itself by left translation and hence
on T*K = ¢ x K with moment map

u(p,q).a =p-aq VaE?,qGK,pGT;KZE*.

(T* K ) jmp ‘universal imploded cross-section’
is an affine algebraic variety over C.

In general

X?Zmpl = (X X (T*K)impl)//K

which is an algebraic variety if X is algebraic.

Example: K = SU(2) £ S3 C C?

p~1(0)
SU(2)

(T*SU(2)) jrmpt = U1 ((0,00))

= {point} U (C?\ {0}) = C?

with induced T-action multiplication by t—1,
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Link with Kahler/algebraic geometry:

G = K¢ complexification of K;

B Borel subgroup of G (maximal soluble subgp)
such that G = KB and KNB=T.

N C B maximal unipotent subgroup of G;

B =1 N with T complex torus.

FACT: K¢/N is a quasi-affine variety whose
algebra of regular functions O(K¢/N) = O(K¢)N
is finitely generated, so that K¢ /N has a canon-
ical affine completion

Kc//N = Spec(O(Kc)™).

Thm (GJS): K¢//N has a K-invariant Kahler
structure such that it is symplectically iso to
the universal imploded cross-section (T*K) ;-
Cor: X projective variety acted on by K¢ =
Ximpl = (X X (K¢//N))//Kc = X//N.
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Generalised symplectic implosion:
G = K¢ complexification of K;

P parabolic subgroup of G;

Up unipotent radical of P.

FACT: G/Up is a quasi-affine variety whose al-
gebra of regular functions O(G/Up) = O(G)VP
is finitely generated, so that G/Up has a canon-
ical affine completion

G//Up = Spec(O(G)VP).

Thm: G//Up has a K-invariant Kahler struc-

ture such that it can be described symplecti-

cally as a generalised universal imploded cross-
- (P)

section (T*K)impl.

Cor: X proj variety acted on linearly by G =

its Up-invariants are finitely generated and

X//Up & (X x (GJ/Up))//G 2 X 1)

impl”
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Towards hyperkahler implosion

Recall: X hyperkahler manifold, complex struc-
tures 7, 3, k, metric g, Kahler forms wi, wo, w3

compact group K acting on X preservingi,j,k, g

Hyperkahler moment map

p=(p1,p2,p3) 1 X — QR

Hyperkahler quotient X///K = u~1(0)/K

Hyperkahler implosion Xpkimp) should be strat-
ified hyperkahler with an induced T-action.

ook for the universal hyperkahler implosion

(T*K¢)nhkimpl

with an induced hyperkahler action of T' x K
and then define

Xhkimpl = (X x (T"K¢)nkimpn /// K.
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Recall the symplectic case:

(1) (T"K)impr = (K x t}.)/ ~
with (k,¢) ~ (K',¢") iff ¢ = ¢, Kk~ € [Ke, K¢l
SO (T*K)impi//¢T = K-coadjoint orbit of (.
(2) (T*K)impl — KC//N
where Ko =T*K = K x ¢*.

The universal hyperkahler implosion (T* K¢ )nkimpl
should be the complex symplectic quotient of
T*K(C = K(C X EE& by N

K¢ x (¢c/LieN)*//N = (K¢ x nY) //N.

Exists (with finitely generated invariants)?
Hyperkahler? Geometry?
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Consider K = SU(n). Co-adjoint orbits of K¢ =
SL(n;C) appear in quiver varieties:

0o=C=2C22...2Cn.

Let M be the flat hyperkahler manifold

n—1 n—1

AP "D = P Hom(C!, C 1) @ Hom (T, C9).
i=1 i=1

Then M///U(1) xU(2) x---xU(n—1) can be
identified with the nilpotent cone N in ¢¢,
which is the closure of the generic nilpotent
coadjoint orbit in ¢c. If we shift the moment
map by a suitable constant we get other coad-
joint orbits in ¢. So consider

Q=M///SU(1) x SU(2) x---x SU(n —1).

() is stratified hyperkahler with dimension equal
to 2(dim K 4+ dimT) and a residual action of

(SH L x SUMN) 2T x K

which preserves the hyperkahler structure, and
an action of SU(2) which rotates the complex

structures.
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Properties of the universal hyperkahler
implosion Q = (T*K¢)nkimpl-

1) Q is stratified hyperkahler with dimension
equal to 2(dim K +dimT) and an action of

(SHP L xSUM) =T x K

which preserves the hyperkahler structure, and
an action of SU(2) which rotates the complex
structures.

2) The algebra of invariants O(K¢ x n9) s
finitely generated and for any complex struc-
ture @ is the complex symplectic quotient

(K¢ x n%)//N
OfT*KC:KC XEE{: by N.

3) @ has a resolution of singularities

Q=K x7 (T xn)

where 7 is the hypertoric variety for 1" associ-
ated to the hyperplane arrangement given by
the root planes in t.
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4) Q= Kby where

by ={(n,¢) €T xn:[u](n),{]=0,j=1,2,3}
and 7 is the hypertoric variety as before.

5) LetT‘fz{neT:KMT n):KU} for o a face
of t4, and define b3 simﬁarly. Then

Q=||K xg, b5 =| |(K x7 (T? x n%9))/[Kq, Ko].

6) Let {V : w € N} be the set of fundamental
representations of K. Then ) embeds in

HOPL, (b @ t0) @ 0(2) & P NV @ O®))
w,]
inducing a holomorphic and generically injec-
tive map from its twistor space to the line bun-
dle (¢c ® t¢) ® O(2) @ Do j NVez @ O(5). The
hyperkahler structure on Q can be recovered
from this embedding.

7) The hyperkahler reduction at O of Q by T
is the nilpotent cone N in f¢; the reduction
at a generic point of t@ R3 is a semisimple
coadjoint orbit of K.
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8) @ can be described in terms of quivers, and
also as a suitable moduli space of solutions to
Nahm’'s equations.

9) If ¢ = (¢1,(2,(3) Et®R3 C LR R3 let
Ke=KgnKegnKe.

Let N be the nilpotent cone in (K;)c.
There is a K x SU(2)-equivariant embedding

Ne st @R3

whose composition with projection . ® R3 —
(¢-)c is the inclusion of N¢in (¢:)c. If

t) = {(+€ € E®R3]C ct®R3 and £ ENC}
and the hyperkahler implosion of X is

Xnhkimpl = (X x Q) /// K,
then we have

Xnkimpl = 1~ (t))/ ~

with z ~ y & pu(z) = ¢+ € and u(y) = ¢+ ¢
where ¢ € t® R3 and ¢,¢ € A and z = ky for
some k € [K¢, K¢].
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