Implosion in symplectic, hyperkähler and algebraic geometry

Frances Kirwan Oxford University

(based on joint work with Brent Doran, Andrew Dancer and Andrew Swann)

SYMPLECTIC REDUCTION

(X, ω) symplectic manifold

 ω is a closed nondegenerate 2-form on X; locally $X\cong \mathbb{R}^{2m}$ with

$$\omega = \sum_{1 \le j \le m} dx_j \wedge dx_{m+j}$$

Example: $X = T^*M$ cotangent bundle

K compact Lie group with Lie algebra \mathfrak{k} acting on (X, ω)

$\mu: X \to \mathfrak{k}^*$ moment(um) map satisfies

 $d\mu_x(\xi).a = \omega_x(\xi, a_x) \quad \forall x \in X, \xi \in T_x X, a \in \mathfrak{k}$ and μ is *K*-equivariant (for the coadjoint action on \mathfrak{k}^*).

Special case: (X, ω) is **Kähler** and *K* acts holomorphically; then the action extends to

 $G = K_{\mathbb{C}} = \text{complexification of } K$ [e.g. $SL(n; \mathbb{C})$ is the complexification of SU(n)]. Let $\zeta \in \mathfrak{k}^*$ be a regular value of $\mu : X \to \mathfrak{k}^*$. Let K_{ζ} be its stabiliser for the coadjoint action. Then the

Marsden-Weinstein reduction at ζ $\mu^{-1}(\zeta)/K_{\zeta}$

is a symplectic orbifold.

Often we take $\zeta = 0$:

$$X//K = \mu^{-1}(0)/K$$

'symplectic quotient'

Kähler case: $\mu^{-1}(0)/K = (\text{open subset of } X)/G$ inherits Kähler structure.

N.B. grad $\mu(x).a = i a_x \quad \forall a \in \mathfrak{k}$

 $X//K = \mu^{-1}(0)/K$ has symplectic/Kähler structure with more serious singularities when 0 is not a regular value of μ .

Example:

$$X = (\mathbb{P}^1)^4$$

where $\mathbb{P}^1 = \mathbb{C} \cup \{\infty\} = S^2 \subseteq \mathbb{R}^3$.

K = SU(2) acting on X via rotations of S^2

 $G = K_{\mathbb{C}} = SL(2; \mathbb{C})$ Möbius transformations

$$z \mapsto \frac{az+b}{cz+d}$$

moment map $\mu: X \to \mathfrak{k}^* \cong \mathbb{R}^3$ given by

$$\mu(x_1, x_2, x_3, x_4) = x_1 + x_2 + x_3 + x_4.$$

 $\mu^{-1}(0)/K$ represented by 'balanced' configurations of four points on S^2 .

Hyperkähler quotients

X hyperkähler manifold, complex structures i, j, kwith $i^2 = j^2 = k^2 = -1$, ij = k = -ji etc, metric g, Kähler forms ω_1 , ω_2 , ω_2

compact group K acting on X preserving i, j, k, g

Hyperkähler moment map

$$\mu = (\mu_1, \mu_2, \mu_3) : X \to \mathfrak{k}^* \otimes \mathbb{R}^*$$

Often fix the complex structure *i* and write $\mu = \mu_{\mathbb{R}} \oplus \mu_{\mathbb{C}} : X \to \mathfrak{k}^* \oplus \mathfrak{k}^*_{\mathbb{C}}$ with $\mu_{\mathbb{R}} = \mu_1$ and $\mu_{\mathbb{C}} = \mu_2 + i\mu_3$; then $\mu_{\mathbb{C}}$ is holomorphic wrt *i*.

Examples: \mathbb{H}^n , $T^*K_{\mathbb{C}}$ (closures of) coadjoint orbits in $\mathfrak{k}^*_{\mathbb{C}}$ (Kronheimer, Kovalev, Nakajima, Kobak–S ...)

Hyperkähler quotient

$$X///K = \mu^{-1}(0)/K = \mu_{\mathbb{C}}^{-1}(0)//K$$

(Hitchin, Karlhede, Lindström, Rocek)

Mumford's geometric invariant theory (GIT)

G complex reductive linear algebraic group X complex projective variety acted on by G

We require a **linearisation** of the action (i.e. an ample line bundle L on X and a lift of the action to L; think of $X \subseteq \mathbb{P}^n$ and the action given by a representation $\rho: G \to GL(n+1)$).

$$\begin{array}{rcl} X & \Rightarrow & A(X) & = & \mathbb{C}[x_0, \dots, x_n]/\mathcal{I}_X \\ & | & & = \bigoplus_{k=0}^{\infty} H^0(X, L^{\otimes k}) \\ & \downarrow & & \bigcup| \\ & & & \\ X/\!/G & \Leftarrow & A(X)^G & & \text{algebra of invariants} \end{array}$$

G reductive implies that $A(X)^G$ is a finitely generated graded complex algebra so that $X//G = \operatorname{Proj}(A(X)^G)$ is a projective variety. The rational map $X \rightarrow X//G$ fits in a diagram

where the morphism $X^{ss} \to X//G$ is *G*-invariant and surjective.

Topologically
$$X//G = X^{ss}/\sim$$
 where
 $x \sim y \Leftrightarrow \overline{Gx} \cap \overline{Gy} \cap X^{ss} \neq \emptyset.$

G reductive $\Leftrightarrow G$ is the complexification $K_{\mathbb{C}}$ of a maximal compact subgroup K (for example $SL(n) = SU(n)_{\mathbb{C}}$), and then

$$x \in X^{ss} \Leftrightarrow \overline{Gx} \cap \mu^{-1}(0) \neq \emptyset$$

for a suitable moment map μ for the $K\mbox{-}action,$ and

$$X//G = \mu^{-1}(0)/K = X//K$$

NB There is a slight conflict of notation here.

What can we do if G is not reductive?

Problem: We can't define a projective variety

 $X/\!/G = \operatorname{Proj}(A(X)^G)$

as $A(X)^G$ is not necessarily finitely generated, so can we still define a sensible 'quotient' X//G?

Theorem (Doran–K,...): Let G be a linear algebraic group over \mathbb{C} acting linearly on $X \subseteq \mathbb{P}^n$. Then X has open subsets X^s ('stable points') and X^{ss} ('semistable points'), a geometric **quotient** $X^s \to X^s/G$ and an 'enveloping quotient' $X^{ss} \to X//G$. Moreover if $A(X)^G$ is finitely generated then $X//G = \operatorname{Proj}(A(X)^G)$.

Warning: X//G is not necessarily projective and $X^{ss} \rightarrow X//G$ is not necessarily onto. Simple example: \mathbb{C}^+ acting on \mathbb{P}^n We can choose coordinates in which the generator of $Lie(\mathbb{C}^+)$ has Jordan normal form with blocks of size $k_1 + 1, \ldots, k_q + 1$. The linear \mathbb{C}^+ action therefore extends to G = SL(2) with

$$\mathbb{C}^+ = \left\{ \left(\begin{array}{cc} \mathbf{1} & a \\ \mathbf{0} & \mathbf{1} \end{array} \right) : a \in \mathbb{C} \right\} \leqslant G$$

via $\mathbb{C}^{n+1} \cong \bigoplus_{i=1}^q Sym^{k_i}(\mathbb{C}^2).$

In fact in this case the invariants are finitely generated (Weitzenbock) so we can define

$$\mathbb{P}^n//\mathbb{C}^+ = \operatorname{Proj}((\mathbb{C}[x_0,\ldots,x_n])^{\mathbb{C}^+}).$$

N.B. Via
$$(g, x) \mapsto (g\mathbb{C}^+, gx)$$
 we have
 $G \times_{\mathbb{C}^+} \mathbb{P}^n \cong (G/\mathbb{C}^+) \times \mathbb{P}^n \cong (\mathbb{C}^2 \setminus \{0\}) \times \mathbb{P}^n$
 $\subseteq \mathbb{C}^2 \times \mathbb{P}^n \subseteq \mathbb{P}^2 \times \mathbb{P}^n$

and so

$$\mathbb{P}^n / / \mathbb{C}^+ \cong (\mathbb{P}^2 \times \mathbb{P}^n) / / SL(2)$$

9

Example when $(\mathbb{P}^n)^{ss} \to \mathbb{P}^n //\mathbb{C}^+$ is *not* onto:

 $\mathbb{P}^3 = \mathbb{P}(Sym^3(\mathbb{C}^2)) = \{ 3 \text{ unordered points on } \mathbb{P}^1 \}.$

Then $(\mathbb{P}^3)^{ss} = (\mathbb{P}^3)^s$ is { 3 unordered points on \mathbb{P}^1 , at most one at ∞ }

and its image in

$$\mathbb{P}^3//\mathbb{C}^+ = (\mathbb{P}^3)^s/\mathbb{C}^+ \ \sqcup \ \mathbb{P}^3//SL(2)$$

is the open subset $(\mathbb{P}^3)^s/\mathbb{C}^+$ which does not include the 'boundary' points coming from

$$0\in \mathbb{C}^2\subseteq \mathbb{P}^2.$$

SYMPLECTIC IMPLOSION (Guillemin, Jeffrey, Sjamaar 2001)

Ingredients: (X, ω) symplectic manifold

Hamiltonian action of compact connected group ${\cal K}$

 $\mu:X\to \mathfrak{k}^* \text{ moment map}$

T maximal torus of K, Lie algebra $\mathfrak{t}\subseteq\mathfrak{k}$

Weyl group $W = N_T/T$ acts on t and t* which decompose into Weyl chambers.

 $\mathfrak{t}^*_+ = \text{positive Weyl chamber} \cong \mathfrak{t}^*/W \cong \mathfrak{k}^*/K.$

Recall $K_{\zeta} = \{k \in K | (Ad^*k)\zeta = \zeta\}$. Its commutator subgroup $[K_{\zeta}, K_{\zeta}]$ is generated by the commutators $khk^{-1}h^{-1}$ for $k, h \in K_{\zeta}$.

The **imploded cross-section** of X is

$$X_{impl} = \mu^{-1}(\mathfrak{t}^*_+) / \sim$$

where $x \sim y \Leftrightarrow x = ky$ for some $k \in [K_{\zeta}, K_{\zeta}]$ with

$$\zeta = \mu(x) = \mu(y) \in \mathfrak{t}_+^*.$$

Examples: (1) K = SU(2).

$$\mathfrak{t}^*_+ = [0,\infty) = \{0\} \sqcup (0,\infty)$$

$$X_{impl} = \frac{\mu^{-1}(0)}{SU(2)} \sqcup \mu^{-1}((0,\infty))$$

(2) K = SU(3).

Over the interior points of \mathfrak{t}_+^* no collapsing occurs since $[K_{\zeta}, K_{\zeta}] = [T, T]$ is trivial. Over nonzero boundary points of \mathfrak{t}_+^* we have $K_{\zeta} \cong U(2)$ and $[K_{\zeta}, K_{\zeta}] \cong SU(2)$. Over $0 \in \mathfrak{t}_+^*$ we have $K_{\zeta} = SU(3) = [K_{\zeta}, K_{\zeta}]$.

 X_{impl} inherits a symplectic structure and *T*-action with moment map $X_{impl} \rightarrow \mathfrak{t}^*_+ \subseteq \mathfrak{t}^*$ induced by the restriction of μ . K acts on itself by left translation and hence on $T^*K \cong \mathfrak{k}^* \times K$ with moment map

 $\mu(p,q).a = p \cdot a_q \quad \forall a \in \mathfrak{k}, q \in K, p \in T_q^* K = \mathfrak{k}^*.$

 $(T^*K)_{impl}$ 'universal imploded cross-section' is an affine algebraic variety over \mathbb{C} .

In general

$$X_{impl} \cong (X \times (T^*K)_{impl}) / / K$$

which is an algebraic variety if X is algebraic.

Example: $K = SU(2) \cong S^3 \subseteq \mathbb{C}^2$ $(T^*SU(2))_{impl} = \frac{\mu^{-1}(0)}{SU(2)} \sqcup \mu^{-1}((0,\infty))$ $\cong \{\text{point}\} \sqcup (\mathbb{C}^2 \setminus \{0\}) \cong \mathbb{C}^2$ with induced *T*-action multiplication by t^{-1} .

Link with Kähler/algebraic geometry:

 $G = K_{\mathbb{C}}$ complexification of K; B Borel subgroup of G (maximal soluble subgp) such that G = KB and $K \cap B = T$. $N \subseteq B$ maximal unipotent subgroup of G; $B = T_{\mathbb{C}}N$ with $T_{\mathbb{C}}$ complex torus.

FACT: $K_{\mathbb{C}}/N$ is a quasi-affine variety whose algebra of regular functions $\mathcal{O}(K_{\mathbb{C}}/N) = \mathcal{O}(K_{\mathbb{C}})^N$ is finitely generated, so that $K_{\mathbb{C}}/N$ has a canonical affine completion

$$K_{\mathbb{C}}//N = Spec(\mathcal{O}(K_{\mathbb{C}})^N).$$

Thm (GJS): $K_{\mathbb{C}}//N$ has a *K*-invariant Kähler structure such that it is symplectically iso to the universal imploded cross-section $(T^*K)_{impl}$.

Cor: X projective variety acted on by $K_{\mathbb{C}} \Rightarrow$

 $X_{impl} \cong (X \times (K_{\mathbb{C}} / / N)) / / K_{\mathbb{C}} \cong X / / N.$

Generalised symplectic implosion:

 $G = K_{\mathbb{C}}$ complexification of K; P parabolic subgroup of G; U_P unipotent radical of P.

FACT: G/U_P is a quasi-affine variety whose algebra of regular functions $\mathcal{O}(G/U_P) = \mathcal{O}(G)^{U_P}$ is finitely generated, so that G/U_P has a canonical affine completion

$$G//U_P = Spec(\mathcal{O}(G)^{U_P}).$$

Thm: $G//U_P$ has a *K*-invariant Kähler structure such that it can be described symplectically as a generalised universal imploded cross-section $(T^*K)_{impl}^{(P)}$.

Cor: X proj variety acted on linearly by $G \Rightarrow$ its U_P -invariants are finitely generated and

$$X//U_P \cong (X \times (G//U_P))//G \cong X_{impl}^{(P)}.$$

Towards hyperkähler implosion

Recall: X hyperkähler manifold, complex structures i, j, k, metric g, Kähler forms $\omega_1, \omega_2, \omega_3$

compact group K acting on X preserving i, j, k, g

Hyperkähler moment map

$$\mu = (\mu_1, \mu_2, \mu_3) : X \to \mathfrak{k}^* \otimes \mathbb{R}^3$$

Hyperkähler quotient $X///K = \mu^{-1}(0)/K$

Hyperkähler implosion X_{hkimpl} should be stratified hyperkähler with an induced T-action.

Look for the universal hyperkähler implosion

 $(T^*K_{\mathbb{C}})_{\mathsf{hkimpl}}$

with an induced hyperkähler action of $T \times K$ and then define

 $X_{\text{hkimpl}} = (X \times (T^* K_{\mathbb{C}})_{\text{hkimpl}}) / / / K.$

Recall the **symplectic case**:

(1) $(T^*K)_{impl} = (K \times \mathfrak{t}^*_+)/\sim$ with $(k,\zeta) \sim (k',\zeta')$ iff $\zeta = \zeta', k'k^{-1} \in [K_{\zeta}, K_{\zeta}],$ so $(T^*K)_{impl}//_{\zeta}T = K$ -coadjoint orbit of ζ .

(2)
$$(T^*K)_{impl} = K_{\mathbb{C}}//N$$

where $K_{\mathbb{C}} \cong T^* K \cong K \times \mathfrak{k}^*$.

The universal hyperkähler implosion $(T^*K_{\mathbb{C}})_{hkimpl}$ should be the complex symplectic quotient of $T^*K_{\mathbb{C}} \cong K_{\mathbb{C}} \times \mathfrak{k}_{\mathbb{C}}^*$ by N

$$K_{\mathbb{C}} \times (\mathfrak{k}_{\mathbb{C}}/\mathrm{Lie}N)^* //N = (K_{\mathbb{C}} \times \mathfrak{n}^0) //N.$$

Exists (with finitely generated invariants)? Hyperkähler? Geometry? Consider K = SU(n). Co-adjoint orbits of $K_{\mathbb{C}} = SL(n; \mathbb{C})$ appear in **quiver varieties**:

$$0 \rightleftharpoons \mathbb{C} \rightleftharpoons \mathbb{C}^2 \rightleftharpoons \cdots \rightleftharpoons \mathbb{C}^n.$$

Let ${\cal M}$ be the flat hyperkähler manifold

 $\bigoplus_{i=1}^{n-1} \mathbb{H}^{i(i+1)} = \bigoplus_{i=1}^{n-1} \operatorname{Hom}(\mathbb{C}^{i}, \mathbb{C}^{i+1}) \oplus \operatorname{Hom}(\mathbb{C}^{i+1}, \mathbb{C}^{i}).$

Then $M///U(1) \times U(2) \times \cdots \times U(n-1)$ can be identified with the **nilpotent cone** \mathcal{N} in $\mathfrak{k}_{\mathbb{C}}$, which is the closure of the generic nilpotent coadjoint orbit in $\mathfrak{k}_{\mathbb{C}}$. If we shift the moment map by a suitable constant we get other coadjoint orbits in $\mathfrak{k}_{\mathbb{C}}$. So consider

 $Q = M///SU(1) \times SU(2) \times \cdots \times SU(n-1).$

Q is stratified hyperkähler with dimension equal to $2(\dim K + \dim T)$ and a residual action of

$$(S^1)^{n-1} \times SU(n) \cong T \times K$$

which preserves the hyperkähler structure, and an action of SU(2) which rotates the complex structures. Properties of the universal hyperkähler implosion $Q = (T^*K_{\mathbb{C}})_{hkimpl}$:

1) Q is **stratified hyperkähler** with dimension equal to $2(\dim K + \dim T)$ and an action of

$$(S^1)^{n-1} \times SU(n) \cong T \times K$$

which preserves the hyperkähler structure, and an action of SU(2) which rotates the complex structures.

2) The algebra of invariants $\mathcal{O}(K_{\mathbb{C}} \times \mathfrak{n}^0)^N$ is finitely generated and for any complex structure Q is the **complex symplectic quotient**

$$(K_{\mathbb{C}} \times \mathfrak{n}^{0}) / N$$

of $T^*K_{\mathbb{C}} = K_{\mathbb{C}} \times \mathfrak{k}_{\mathbb{C}}^*$ by N.

3) Q has a resolution of singularities

$$\tilde{Q} = K \times_T (\mathcal{T} \times \mathfrak{n})$$

where T is the hypertoric variety for T associated to the hyperplane arrangement given by the root planes in t.

4)
$$Q = K\mathfrak{b}_+$$
 where
 $\mathfrak{b}_+ = \{(\eta, \zeta) \in \mathcal{T} \times \mathfrak{n} : [\mu_j^T(\eta), \zeta] = 0, j = 1, 2, 3\}$
and \mathcal{T} is the hypertoric variety as before.

5) Let $\mathcal{T}^{\sigma} = \{\eta \in \mathcal{T} : K_{\mu^{T}(\eta)} = K_{\sigma}\}$ for σ a face of \mathfrak{t}_{+} , and define $\mathfrak{b}_{+}^{\sigma}$ similarly. Then

$$Q = \bigsqcup_{\sigma} K \times_{K_{\sigma}} \mathfrak{b}_{+}^{\sigma} = \bigsqcup_{\sigma} (K \times_{T} (\mathcal{T}^{\sigma} \times \mathfrak{n}^{K_{\sigma}})) / [K_{\sigma}, K_{\sigma}].$$

6) Let $\{V_{\varpi} : \varpi \in \Pi\}$ be the set of fundamental representations of K. Then Q embeds in

$$H^0(\mathbb{P}^1,(\mathfrak{k}_{\mathbb{C}}\oplus\mathfrak{t}_{\mathbb{C}})\otimes\mathcal{O}(2)\oplus\bigoplus_{arpi,j}\wedge^jV_{arpi}\otimes\mathcal{O}(j))$$

inducing a holomorphic and generically injective map from its twistor space to the line bundle $(\mathfrak{k}_{\mathbb{C}} \oplus \mathfrak{t}_{\mathbb{C}}) \otimes \mathcal{O}(2) \oplus \bigoplus_{\varpi,j} \wedge^{j} V_{\varpi} \otimes \mathcal{O}(j)$. The hyperkähler structure on Q can be recovered from this embedding.

7) The hyperkähler reduction at 0 of Q by T is the *nilpotent cone* \mathcal{N} in $\mathfrak{k}_{\mathbb{C}}$; the reduction at a generic point of $\mathfrak{t} \otimes \mathbb{R}^3$ is a semisimple coadjoint orbit of $K_{\mathbb{C}}$.

8) Q can be described in terms of quivers, and also as a suitable moduli space of solutions to Nahm's equations.

9) If $\zeta = (\zeta_1, \zeta_2, \zeta_3) \in \mathfrak{t} \otimes \mathbb{R}^3 \subseteq \mathfrak{k} \otimes \mathbb{R}^3$ let

 $K_{\zeta} = K_{\zeta_1} \cap K_{\zeta_2} \cap K_{\zeta_3}.$

Let \mathcal{N}_{ζ} be the nilpotent cone in $(K_{\zeta})_{\mathbb{C}}$. There is a $K \times SU(2)$ -equivariant embedding

$$\mathcal{N}_{\zeta} \hookrightarrow \mathfrak{k}_{\zeta} \otimes \mathbb{R}^3$$

whose composition with projection $\mathfrak{k}_{\zeta} \otimes \mathbb{R}^3 \to (\mathfrak{k}_{\zeta})_{\mathbb{C}}$ is the inclusion of \mathcal{N}_{ζ} in $(\mathfrak{k}_{\zeta})_{\mathbb{C}}$. If

 $\mathfrak{t}_{(+)} = \{ \zeta + \xi \in \mathfrak{k} \otimes \mathbb{R}^3 | \zeta \in \mathfrak{t} \otimes \mathbb{R}^3 \text{ and } \xi \in \mathcal{N}_{\zeta} \}$ and the hyperkähler implosion of X is

$$X_{\mathsf{hkimpl}} = (X \times Q) / / / K,$$

then we have

$$X_{\text{hkimpl}} = \mu^{-1}(\mathfrak{t}_{(+)})/ \sim$$

with $x \sim y \Leftrightarrow \mu(x) = \zeta + \xi$ and $\mu(y) = \zeta + \xi'$
where $\zeta \in \mathfrak{t} \otimes \mathbb{R}^3$ and $\xi, \xi' \in \mathcal{N}_{\zeta}$ and $x = ky$ for
some $k \in [K_{\zeta}, K_{\zeta}]$.