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The ternary Goldbach problem: what is it?
What was known?

Ternary Golbach conjecture (1742), or three-prime
problem:
Every odd number n ≥ 7 is the sum of three primes.

(Binary Goldbach conjecture:
every even number n ≥ 4 is the sum of two primes.)

Hardy-Littlewood (1923): There is a C such that every
odd number ≥ C is the sum of three primes, if we
assume the generalized Riemann hypothesis (GRH).
Vinogradov (1937): The same result, unconditionally.
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Bounds for more prime summands

We also know:
every n > 1 is the sum of ≤ K primes (Schnirelmann,
1930),

and after intermediate results by Klimov (1969)
(K = 6 · 109), Klimov-Piltay-Sheptiskaya, Vaughan,
Deshouillers (1973), Riesel-Vaughan. . . ,
every even n ≥ 2 is the sum of ≤ 6 primes (Ramaré,
1995)
every odd n > 1 is the sum of ≤ 5 primes (Tao, 2012).

Ternary Goldbach holds for all n conditionally on the
generalized Riemann hypothesis (GRH)
(Deshouillers-Effinger-te Riele-Zinoviev, 1997)
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Bounds for ternary Goldbach
Every odd n ≥ C is the sum of three primes (Vinogradov)

Bounds for C? C = 3315
(Borodzin, 1939),

C = 3.33 · 1043000 (Wang-Chen, 1989), C = 2 · 101346

(Liu-Wang, 2002).

Verification for small n:
every even n ≤ 4 · 1018 is the sum of two primes (Oliveira
e Silva, 2012);
taken together with results by Ramaré-Saouter and Platt,
this implies that every odd 5 < n ≤ 1.23 · 1027 is the sum
of three primes; alternatively, with some additional
computation, it implies that every odd 5 < n ≤ 8.875 ·1030

is the sum of three primes (Helfgott-Platt, 2013).

We have a problem:
8.875 · 1030 is much smaller than 2 · 101346.

We must diminish C from 2 · 101346 to ∼ 1030.
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Exponential sums and the circle method
The circle method (or “Hardy-Littlewood”) is based on
exponential sums:

in this case, on the sums

Sη(α, x) =
∞∑

n=1

Λ(n)e(αn)η(n/x),

where
η(t) = e−t (Hardy-Littlewood), η(t) = 1[0,1] (Vinogradov),
Λ(n) = log p if n = pα, Λ(n) = 0 if n is not a prime power
(von Mangoldt function)
e(α) = e2πiα = cos 2πα + i sin 2πα (traverses a circle as
α varies within R/Z)

The crucial identity:∑
n1+n2+n3=N

Λ(n1)Λ(n2)Λ(n3)η(n1/x)η(n2/x)η(n3/x)

=

∫
R/Z

(Sη(α, x))3e(−Nα)dα.

We must show that this integral is > 0.
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Major and minor arcs

We partition R/Z into intervals (“arcs”)
ma,q ⊂ (a/q − 1/qQ,a/q + 1/qQ) around a/q, q ≤ Q,
where Q ≤ x . (Farey fractions)

If q ≤ m(x), we say ma,q is a major arc;
if q > m(x), we say ma,q is a minor arc.

In general, up to now, m(x) ∼ (log x)k , k > 0 constant.

Let M be the union of major arcs and m the union of
minor arcs.
We want to estimate

∫
M(Sη(α, x))3e(−Nα)dα and bound∫

m |Sη(α, x)|3dα from above.
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The major arcs

To estimate
∫
M(Sη(α, x))3e(−Nα), we need to estimate

Sη(α, x) for α near a/q, q small (q ≤ m(x)).

We do this studying L(s, χ) for Dirichlet characters mod q,
i.e., characters χ : (Z/qZ)∗ → C.

L(s, χ) :=
∑

n

χ(n)n−s

for <(s) > 1; this has an analytic continuation to all of C
(with a pole at s = 1 if χ is trivial).
We express Sη(α, x), α = a/q + δ/x , as a sum of

Sη,χ(δ/x , x) =
∞∑

n=1

Λ(n)χ(n)e(δn/x)η(n/x)

for χ varying among all Dirichlet characters modulo q.
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The explicit formula
“Explicit formula”:

Sη,χ(δ/x , x) = [Fδ(1)x ]−
∑
ρ

Fδ(ρ)xρ + small error,

(a) the term Fδ(1)x appears only for χ principal (∼ trivial),
(b) ρ runs over the complex numbers ρ with L(ρ, χ) = 0
and 0 < <(ρ) ≤ 1 (called “non-trivial zeroes”),
(c) Fδ is the Mellin transform of η(t) · e(δt).

Mellin transform of a function f :

Mf =

∫ ∞
0

f (x)xs−1dx .

Analytic on a strip x0 < <(s) < x1 in C.

It is a Laplace transform (or Fourier transform!) after a
change of variables.
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Where are the zeroes of L(s, χ)?

Let ρ = σ + it be any non-trivial zero of L(s, χ).

What we believe:
σ = 1/2 (Generalized Riemann Hypothesis (HRG))

What we know:
σ ≤ 1− 1

C log q|t | (classical zero-free region (de la Vallée
Poussin, 1899), C explicit (McCurley 1984, Kadiri 2005)

There are zero-free regions that are broader
asymptotically (Vinogradov-Korobov, 1958) but
narrower, i.e., worse, in practice.

What we can also know:
for a given χ, we can verify GRH for L(s, χ) “up to a
height T0”. This means: verify that every zero ρ with
|=(ρ)| ≤ T0 satisfies σ = 1/2.
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Verifying GRH up to a given height

For the purpose of proving strong bounds that solve
ternary Goldbach, zero-free regions are far too weak.
We must rely on verifying GRH for several L(s, χ),
|t | ≤ T0.

For χ trivial (χ(x) = 1), L(s, χ) = ζ(s).
The Riemann hypothesis has been verified up to
|t | ≤ 2.4 · 1011 (Wedeniwski 2003), |t | ≤ 1.1 · 1011 (Platt
2012, rigourous), |t | ≤ 2.4 · 1012 (Gourdon-Demichel
2004, not duplicated to date).

For χ mod q, q ≤ 105, GRH has been verified up to
|t | ≤ 108/q (Platt 2011) rigourously (interval arithmetic).

This has been extended up to q ≤ 2 · 105, q odd, and
q ≤ 4 · 105, q pair (|t | ≤ 200 + 7.5 · 107/q) (Platt 2013).
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2012, rigourous), |t | ≤ 2.4 · 1012 (Gourdon-Demichel
2004, not duplicated to date).

For χ mod q, q ≤ 105, GRH has been verified up to
|t | ≤ 108/q (Platt 2011) rigourously (interval arithmetic).

This has been extended up to q ≤ 2 · 105, q odd, and
q ≤ 4 · 105, q pair (|t | ≤ 200 + 7.5 · 107/q) (Platt 2013).
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How to use a GRH verification

We recall we must estimate
∑

ρ Fδ(ρ)xρ, where Fδ is the
Mellin transform of η(t)e(δt).

The number of zeroes ρ = σ + it with |t | ≤ T (T arbitrary)
is easy to estimate.

We must choose η so that
(a) Fδ(ρ) decays rapidly as t →∞,
(b) Fδ can be easily estimated for δ ≤ c.

For η(t) = e−t , the Mellin transform of η(t)e(δt) is

Fδ(s) =
Γ(s)

(1− 2πiδ)s .

Decreases as e−λ|τ |, λ = tan−1 1
2π|δ| , for s = σ + iτ ,

|τ | → ∞. If δ � 1, then λ ∼ 1
2π|δ| . Problem: e−|τ |/2πδ does

not decay very fast for δ large!
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The Gaussian smoothing

Instead, we choose η(t) = e−t2/2. The Mellin transform
Fδ is then a parabolic cylinder function.
Estimates in the literature weren’t fully explicit (but: see
Olver). Using the saddle-point method, I have given fully
explicit upper bounds.

The main term in Fδ(σ + iτ) behaves as

e−
π
4 |τ |

for δ small, τ → ±∞, and as

e−
1
2

(
|τ |
2πδ

)2

for δ large, τ → ±∞.
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Major arcs: conclusions

Thus we obtain estimates for Sη,χ(δ/x , x), where

η(t) = g(t)e−t2/2,

and g is any “band-limited” function:

g(t) =

∫ R

−R
h(r)t−ir dr

where h : [−R,R]→ C.

However: valid only for |δ| and q

bounded!

All the rest of the circle must be minor arcs; m(x) must be
a constant M. (Writer for Science: “Muenster cheese”
rather than “Swiss cheese”.)
Thus, minor-arc bounds will have to be very strong.
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Back to the circle

We use two functions η, η∗ instead of a function η.

It is
trivial that∫

m
|Sη(α, x)|2|Sη∗(α, x)|dα ≤ max

α∈m
|Sη∗(α, x)| · L2, (1)

where L2 =
∫
m |Sη(α, x)|22dα. Bounding L2 is easy

(∼ x log x by Plancherel).

We must bound |Sη∗(α)|, α ∼ a/q + δ/x , q > M.

It is possible to improve (1): Heath-Brown replaces
x log x by 2eγx log q. A new approach based on
Ramaré’s version of the large sieve (cf. Selberg) replaces
this by 2x log q.
The idea is that one can give good bounds for the integral
over the arcs with denominator between r0 and r1 (say).
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What weight η+?

The main term for the number of (weighted) solutions to
N = p1 + p2 + p3 will be proportional to∫ ∞

0

∫ ∞
0

η+(t1)η+(t2)η∗

(
N
x
− t1 − t2

)
dt1dt2, (2)

whereas the main error terms will be proportional to
|η+|2|η∗|∞.

To maximize (2) (divided by |η+|2|η∗|∞), define η+(t) so
that (a) it is approximately symmetric around t = 1, (b) it
is (almost) supported on [0,2].

Solution: since η(t) = g(t)e−t2/2, we let g be a
band-limited approximation to et · I[0,2].
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What weight η∗?
In order to estimate Sη∗ on the major arcs, we want a η∗
whose Mellin transform decreases exponentially for <(s)
bounded, =(s)→ ±∞.

To estimate Sη∗ on the minor arcs, we prefer a η∗ with
compact support bounded away from 0.

Vinogradov chose η∗ = 1[0,1].
We would like: η+(x) = f ∗M f , where

(f ∗M f )(t0) =

∫ ∞
0

f (t)f
(

t0
t

)
dt
t
,

f of compact support (e.g. η2 := f ∗M f , f = 2 · 1[1/2,1], as
in Tao).

Solution: η∗ := η0 ∗M f ∗M f , where η0 has a Mellin
transform with exponential decay.

If we know Sf∗f (α, x) or Sη0(α, x), we know Sη∗(α, x).
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The new bound for minor arcs

Theorem (Helfgott, May 2012 – March 2013)

Let x ≥ x0, x0 = 2.16 · 1020. Let 2α = a/q + δ/x ,
gcd(a,q) = 1, |δ/x | ≤ 1/qQ, where Q = (3/4)x2/3. If
q ≤ x1/3/6, then |Sη2(α, x)|/x is less than

Rx ,δ0q(log δ0q + 0.002) + 0.5√
δ0φ(q)

+
2.491√
δ0q

+
2
δ0q

min
(

q
φ(q)

(
log δ7/4

0 q13/4 +
80
9

)
,
5
6

log x +
50
9

)
+

2
δ0q

(
log q

80
9 δ

16
9

0 +
111

5

)
+ 3.2x−1/6,

where δ0 = max(2, |δ|/4),

Rx ,t1,t2 = 0.4141 + 0.2713 log

(
1 + log 4t1

2 log 9x1/3
2.004t2

)
.



The ternary
Goldbach problem

Harald Andrés
Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

The new bound for minor arcs, II

Theorem (Helfgott, May 2012 – March 2013, bound
for q large)

If q > x1/3/6, then

|Sη(α, x)| ≤ 0.27266x5/6(log x)3/2 + 1217.35x2/3 log x .

For x = 1025, q ∼ 1.5 · 105, |δ| < 8 (the most delicate
case)

Rx ,δ0q = 0.5833 . . .
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Worst-case comparison
Let us compare the results here (2012-2013) with those
of Tao (Feb 2012) for q highly composite, |δ| < 8:

q0
|Sη(a/q,x)|

x , HH |Sη(a/q,x)|
x , Tao

105 0.04521 0.34475
1.5 · 105 0.03820 0.28836
2.5 · 105 0.03096 0.23194
5 · 105 0.02335 0.17416
106 0.01767 0.13159
107 0.00716 0.05251

Table: Upper bounds on x−1|Sη(a/2q, x)| for q ≥ q0,
2 · 3 · 5 · 7 · 11 · 13|q, |δ| ≤ 8, x = 1025. The trivial bound is 1.

Need to do a little better than 1/2 log q to win.
Meaning: GRH verification needed only for q ≤ 1.5 · 105,
q odd, and q ≤ 3 · 105, q even.



The ternary
Goldbach problem

Harald Andrés
Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Worst-case comparison
Let us compare the results here (2012-2013) with those
of Tao (Feb 2012) for q highly composite, |δ| < 8:

q0
|Sη(a/q,x)|

x , HH |Sη(a/q,x)|
x , Tao

105 0.04521 0.34475
1.5 · 105 0.03820 0.28836
2.5 · 105 0.03096 0.23194
5 · 105 0.02335 0.17416
106 0.01767 0.13159
107 0.00716 0.05251

Table: Upper bounds on x−1|Sη(a/2q, x)| for q ≥ q0,
2 · 3 · 5 · 7 · 11 · 13|q, |δ| ≤ 8, x = 1025. The trivial bound is 1.

Need to do a little better than 1/2 log q to win.
Meaning: GRH verification needed only for q ≤ 1.5 · 105,
q odd, and q ≤ 3 · 105, q even.



The ternary
Goldbach problem

Harald Andrés
Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Worst-case comparison
Let us compare the results here (2012-2013) with those
of Tao (Feb 2012) for q highly composite, |δ| < 8:

q0
|Sη(a/q,x)|

x , HH |Sη(a/q,x)|
x , Tao

105 0.04521 0.34475
1.5 · 105 0.03820 0.28836
2.5 · 105 0.03096 0.23194
5 · 105 0.02335 0.17416
106 0.01767 0.13159
107 0.00716 0.05251

Table: Upper bounds on x−1|Sη(a/2q, x)| for q ≥ q0,
2 · 3 · 5 · 7 · 11 · 13|q, |δ| ≤ 8, x = 1025. The trivial bound is 1.

Need to do a little better than 1/2 log q to win.
Meaning:

GRH verification needed only for q ≤ 1.5 · 105,
q odd, and q ≤ 3 · 105, q even.



The ternary
Goldbach problem

Harald Andrés
Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Worst-case comparison
Let us compare the results here (2012-2013) with those
of Tao (Feb 2012) for q highly composite, |δ| < 8:

q0
|Sη(a/q,x)|

x , HH |Sη(a/q,x)|
x , Tao

105 0.04521 0.34475
1.5 · 105 0.03820 0.28836
2.5 · 105 0.03096 0.23194
5 · 105 0.02335 0.17416
106 0.01767 0.13159
107 0.00716 0.05251

Table: Upper bounds on x−1|Sη(a/2q, x)| for q ≥ q0,
2 · 3 · 5 · 7 · 11 · 13|q, |δ| ≤ 8, x = 1025. The trivial bound is 1.

Need to do a little better than 1/2 log q to win.
Meaning: GRH verification needed only for q ≤ 1.5 · 105,
q odd, and q ≤ 3 · 105, q even.
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The new bounds for minor arcs: ideas

Qualitative improvements:

cancellation within Vaughan’s identity
δ/x = α− a/q is a friend, not an enemy:
In type I: (a) decrease of η̂,
change in approximations;
In type II: scattered input to the large sieve
relation between the circle method and the large
sieve – in its version for primes;
the benefits of a continuous η (also in Tao, Ramaré),
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Cancellation within Vaughan’s identity

Vaughan’s identity:

Λ = µ≤U ∗ log−Λ≤V ∗ µ≤U ∗ 1 + 1 ∗ µ>U ∗ Λ>V + Λ≤V ,

where f≤V (n) = f (n) if n ≤ V , f≤V (n) = 0 if n > V . (Four
summands: type I, type I, type II, negligible.)

This is a gambit:

Advantage: flexibility – we may choose U and V ;
Disadvantage: cost of two factors of log. (Two
convolutions.)

We can recover at least one of the logs.
Alternative would have been: use a log-free formula (e.g.
Daboussi-Rivat); proceeding as above seems better in
practice.



The ternary
Goldbach problem

Harald Andrés
Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Cancellation within Vaughan’s identity

Vaughan’s identity:

Λ = µ≤U ∗ log−Λ≤V ∗ µ≤U ∗ 1 + 1 ∗ µ>U ∗ Λ>V + Λ≤V ,

where f≤V (n) = f (n) if n ≤ V , f≤V (n) = 0 if n > V . (Four
summands: type I, type I, type II, negligible.)
This is a gambit:

Advantage: flexibility – we may choose U and V ;
Disadvantage: cost of two factors of log. (Two
convolutions.)

We can recover at least one of the logs.
Alternative would have been: use a log-free formula (e.g.
Daboussi-Rivat); proceeding as above seems better in
practice.



The ternary
Goldbach problem

Harald Andrés
Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Cancellation within Vaughan’s identity

Vaughan’s identity:

Λ = µ≤U ∗ log−Λ≤V ∗ µ≤U ∗ 1 + 1 ∗ µ>U ∗ Λ>V + Λ≤V ,

where f≤V (n) = f (n) if n ≤ V , f≤V (n) = 0 if n > V . (Four
summands: type I, type I, type II, negligible.)
This is a gambit:

Advantage: flexibility – we may choose U and V ;
Disadvantage: cost of two factors of log. (Two
convolutions.)

We can recover at least one of the logs.

Alternative would have been: use a log-free formula (e.g.
Daboussi-Rivat); proceeding as above seems better in
practice.



The ternary
Goldbach problem

Harald Andrés
Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Cancellation within Vaughan’s identity

Vaughan’s identity:

Λ = µ≤U ∗ log−Λ≤V ∗ µ≤U ∗ 1 + 1 ∗ µ>U ∗ Λ>V + Λ≤V ,

where f≤V (n) = f (n) if n ≤ V , f≤V (n) = 0 if n > V . (Four
summands: type I, type I, type II, negligible.)
This is a gambit:

Advantage: flexibility – we may choose U and V ;
Disadvantage: cost of two factors of log. (Two
convolutions.)

We can recover at least one of the logs.
Alternative would have been: use a log-free formula (e.g.
Daboussi-Rivat); proceeding as above seems better in
practice.



The ternary
Goldbach problem

Harald Andrés
Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

How to recover factors of log

In type I sums:
We use cancellation in

∑
n≤M:d |n µ(n)/n.

This is allowed: we are using only ζ, not L.
This is explicit: Granville-Ramaré, El Marraki, Ramaré.

Vinogradov’s basic lemmas on trigonometric sums get
improved.

In type II sums:
Proof of cancellation in

∑
m≤M(

∑
d>U µ(d))2, even for U

almost as large as M.

Application of the large sieve for primes.
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The “error” δ/x = α− a/q is a friend

In type II:
η̂(δ)� 1/δ2 (so that |η′′|1 <∞),
if δ 6= 0, there has to be another approximation a′/q′

with q′ ∼ x/δq; use it.

In type II: the angles mα are separated by ≥ δ/x (even
when m ≥ q). We can apply the large sieve to all mα in
one go. We can even use prime support: double
scattering, by δ and by Montgomery’s lemma.
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Final result

All goes well for n ≥ 1030 (or well beneath that). As we
have seen, the case n ≤ 1030 is already done
(computation).

Theorem (Helfgott, May 2013)
Every odd number n ≥ 7 is the sum of three prime
numbers.
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