LYAPUNOV EXPONENTS OF NON-ARITHMETIC COMPLEX HYPERBOLIC LATTICES

ANDRÉ KAPPES

(joint work with Martin Möller) To a flat vector bundle \mathbb{V} over a Riemannian manifold B, one can associate its Lyapunov exponents

$$
\lambda_{1}>\lambda_{2}>\cdots>\lambda_{m}
$$

the different mean logarithmic growth rates of sections when parallel transported along the geodesic flow. In complex geometry, naturally occuring flat vector bundles are the relative cohomology bundles $\mathbb{V}=R^{1} f_{*} \mathbb{C}$ of a family $f: \mathcal{X} \rightarrow B$ of curves (or more generally of a family of Kähler manifolds). In this case, the flat bundles in question are naturally endowed with a relative Hodge filtration, i.e. they are variations of Hodge structures, which are moreover polarized by the cup product pairing on cohomology.

In the case of a family of curves over a hyperbolic curve, there is a beautiful formula, first discovered by Kontsevich [Kon97] (see also [EKZ10]), that relates the sum of Lyapunov exponents to the degrees of certain line bundles. We show a variant of this formula, where the base is a ball quotient, the orbit space of a lattice Γ acting on complex hyperbolic n-space \mathbb{B}^{n}.

Theorem 1 ([KM12]). Let \mathbb{V} be a real polarized variation of Hodge structures of weight 1 and rank $2 k$ on a ball quotient $B=\mathbb{B}^{n} / \Gamma$, and let $\mathcal{V}^{1,0}$ be its $(1,0)$ subbundle. Then the $2 k$ Lyapunov exponents of \mathbb{V} (repeated according to their multiplicities) satisfy

$$
\lambda_{1}+\cdots+\lambda_{k}=\frac{(n+1) c_{1}\left(\mathcal{V}^{1,0}\right) \cdot c_{1}\left(\omega_{B}\right)^{n-1}}{c_{1}\left(\omega_{B}\right)^{n}}
$$

where ω_{B} denotes the canonical bundle.
The most prominent examples of non-arithmetic complex hyperbolic lattices were found by Picard, Terada, Deligne, Mostow and Thurston. Their ball quotients parametrize cyclic coverings of the line and thus come naturally with a flat vector bundle carrying a variation of Hodge structures. Using the above formula combined with the symmetry of the Lyapunov spectrum and other considerations, we can effectively compute all individual Lyapunov exponents of all Picard-Terada-Deligne-Mostow-Thurston examples.

As a second result, we show that Lyapunov exponents provide commensurability invariants of complex hyperbolic lattices. Together with the above computations and using previous considerations (see [Par09]), we conclude that the non-arithmetic Picard-Terada-Deligne-Mostow-Thurston examples fall into 10 commensurability classes.

References

[EKZ10] A. Eskin, M. Kontsevich, A. Zorich: Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow, to appear in Publications de l'IHES (2014) vol. 120, issue 1, arXiv: math.AG/1112.5872, 2010.
[KM12] A. Kappes, M. Möller: Lyapunov spectrum of ball quotients with applications to commensurability questions, preprint (2012), accepted for publication in Duke Math. J.
[Kon97] M. Kontsevich: Lyapunov exponents and Hodge theory, In The mathematical beauty of physics (Saclay, 1996), volume 24 of Adv. Ser. Math. Phys., pages 318-332. World Sci. Publishing, River Edge, NJ, 1997.
[Par09] J.R. Parker: Complex hyperbolic lattices, In Discrete groups and geometric structures, volume 501 of Contemp. Math., pages 1-42. Amer. Math. Soc., Providence, RI, 2009.

