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Abstract

Lind-Schmidt-Ward proved the logarithmic Mahler measure of an integral polyno-
mial equals the entropy of a corresponding dynamical system (building on pioneering
work of Yuzvniskii). After a breakthrough due to Deninger, this equality has been
generalized greatly over recent years by several authors to an equality between the
Fuglede-Kadison determinant of an element of the integral group ring of a group G
and the sofic entropy of a corresponding action of G by automorphisms on a compact
abelian group.
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My plan for this talk is to give a broad overview to new results in computing the entropy

of certain dynamical systems of algebraic origin. To explain, let

• f ∈ ZΓ

• ZΓf ⊂ ZΓ is a left-ideal and ΓyZΓ/ZΓf by left-multiplication.

• Xf := ̂ZΓ/ZΓf = Hom(ZΓ/ZΓf,R/Z)

• ΓyXf is a principal algebraic action gx = x ◦ g−1.

• Focus of the talk: Express the topological entropy of ΓyXf in terms of f .

1 General context

This problem fits into a larger class of problems as follows. Suppose M is a countable abelian
and ΓyM acts by automorphisms. Then ΓyM̂ also by automorphisms. However, M̂ is a
compact abelian group and the action of Γ preserves the Haar measure. The general problem
is to relate the dynamical properties of ΓyM̂ to algebraic properties of ΓyM

2 The Γ = Z case

In the special case Γ = Z, Yuzvinskii obtained a complete solution to this problem in the
60s. To motivate the answer:

Theorem 2.1 (Yuzvniskii). If T ∈ Aut(G) is an auto of a compact metriz group and N < G
is a closed normal subgroup (so

1→ N → G→ G/N → 1

is an exact sequence commuting with T then

h(T,G) = h(T,N) + h(T,G/N).
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If f, g ∈ Z[x] have no roots in common then

1→ Xg → Xfg → Xf → 1

is exact.
This is dual to the exact sequence

0→ Z[x]/Z[x]f → Z[x]/Z[x]fg → Z[x]/Z[x]/g → 0.

(the first map is r + Z[x]f → rg + Z[x]fg, the second map is r + Z[x]fg → r + Z[x]g.)
So f 7→ exph(Xf ) looks like a multiplicative function on polynomials.
What are the multiplicative functions on polynomials? Well, the top coefficient is one.

Also if J ⊂ C then we can send f ∈ Z[x] to the product of all of its roots that are contained
in J . These are essentially all of them.

Theorem 2.2 (Yuzvinskii, 1969). If f(x) = csx
s + · · · + c0 ∈ Z[x] with csc0 6= 0 then

log h(Xf ) = |cs| times the product of the roots outside the unit circle:

h(Xf ) = log |cs|+
s∑
j=1

log+ |rj|

where r1, . . . , rs are the roots of f and log+ |x| = max(0, log |x|).

Jensen ⇒ log+ |x| =
∫ 1

0
log |e2πit − x| dt

⇒ h(Xf ) =

∫ 1

0

log |f(e2πit)| dt = logM(f).

2.1 Proof sketch

• Xf = {(xi) ∈ TZ :
∑s

k=0 ckxm+k ∀m ∈ Z}

• Let ρN be the pseudometric on Xf given by

ρN(x, y) = sup
0≤i≤N−1

|xi − yi|.

• Y ⊂ Xf is (ρN , ε)-separated if for every y1, y2 ∈ Y ,

|y1
i − y2

i | < ε ∀0 ≤ i < N.

• Rufus Bowen ⇒ h(Xf ) = supε>0 lim supN→∞
1
N

log max card(ρN, ε)−separated set

• h(Xf ) = supε>0 lim supN→∞
−1
N

log HaarXf
(B(N, ε))

• B(N, ε) = {x ∈ Xf : |xi| < ε ∀0 ≤ i < N}
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• Suppose N ≥ s. If x ∈ Xf and (x0, . . . , xN−1) is given then there are |cs| choices for
xN .

• ⇒ HaarXf
(B(N−1,ε))

HaarXf
(B(N,ε))

= |cs|volTs (πs(B(N−1,ε)))
volTs (πs(B(N,ε)))

• πs(x) = (x0, . . . , xs−1)

• ε > 0 small enough ⇒ HaarXf
(B(N−1,ε))

HaarXf
(B(N,ε))

= |cs|volRs (π̄s(B(N−1,ε)))
volRs (π̄s(B(N,ε)))

A :=


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−c0/cs −c1/cs −c2/cs · · · −cn−1/cs

 .

Then
π̄s(B(N, ε)) = {t ∈ Rs : ‖Akt‖∞ < ε ∀k = 0 . . . N − s− 1}.

So it suffices to show

− 1

N
log volRs({t ∈ Rs : ‖Akt‖∞ < ε ∀k = 0 . . .N− s− 1})→

s∑
j=1

log+ |rj|

3 Mahler measure

M(f) := exp

∫ 1

0

log |f(e2πit)| dt.

• (Lehmer) Is 1 an accumulation point of {M(f) : f ∈ ZΓ}?

• (Lind-Schmidt-Ward): Equivalently, is the set of entropies of algebraic actions of Z
equal to [0,∞]? (If not then this set is a countable additive semigroup)

Theorem 3.1 (Lind-Schmidt-Ward,1990). For f ∈ Z[Zd] nonzero, h(Xf ) = logM(f) where

M(f) = exp

∫
Td

log |f(z)| dz

where Td ⊂ Cd is the d-dimensional unit torus.
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4 von Neumann algebras

Q: What can be said about nonabelian groups? There is a generalization of Mahler measure
to nonabelian groups. To explain it, we need to embed the group ring ZΓ into a larger
algebra.

Let λ, ρ : Γ→ B(`2(Γ)) be the left and right regular representations. So

(λgφ)(f) = φ(g−1f), (ρgφ)(f) = φ(fg).

• NΓ=the weak closure of ρ(Γ). Equiv., NΓ are all bounded linear operators that com-
mute with λ(Γ).

• trNΓ : NΓ→ C, trNΓ(T ) = 〈T (1Γ), 1Γ〉.

• For T ∈ NΓ×

det
NΓ

(T ) := exp

(
1

2
trNΓ(log TT ∗)

)
∈ R×

• In general,

det
NΓ

(T ) = exp

(∫
[0,∞)

log t dµ|T |(t)

)
.

• (FK, 1950s) detNΓ is a homomorphism.

If Γ = Zd and A : L2(Zd)→ L2(Zd) is a bounded operator,

`2(Zd) A //

F
��

`2(Zd)

F
��

L2(Td) Â //

OO

L2(Td)

OO

If A ∈ NΓ (so it commutes with left-multiplication by Zd) then Â ∈ L∞(Td) is the mut-
liplication operator F(A(0)) (0 ∈ `2(Zd) is the dirac mass at 0) so A(0) ∈ `2(Zd) so
F(A(0)) ∈ L2(Td) and this makes sense). Then the trace of A is the integral of F(A(0))
over Td which leads to:

For f ∈ Z[Zd], detNΓ(ρf ) = M(f).
We get an isomorphism of vn Algebras NZd → L∞(Td) taking the trace to integration.

5 Entropy

Deninger (2006): (implicitly in his paper but not directly stated) If Γ is amenable and
f ∈ Z[Γ] ∩NΓ× then h(Xf ) = log detNΓ(ρf )?

If Γ is finite and f is not a unit in NΓ then it fails. (Using coinduction, we can build such
examples for any group that contains a nontrivial finite subgroup). This is why we restrict
to invertible elements of NΓ.

Answers:
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• (Deninger, 2006) Yes if Γ has a strong Følner sequence, f−1 ∈ L1(Γ) and f ≥ 0 in NΓ.

• (Deninger-Schmidt, 2007) Yes if Γ is residually finite and f−1 ∈ L1(Γ).

• (Li, 2010) Yes.

5.1 Outline of Li’s proof

• Show that if f ≥ 0 then h(Xf ) = log detNΓ(ρf ). This uses an `2-version of Bowen’s
entropy via spanning sets and an approximation formula of Deninger for detNΓ(f) when
f ≥ 0.

• Generalize Yuzvinskii’s addition formula to arbitrary amenable groups:

0→ N → G→ G/N → 0⇒ h(G) = h(N) + h(G/N).

(uses various fiber and conditional entropies with Rudolph-Weiss’ OE method)

• Prove h(Xf ) ≥ log detNΓ(f) in general via perturbing the compression of f to an
invertible linear operator. Uses Lück approximation type arguments and Ornstein-
Weiss quasi-tiling.

• h(Xf∗) ≥ log detNΓ(f ∗) so

h(Xf∗f ) = h(Xf ) + h(Xf∗) ≥ log det
NΓ

(f) + log det
NΓ

(f ∗)

= 2 log det(f) = log det(f ∗f) = h(Xf∗f )

shows h(Xf ) = log detNΓ(f).

5.2 Li-Thom

Hanfeng Li and Andreas Thom. Entropy, determinants, and L2-torsion, J. Amer. Math.
Soc. 27 (2014), no. 1, 239–292.

Li-Thom study the general case ΓyM̂ where Γ is amenable and relate entropy to L2-
torsion. They show, for example that h(M̂) = ρ(2)(M) if M has a finite free resolution (type
FL) and χ(M) = 0. It is not even obvious why ρ(2)(M) should be nonnegative apriori.

A corollary of this is that the L2-torsion of the trivial module is zero when it has type
FL which had been conjectured by Lück.

6 Sofic groups

Definition 1. Γ is sofic if there are a collection {Vi}i∈I of finite sets and maps σi : Γ →
Sym(Vi) such that for every g, h ∈ G,

lim
i→∞
|Vi|−1#{v ∈ Vi : σi(g)σi(h)v = σi(gh)v} = 1
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and if g 6= h then
lim
i→∞
|Vi|−1#{v ∈ Vi : σi(g)v 6= σi(h)v} = 1.

• Amenability ⇒ sofic

• Residually finite ⇒ sofic

• The class of sofic groups is closed under: subgroups, direct limits, inverse limits, direct
products, extensions by amenable groups and free products with amalgamation over
an amenable subgroups. (Elek-Szabo, Dykema-Kerr-Pichot, Paunescu)

• Soficity has been used to study group rings and group algebras... If G is sofic then
G satisfies Gottshalk’s surjunctivity conjecture, Connes embedding conjecture, the
Determinant conjecture, Kaplansky’s direct finiteness conjecture. (Gromov 1999, Weiss
2000, Elek-Szabo 2005)

• The sofic property enables one to associate invariants of actions on topological spaces,
measure spaces, Banach spaces.

• OPEN: Is every countable group sofic?

7 Topological sofic entropy

Given

• ΓyX cts action on cp metric space

• Σ=a sofic approximation to Γ

• ρ, continuous pseudo-metric on X

define
hΣ(GyX, ρ) := sup

ε>0
inf
W⊂G

inf
δ>0

lim sup
i→∞

|Vi|−1 logNε(Map(W, δ, σi), ρ∞).

where

• for W ⊂ Γ, δ > 0 and σ : Γ→ Sym(V )

Map(W, δ, σ, ρ)

to be the set of all maps φ : V → X such that

ρ2(φ ◦ σ(w), w ◦ φ) < δ, ∀w ∈ W.

=

(
1

|V |
∑
v∈V

ρ(φ(σ(w)v), wφ(v))2

)1/2

.
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• Nε(Map(W, δ, σ, ρ), ρ∞) denotes the max. card. of a ρ∞-separated subset where
ρ∞(φ1, φ2) = maxv∈V ρ(φ1(v), φ2(v)).

• The elements of Map(W, δ, σ, ρ) are the “approximately periodic” points for the action.
They are also called “microstates” in analogy with Voiculescu’s free entropy theory.

Theorem 7.1 (Kerr-Li, 2011). If ρ1, ρ2 are dynamically generating, then hΣ(GyX, ρ1) =
hΣ(GyX, ρ2). So hΣ(GyX) := hΣ(GyX, ρ1). Moreover, if G is amenable, then this
coincides with classical topological entropy.

Conjecture 1 (Gottschalk’s surjunctivity conjecture). For any countable discrete group G,
any finite set K and any continuous G-equivariant map φ : KG → KG, if φ is injective then
must also be surjective.

This was proven by Gromov for sofic groups. Kerr-Li give a new proof based on topolog-
ical sofic entropy.

8 Sofic entropy of algebraic actions

Theorem 8.1 (Hayes). Let Γ be a sofic group, Σ a sofic approximation, f ∈ Mn(ZΓ)
injective on `2(Γ)⊕n. Then

hΣ(Xf ) = log det(f).

If f is not injective then hΣ(Xf ) =∞. Also if f ∈Mm,n(ZΓ) then

hΣ(Xf ) ≤ log+ det(f).

There are also measure-theoretic counterparts to these statements.

Special cases were proven earlier by B.-, Kerr-Li, B.-Li.

Theorem 8.2 (Hayes). With Γ as above, if f ∈ Mn(ZΓ) ∩ GLn(NΓ), f /∈ GLn(ZΓ) then
det(f) > 1.

8.1 Outline

We consider the case only when f ∈ ZΓ.
Lemma 0:

hΣ(Xf ) = sup
ε

inf
F,E,δ

lim sup
i
|Vi|−1 logSε(Map(ρ|A,F, δ, σi), ρ2)

where F ⊂ Γ is finite, A ⊂ ZΓ/ZΓf is finite, δ > 0 and Map(ρ|A,F, δ, σi) consists of all
approximately equivariant maps φ : Vi → TΓ such that

1

|Vi|
∑
v∈Vi

|φ(v)(a)|2 < δ

(ρ here is the usual time 0 pseudo-metric).
Lemma 1:
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• hΣ(Xf ) = supε>0 infδ lim supi
1
|Vi| logSε(Ξδ(σi(f)), θ2,ZVi ).

• Sε(·) is the max. card. of an ε-separated subset

• Ξδ(·) is the set of ξ ∈ RVi such that minλ∈ZVi ‖σi(f)ξ − λ‖2 < δ (we are also using this
distance to measure the separation)

The idea is that any such ξ is associated to a map from Vi to Xf that is close in terms
of the usual time 0 coordinate and vice versa.

In order to control the kernel of σi(f) better, let A = Ai, B = Bi ⊂ Vi be such that

Pim(σi(f))⊥|RAc , Pker(σi(f))⊥|RBc

are isomorphisms onto im(σi(f))⊥, ker(σi(f))⊥. Set

xi = χAσi(f)χB.

Because f is injective on `2(Γ), the density of Ai and Bi in Vi tend to 1 as i→∞. Therefore

‖xi − σi(f)‖2 → 0, µ|xi| → µ|f |

and
sup
ξ
‖xiξ − σi(f)ξ‖2,ZVi → 0.

In particular, we can replace σi(f) with xi in the formula for entropy:

hΣ(Xf ) = sup
ε

inf
δ

lim sup
i

1

|Vi|
logSε(Ξδ(xi), θ2,ZVi ).

The matrix xi is nicer than σi(f) because im(xi) = RA, ker(xi) = RBc
. So we can multiply

x on the right and left by permutation matrices so that it has the form

xi =

[
T 0
0 0

]
and T has entries in Z and is invertible over R.

8.1.1 The upper bound

We will construct a product space M × N × O with a natural map into RVi and show that
its image 2ε-covers Ξδ(xi) (wrt ‖ · ‖2,ZVi . It then suffices to estimate the cardinalities of M,N
and O.

Let

• M ⊂ x−1
i (δBall(`2

R(Vi))) ∩ RB be a maximal ε-separated subset. (These are points in
the “domain” RB that map into a small ball).
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• N ⊂ x−1
i (ZA) ∩ RB be a section for the quotient map

x−1
i (ZA) ∩ RB → x−1

i (ZA) ∩ RB

ZB

These are points that map into ZA. Intuitively, this is the important part.

• O ⊂ Ball(`2
R(Vi)) ∩ RBc

be a maximal ε-separated subset. This are the points not in
the domain that we need to get a covering.

Lemma 2. The map
(m,n, o) ∈M×N × O→ RVi

defined by
(m,n, o) 7→ m+ n+ o

2ε-covers Ξδ(xi) (wrt ‖ · ‖2,ZVi .
We observe that |N| = det+(xi), |M| ≤ det4δ/ε(xi)

−1 (where det4δ/ε(xi) is the product of
the small eigenvalues of xi) and

|O| ≤
(

3 + 3ε

ε

)|Bc|

.

From these inequalities we obtain that

logSε(Ξδ(xi), θ2,ZVi ) ≤
∫ ∞

4δ/ε

log t dµ|xi|

plus an error term that disappears in the limit. This is enough for the result because we
consider i→∞ then δ → 0 then ε→ 0.

8.1.2 The lower bound

We will construct sets N,M (different from above) and an injective natural map N×M→ RVi

such that the image is an ε-separated subset of Ξδ(xi) (wrt ‖ · ‖2,ZVi . Then it suffices to
estimate the cardinalities of N and M.

Let

• N ⊂ x−1(ZA) ∩ RB be such that {xiξ : ξ ∈ N} is a maximal η-separated subset wrt
θ2,xiZB where η = 2ε‖f̂‖1. This should be the set that matters most.

• p = χ0,δ/ε(|xi|),W = pRVi

• M ⊂ W ∩ x−1
i (δBall(`2(Vi))) be a maximal ε-separated subset wrt θ2,ZV . This is the

set of points which are mapped to points of small size.
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Consider the map M×N→ RVi/ZVi by

(m,n) 7→ m+ n

Because M,N are appropriately separated, this map is injective. Also their definitions imply
that m+ n ∈ Ξδ(xi).

We obtain

|
+

det(xi)| ≤ C|N|

where C > 0 is a constant depend only of f .
Similarly,

det
δ/ε

(xi)
−1(δ/ε)|W | ≤ C|M|.

From this we obtain the lower bound as before.

9 Measure-theoretic

There is a measure-theoretic sofic entropy theory as well and Ben extended all of the results
of the Theorem mentioned above to the measure-theory case (with one exception: it is not
known if f being noninjective on `2(Γ)⊕n implies the measure-entropy is +∞).

The variational principle reduces the problem to proving the lower bound. This follows
as in the proof of the lower bound for topological entropy, once we know that most of the
good maps constructed there are approximately equidistributed. This proof of this is similar
to work that I did earlier in the residuallly finite case (and `1-invertible case). It relies on a
result of Li-Peterson-Schmidt showing that the action is ergodic (wrt Haar measure).

10 Questions

• Given a group G, what can be said about Det(G) := {det(f) : f ∈ ZG} ⊂ [1,∞)?
Lehmer’s problem asks whether Det(Z) is discrete or equal to [1,∞).

• Is there a characterization of f ∈ ZG with det(f) = 1? (So we ‘should’ have h(Xf ) =
0). For example, if G = Z then these are products of cyclotomic polynomials.

11


